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Abstract Define the traffic intensity asthe ratio of the arival rate to the servicerate. This paper
shows that the BMAP/PH/s/s+K retrial queue with PH-retrial times is ergodic if and only if its
traffic intensity is lessthan one. The result implies that the BMAP/PH/s/s+K retrial queue with
PH-retrial times and the orresponding BMAP/PH/s queue have the same ndition for
ergodicity, afad which has been believed for along time without rigorous proof. This paper also
shows that the same @ndition is necessary and sufficient for two modified retrial queueing
systems to be ergodic. In addition, conditions for ergodicity of two BMAP/PH/s/s+K retria
gueues with PH-retrial times and impatient customers are obtained.
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1. Introduction

The retrial queueing system studied in this paper has finite waiting positions and a number of
servers. When an arriving customer finds that all servers are busy and no waiting position is
available, the austomer starts orbiting in an orbit and retries for service dter a random time until
the austomer gets into service or the queue. The orbit can acoommodate aty number of orbiting
customers. We study the ergodicity of such retrial queueing systems.

Ergodicity of retrial queues has been studied by many researchers (seeFalin [9], Falin and
Templeton [10], Kulkarni and Liang [12], Yang and Templeton [20], and references therein).
Conditions for ergodicity have been obtained for various retria queueing systems. Denote by p
the traffic intensity defined as the ratio of the arival rate to the (total) service rate of a retrial
system. In Falin [8], the sufficiency of p<1 for ergodicity of the M/M/s/s retria queue with



exponential retrial times was proved. Liang and Kulkarni [13] obtained a stability condition of a
single server retrial queue. Yang, et a. [21] and Diamond [3] showed that p<1 is a necessary and
sufficient condition for ergodicity of the M/G/1 retrial queue with genera retrial times,
respedively. For single server retrial queues with a Markov arrival process PH-service times,
and exponential retrial times or their spedal cases, Diamond [3], Diamond and Alfa [4] and [5],
and Li and Yang [14] proved that p<1 is necessary and sufficient for ergodicity. Diamond and
Alfa [6] and [7] proved that p<1 is a sufficient condition for ergodicity of multi-server retrial
gueues with finite buffers and exponential retrial times (also see Diamond [3]). These results
support a simple and intuitive anjedure on ergodicity of retrial queues which has been used by
many reseachers without rigorous proof.

Conjecture 1.1 A retria queueing system is ergodic if and only if p<1.

By that a queueing system is ergodic, we mean that an associated Markov process (defined later)
of the queueing system is ergodic. It has been found that condition p<1 is not enough for the
ergodicity of some retrial queues, one of which is iown below (see Liang and Kulkarni [13] for
more counterexamples).

Example 1.2 Consider asingle server retrial queueing system with deterministic interarrival times
and deterministic retrial times, both of which have the same length one. The service time is 0.1
with probability 0.9 and 5.1 with probability 0.1. There is no waiting position. The mean service
timeis 0.6. Thus, the traffic intensity p is 0.6, which is lessthan one. For this queueing system,
asaume that an arrival instant is followed by a (possble) retrial. The system is unstable since the
number of customers in the orbit increases to infinity. The reason for thisis that with a positive
probability an arrival will find that the server is busy and therefore the aistomer has to go
orbiting. On the other hand, no orbiting customer can enter service Furthermore, the cgadty of
the queueing system is wasted since the server is often idle for 0.9 units of time while many
customers are in the orbit.

Despite of these munterexamples, it is gill believed that Conjedure 1.1 is true for retrial
gueues whose interarrival times, service times, and retrial times have @ntinuous distribution
functions. The objedive of this paper is to show that p<1 is a necessary and sufficient condition
for ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times. The BMAP/PH/g/s+K
retrial queue with PH-retrial times has a batch arrival process PH-service times, multiple servers,
finite waiting positions, and PH-retrial times, which can be mnsidered as a generalization of the
retrial queues gudied in [3], [4], [5], [6], [7], [8], [12, and [19]. Among them, the
MAP/PH/</s+K retrial queue with exponential retrial times considered in Diamond and Alfa [6]
and [7] isthe one dosest to the model studied in this paper. The sample path approad is used to
prove the necessty of the condition p<1 and the mean-drift method (Falin and Templeton [10]
and also see Foster’s criterion in Cohen [2]) is used to prove the sufficiency of the cndition.
Although Foster's criterion has been adopted as a standard way to prove the sufficiency of the
ergodicity conditions for retrial queues, the extension from the cae with exponential retrial times
and single arivals to the cae with PH-retrial times and batch arrivals is not trivia and in faa
challenging. Besides the main theorem, conditions for two modified retrial queues and two retrial
gueues with impatient customersto be ergodic are obtained as well.



Results obtained in this paper can be used to determine whether or not a retrial queuing
system can read its deady state and to choose system parameters, such as the number of servers,
to ensure system stability. The queueing system of interest is modelled into a highly structured
Markov process which makes it possble to prove the sufficiency of the condition for ergodicity.
This Markov processcan also be used to study the stationary distribution of the retrial queueing
systems of interest.

The rest of the paper is organized as follows. In Sedion 2, the BMAP/PH/s/s+K retria
gueue with PH-retrial times is defined. In Sedion 3, a Markov processis introduced to represent
the queueing system and the main theorem is gated. In Sedions4 and 5, condition p<1 is proved
to be necessary and sufficient for ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial
times respedively. In Sedion 6, two retria queues with impatient customers are defined and
conditions for ergodicity are obtained. Finaly, in Sedion 7, two modified retrial queueing
systems of the BMAP/PH/s/s+K retrial queue with PH-retrial times are proved to be ergodic if
and only if p<1.

2. The BMAP/PH/gs+K Retrial Queue with PH-Retrial Times

The basic queueing model under consideration in this paper is defined in this ®dion. Firgt, the
input process — a batch Markov arrival process — is introduced. Then the service time of a
customer is defined and the retrial medhanism is gedfied.

Customers arrive to the queueing system acording to a batch Markov arrival process
The batch Markov arrival process(BMAP) was introduced by Neuts (seeNeuts [16] and [18] and
Lucantoni [15]) as a generdizaion of the phase-type renewal process (see Neuts [17]). It is
defined on afinite irreducible Markov process|(t) (cdled the underlying Markov procesg which
has m states and an infinitesmal generator D. In the BMAP, the sojourn time in state i is
exponentially distributed with parameter (-Do)i; (=-(D)ii). At the end of the sojourn time in state
i, there occurs a trangition to another (possbly the same) state and that transition may or may not
correspond to the arival of customers. Let Do be the rate matrix of transitions that does not
generate arivals, D; the rate matrix of transitions with one astomer, D, the rate matrix of
transitions with two customers, etc. Notice that the matrix Do has grictly negative diagonal
elements and nonnegative off-diagonal elements, matrices{ D, >0} are nonnegative, and D = Do
+ 2-1Dn. Let O be the stationary probability vedor of the underlying Markov processl(t), i.e.,
satisfies gD = 0 and ge = 1, where eis a @lumn vedor of ones. The stationary arrival rate IS

then given by A = QZ nD.e (which is assumed to be finite). Define D™ (2) = Z z"D,. Asume

n=

that D'(2) is finite for 0<z<z, where z, > 1. This condition is not restrictive since D"(2) is always
finite when only a finite number of matricesin { D,, n=1} are nonzero.

There ae sidenticd servers srving customers one & atime. Service times of customers
are independent of ead other and have a ©®mmon phase-type distribution (PH-distribution)
function with a matrix representation (&, T), where o is avedor of szem, and T is an myxmy



matrix. Let T° = -Te. The mean service time is given by 1/u = -qT e and u is the average
servicerate of aserver. For more detail s about the PH-distribution, see Chapter 2 of Neuts [17].
When a service is complete, the austomer leares the queueing system immediately and the server
becmes avail able to serve another customer in the queue (if any).

There ae K waiting positions, where K is a nonnegative integer. Thus, there ae & most
s+K customers present in the system at any time. When a austomer arrives and finds an idle
server, the austomer recaves srvice immediately. When a astomer arrives and finds that all
servers are busy and a waiting position is available, the austomer occupies the waiting position.
Otherwise, the austomer waits for a random period of time for retria. When a austomer is
waiting for retrial, the austomer is considered to be in an “orbit” and the retrial is independently
identicdly (probabilisticdly) repeaed until a server or a waiting position is sized. The retrial
times have aPH-distribution with matrix representation (3, H), fe = 1, where 3 is avedor of size
me, and H = (h;)) is an myxm, matrix. Define H°=-He'= (h®). Notice thal when there ae a
number of customers in the orbit, the next customer entering service or taking a waiting position
does not have to be the austomer who entered the orbit first. Any orbiting customer must be in
one of the m, states of the PH-distribution at any time.

3. Thelnfinitesmal Generator

In this ®dion, a Markov processis constructed to represent the MAP/PH/s/s+K retrial queue
with PH-retrial times. Let

Ni(t) be the number of customers in the orbit whose retrial time processis in state i at
timet, 1<i<m;

g(t) bethetotal number of customersin queue or in service d timet;

I(t) bethe state of the underlying Markov processof the BMAP at time't;

lj(t) be the state of the service time of the jth server which is working at timet, 1 <j <

max{s, q(t)}-

It is easy to seethat {Ni(t), 1<i<mp, q(t), I(t), Ij(t), 1 <j < max{s, q(t)}} isanirreducible
Markov process Let 0 ={n=(ny, ..., n_{np}): 0<n <o, 1<i<m}. Notation"x y" isused
for x subscript y for typographicd reasons. The state spaceof the Markov processis

a=Jo,. (3.2)

ntd

where Qn = Qno0Qn10Qn20...0Qnsk, ad Qni = {(n, )}x{1, 2, ..., mx{1, 2, ..., m}' if
O<i<s, otherwise, Qni = {(n, )} {1, 2, ..., m}x{1, 2, ..., my}°. The subset of the states in Q, is
cdled level n. Each level has M = m+ mm+mm?+...+mm>Kmm® states, where “=” means a
definition equation. In ead state in Q, with n = (ny, ..., n_{my}), there ae n; + ...+ n_ {my}
customersin the orhit.



For convenience transitions of the Markov process{Ni(t), 1<i<my, q(t), I(t), Ij(t), 1 <j <
max{s, q(t)}} are described in terms of the transitions between levels. Let e be avedor of size
my with al elements zero except that the ith element is one, 1<i<m,, and let vedor k = (ki, ...,
k {my}) with al elements nonnegative integers. From level n, the Markov process can move to
level n+k, n-e, or n-g+g, for 1<i, j<my, in one transition. The infinitesmal generator of Markov
process{Ni(t), 1<i<my, q(t), I(t), Ij(t), 1 <j < max{s, q(t)}} isgiven asfollows.

From level n to level n+k (k£0), the matrix of trangition ratesis given by

D - 0 k,B)D K m_Zk. OgO---0 E
. pk,B)D_{s+ +,Z J0a S Q :
Eo e 0 p(k,g)[)_{s-1+|<+ij}Dlmlng---DgE
|:| J= B s-1 |:
0o C
A(n,n+k):%) o 0 pk,B)D {1+K+Zk}DI {m™M1O0q E
D E (3.2)
Do 0 p(k,B)D {K+Zk}m _{m) -
oo C
T ) C
@n - 0 p(k,l;i)D_{Zk,-}Dl_{mf} E
= p(k,gs>/>b<n2k,->,
where
_(k1+"'+km_2)! k 1 k
p(k,B) = ko | Bl Buz? s (3.3)

X = X(x-1)---1, 0 =1, and “[0" denotes the Kronedker product (Gantmacdher [11]). A(n, n+k) is
an MxM matrix. Note that the blocks within A(n, n+k) describe the transitions from sublevels
{Qnoy Qn1y -vy Qnstk} 10 { Qneko, Qnikt, -..0 Qnikstk}. When a batch of n customers arrives,
some of the n customers fill i dle servers and the queue first, and the rest of them go orbiting. For
customers who go orhiting, the seledion of the initial states of their retria times follows the
multinomial distribution {p(k, @)} )

From level n to level n-e+ g, 1<i, j<m,
A(n,n-¢ +e;)=nh I, if 1<izj<m,n >0

A(n,n) Al+mZznh |+mZzn h°(1 -T) (34
n,n)= it it - '



where I' is an MxM matrix with al diagonal elements to be one except the last mm® elements,
which are zeo, and al off-diagona elements zero, nih;jl is the matrix of the total transition rates
from state i to j (i#j) for the retrial process nh’(1-I") represents the matrix of the total transition
rates that retrial customers find a full queue upon finishing the retria time in state i, and As

represents the matrix of the transition rates due to an arrival or service @mpletion:

EBo,o Bo,l Bo,z Bo,s+K E
EBLO Bl,l Bl,2 e Bl,s+K E
A= Lo
B Bs+K—l,s+K—2 Bs+K—l,s+K—l Bs+K—l,s+K [
] Bs+K,s+K—l BS+K,S+K C

where

D_ 0Ol {m})OaO--Oq, 0<i<j<s;
E(, {m} Og - Q j
:E(Dj_iml_{nﬂ})mgm--_-mg, 0<i<ss<j<s+K;

o O _{m}, s<i<j<s+K;

o 01 {ml}+Z,I {mm}OT0O1_{m™'}, 0<i<s

E@Dﬂ%ﬂ

a D[Zl {miyoTlor_{m™y, 1<i<s

g D[Z' A OT) 01 _{m™)], s+1l<i<s+K.

{ml}+Z| A{mm}O0TO1I_{m™™}, s+1<i<s+K;

(3.5)

(3.6)

(3.7)

(3.8)

Note that [Z1A0(N)+Aq]e =0, and A(n, n) and A(n, n-e+eg) are MxM matrices. Equation
(3.6) represents the matrix of the transition rates corresponding to an arrival. For an arrival of
szej-i (jss+K), min{si, j-i} customers enter service and the rest of them join the waiting line.
Equation (3.7) represents the matrix of the transtion rates without an arrival or a service
completion. Equation (3.8) represents the matrix of the transition rates corresponding to a
service @mpletion, which describes the dhange of states when a service is complete and a new

service begins.

From level n to level n-g, for 1<i<m, and ni>0,



P I=Ua E
0 0 I _{mm}D0q C
0 .. C
B | 0 I _{mm™}0q E
= _h_o - 3.8
n, .B 0 | {mnf) E (3.8
0 " C
. 0 I_{mnf}c
H 0
EnihiOAZ'

Note that A(n, n-e) is an MxM matrix and (Ax-IN)e = 0. Also notice that a retria is
succesgul only when the total number of customer in queue or serviceis lessthan s+ K. Although
the infinitesimal generator is complicated, its construction is graightforward and explicit. Thus,
no more explanations are given to this construction process

When the Markov processintroduced above is ergodic, we say that the retrial queue is
ergodic. The main objedive of this paper isto prove the following theorem.

Theorem 1. Let p = A/(su) be the traffic intensity of the queueing system. The BMAP/PH/s/s+ K
retrial queue with PH-retrial times is ergodic if and only if p<1.

The proof of Theorem 1 consists of two parts. 1) a proof the necessty of the andition
and 2) a proof of the sufficiency of the ndition, which are provided in the following two
sedions.

4. Proof of the Necessity

To prove the necessty of the cndition p<1 for ergodicity of the queueing system of interest, the
sample path method is utilized. The BMAP/PH/s queue mnsidered here is the dasscad queueing
system (with infinite waiting positions and no retrial) which has the same input process service
times, and the number of serversasin the retrial queueing system defined in Sedion 3.

Theorem 2. If the BMAP/PH/S/s+K retrial queue with PH-retrial times is ergodic, then the
corresponding BMAP/PH/s queueis ergodic. Thisimpliesthat p<1.

Proof. The sample path approad is used to prove this lemma. Suppose that the retrial queue
and the corresponding non-retrial queue BMAP/PH/s are enpty initialy. Let these two queueing
processes be mupled in the same probability space Let a, be the ariva epoch of the nth
customer and s, the servicetime of the nth service Noticethat s, may not be the nth customer's



servicetime in the retrial queue. Let t, and t._, be the gochs when the nth service starts for the
retrial queue and the crresponding non-retrial queue, respedively. It isclea that, for n>s,

+S

n-s?

t,= max{a,, min{t tnosn T Shosenr s L F Sn-1th

t, 2 maX{an, min{tn—s LS R N Sn—l}}'

L,n-s

(4.1)

By induction, it is easy to prove that t, >t , and t,+s, > t o+s, for n>0. Let A(t) be the
total number of customers arrived in (O, t). Let B(t) and B.(t) be the total number of customers
finished in (O, t) and let gai(t) and q..ai(t) be the total number of customers in service queue, or
the orbit for the retrial and the non-retrial queues, respedively. It is clea that

A(t) =max{n: a, <t}
B(t) =max{n: t, +s, <t}, B_(t)=max{n: t_, +s, <t}; (4.2
0. (t) = A(t) - B(1), 0. (t) = Alt) - B (1).

It is easy to seethat B(t)<By (t) and therefore qui(t)=qLai(t) for al t. Thisimplies that the
total number of customers in the MAP/PH/s/s+K retrial queue is aways as large & that in the
MAP/PH/s queue. This further implies that P{qai(t)<q}< P{q.ai(t)<q} for al g=0 and t>0.
Setting g=0 yields P{qai(t) = 0}< P{qLai(t) =0}. When the retrial queue is ergodic, the limit
limg:_. « P{Qai(t) = O} exists and is positive. Since the Markov process{d.ai(t), I(t), li(t), 1 <i <
max{s, quai(t)}} of the MAP/PH/s queue is irreducible, the limit lim_. ., P{q.ai(t)=0} exists and
is positive since limg:_. o P{ d,ai(t)=0} 2limy:_ .4 P{q.(t)=0}>0. This implies that the MAP/PH/s
gueueis ergodic. When the MAP/PH/s queue is ergodic, p<1 must be true (Asmussen [1]). This
completes the proof.

Note: Theorem 2 can be extended to more genera retrial queueing systems such as GI/G/g/s+K
retrial queues with general retrial times and BMAP/G/9/'s+K retrial queues with general retrial
times, as long as the ergodicity of these queueing systems is well defined.

5. Proof of the Sufficiency

To prove the sufficiency, the mean-drift method (or Foster's criterion) is utilized (see Falin and
Templeton [10] and Cohen [1]). The result is gated in the following theorem and its proof is
rather long.

Theorem 3. When p<1, the Markov process{ Ni(t), 1<i<my, q(t), I(t), I;(t), 1 <] < max{s, q(t)}}
introduced in Second 3is ergodic.

Proof. To prove the theorem by using the mean-drift method, the key is to construct a vedor-
m_2

valued test (or Lyapunov) function {f,, nOO} suchthat f, — o when Z n, - o and



m_2 m_2 m_2
An,n-¢e)f . ; +A(n,n)f, + Aln,n—e +e )
2 ; > 2 |

=T j=T]#i

n-e_i+te_j
(5.1)

+ A(n,n+Kk)f ., <-ce
k=0, k#0

holds for al but a finite number of n[000 for some positive €. In the &ove inequality and the
following, A(n, n’) = 0 if n’O0. Acocording to the mean-drift theory of Markov processes, if
inequality (5.1) holds for al but a finite number of nJ for some positive &, the arresponding
Markov process is ergodic. For such a purpose, the following test function is introduced.
Notation "x"y" shall be used for x superscript y for typographicd reasons. For nJ,

f=ay 2 ynle+2 (S nju= 3 1,0.1)+f,(2) 52)
i0f] =1 !

=1

where 1<z<z, u is a vedor of size M, a is a positive number, jo is a positive integer, 0J(1) = {i:
1<i<my, h° # 0} and, for 2<j<j,,

j-1
0(j) ={i: 1<i<m,, i O(JO(K), andfor sometO0(j~1), h, >0}

k=1

o o (5.3)
D(j):UD(k), D(l)—D(j)EUD(k), and 0(1) ={1,2,...m}.

If 0(1)={1, 2, ..., my}, then 0(1)=0(1) and al other sets are empty. Intuitively, a retria for
service ca occur after at least j transitions if the retrial processof a aistomer is in one of the
states in 0(j) for 1<j<jo. In general, the retrial processof a astomer can go from a state in [(j)
to a state in [J(j-1), O(), ..., O(jo-1), or O(jo), but not any state in [J(1), ..., or [(j-2) after one
transition. Subsets {[J(j), 1<j<jo} play an important role in the following proof. Understanding
the transitions of the retrial process among these subsets dall be helpful. Notice that when the
(arrival) batch sizeis one and retrial times are exponential, Diamond and Alfa[7] introduced a test
function smilar to the one given in equation (5.2) with jo=1, my=1, and 0(1)=0(1)={1} and
proved this theorem.

Values of parameters z, u, and a shal be determined so that inequality (5.1) holds for all
but a finite number of nJC for some positive . For this purpose, the left hand side of inequality
(5.1) is evaluated as follows. First, terms containing veadors {f,(1,1)} on the left hand side of
inequality (5.1) are evaluated.

S Amn-e X, WD+ AN, ADES S A€ +e ), . (LD
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The last three @ualities hold because the total sum of the probabili ties of a multinominal
distribution equals one, [Zx=1A0(N)+AJe = 0, and Te + T° = 0, i.e,, Zjhi;+h® = 0 for every i,
respedively. Similarly, terms containing vedors {f,(2)} on left hand side of inequality (5.1) can
be evaluated. Theresult isgiven as

m_2 m_2
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For 2<j<jo, terms containing veaors {fn(1, j)} on the left hand side of inequality (5.1) are
evaluated as follows.

m_2 m_2m_2
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inwhich [Zns1A0(N)+AJe= 0, Te+ T° =0, i.e.,, Zjhij+h® = 0, Ave=Te are used. The notation “[T
stands for “there exists’. Noticethat h°=0 for iDO(j) if j=2. Summing upequations (5.4), (5.5),
and (5.6) from j=2to j=jo, the left hand side of inequality (5.1) bemes

ZA{TZE n -1 Eﬁiz(z“ ‘1)'%(N)e—a(z—1)(m_2ni h')re
| 57
+ z%ﬁﬁ + Z;ZNA’(N)@ +(Znihio)(A2 _ j_)uE
=~ U ] m_2 0
+aZ { >N, -Lrr Z [p(k,Q)Ab(Zki)(z/\{iDDZ(jl)(i} _1)@

o)) 0 k: Ok _{>0,00(j)

+Z(Z-1)D; n( ) he-(z- 1)% n( h.t)eD
i i) t i)

)] )]
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Rearanging terms in the third and fourth lines in equation (5.7) with resped to the subsets
{0(), 1<i<jo}, inequality (5.1) becomes

ZA{TZ_lzni _1}%2Z(ZN '1)%(N)e—a(2-1)(n§ni h’)re (5.8)
O 0 m_2 C .
N N o g
+ZDA‘1+2;2 A ( )%H(Zn, °)(A, )UE

O
ta(z-1) ) nDz ZA{ 2 > h, )g
|DD(1)

0= 10

_ m_2 B
S Kk, k)M Tk}-1
+aJZEZ { Zni} tZtDD(j)l:p( Q)A}(Z )(Z {iﬂg(i)} )@

i000) ok (5

‘(-1 nmz A3 SR -2 30 ) h.t%s-ee.

Note that D; n(yh,)= D; n( $ h,) by definition (equation (5.3)).
i )] idoj) o

)] 1)

We now choose parameters z, u, and a so that inequality (5.8), or equivaently inequality
(5.1), holds for al but afinite number of n(JO for some positive &.

We begin with the first line of inequality (5.8), which is related to veaors {f,(1,1)} of the
test function. SinceD (2) = Z,z“Dn is finite for 0<z<z, ZannH is finite ad uniformly

bounded by D"(2)-Dy, for al t=0. Then, Z z(z" -1)A,(N) isfinite for any fixed z, 1<z<z. The

value of z shall be spedfied later. Thus, for any fixed 1<z<z, and before multiplying the term
N m+..+n_{my}-1}, the first line of inequality (5.8), except its last mm® elements, becomes
negative if at least one vaue in {n: iOO(1)} is large enough. It is clea that the last mm®
elements of the first line of inequality (5.8) are nonnegative, finite, and independent of state n
before multiplying the term M ni+...+n_{m}-1}. In order to make inequality (5.8) true for all
but a finite number of nOO for some positive &, we need to make the last mm® elements negative.
This leads to the second line of inequality (5.8), which is related to vedors {f,(2)} of the test
function.

For the second line of inequality (5 8), we thoose apositive vedor u such that (Ax-zN)u =
0 and the lat mm® elements of (A + ;z A,(N))u are negative. Such a postive vedor u

exists when p<1 and z is close to 1, which shall be spedfied later. Also notice that the seledion
of u isindependent of level n.

12



Next, we ansider the first line and the second line of inequality (5.8) together. Sincethe

[ [

last mm® elements of a;z(zN -1)A/(N)e are a;z(zN -1)(D, O _{mMe and D'(2) is

finite, a smal a can be dosen so that the lat mm® elements of (Al+;zNAO(N))u +

a;z(zN -1)A,(N)e are negative. Then the last mm® elements of the sum of the first and

seond lines of inequality (5.8) are negative for any fixed z which is close to 1 and its
corresponding vedor u. Thisimplies that all elements of the sum of the first and second lines of
inequality (5.8), before multiplying the term 2\ m+...+n_{my}-1}, are less than -¢ for some
positive ¢ if at leest one valuein{n;: i000(1)} islarge exough. Therefore, al elements of the sum
of the first and second lines of inequality (5.8) are less than -ez(n:+...+n_{my}-1) for some
positive ¢ if at least one valuein{n;: i000(1)} islarge enough.

It follows from the dove agument that if (O(1) = {1, 2, ..., n}, i.e.,, aretria may occur
in any state of the retria processof an orbiting customer, inequality (5.1) holds for all but afinite
number of nJO for some positive &, provided that an appropriate vedor u can be found.
However, it is possble that (1) # {1, 2, ..., my} for a PH-distribution. Thus, vedors {f(1, j)},
2<j<jo, are included in the test function to ded with the cae when rone in {n;: iJC(1)} is large
and some value in {n;: i00(1)} islarge. Thisleads to the third, fourth, and fifth lines on the left
hand side of inequality (5.8).

Now, we ansider the third line of inequality (5.8). Based on the @ove discusson, if at
least one value in {n;: i000(1)} is large, the sum of the first, second, and third lines of inequality
(5.8) islessthan

m_2 g io OH
MY n-Bge+a(z-1) Y nz) M- Sn} Y h))reg
; E iDDZ(l) E ; mmz(t) IDDZ(I) Y g@
O . 0 (5.9
m_2 X _0 |:|
sz’\{Zni —J}%—ee+az(z—1) L%Z( hu)@%
= E o z~{ 3 n} B2 1000 DE
1000
0 L
m_2 - az’(z-1)n ER 0F
<M n -Lee+ i () hreC
Z O iDZ(l)ElJro.s( nl)z(z—l)zgg o 0L
H O I H E

< —zA{mfm ~3(e-0e,
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where & can be abitrarily small. Noticethat 0(1)O{i: i0O(j)} when j>1 and 2" = (1+(z-1))™*
> 1+ n(n+1)(z1)%2 = 1+ 0.5r°(z1)>. Thus, the sum of the first, second, and third lines of
inequality (5.8) islessthan -ez(n:+...+n_{m}-1) for some positive ¢ if at least one value in {n;:
i00(1)} is large eough. (Note, to smplify the notation, we replace&-d by € in the last line of
inequality (5.9). Similar substitution shall take placein inequality (5.11) and in the discusson
after equation (5.12).)

The last two lines of the left hand side of inequality (5.8) can be rewritten as

j_0 0 0 m_2 0
aZZA{_ >n -4z [P(k,l;i)'%(zki)(z'\{_ Yk} -1
i= oo [] k:Ok_{50, tdo(j) =1 i00() O
0o (5.10
+(z-1) nigz M- yn X h||) (1€
ift) [ ifm IDD(t)IDD(j) | [E

0

L aO0E N (z Dzn H'=
<3 (50 -Bars (@ -DAMN* Y 5;( )
D

IDD(j)

Al 1)immz(j)ni EDDZ—E ' %

ZZ"{ > 0 —BA(],n).

i)

By definition, there must be & least one positive hi; in {hi;, tOO(j-1)} for every i010I(j),

; h,>0. Sincez>1, nz"{- Y n} isabounded function for every iJCI(j). Then, for
0 i)

2<j<jo, A(j, n) becomes negative When a least one value in {n;: i00()} is large eough. It
follows that vedor A(j, n) is uniformly bounded from above with resped to n(JC0 and j (for any
fixed 2).

Combining inequalities (5.9) and (5.10) together, we obtain that, if at least one value in
{ni: i00(1)} islarge, the left hand side of inequality (5.8) islessthan

O _ . O
(3 n —1}%ee+a2—“"”) s
S (5.11)
0 | 0 '
<z Z n —1}%—ee+ a JZA(j,n)%
i=1 D E
E i00(2)
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Sincefunctions { A(j, n), 2<j<jo} are uniformly bounded from above with resped to ni0,
it iseasy to seethat the last expresson ininequality (5.11) islessthan -ez\(n+...+n_{my}-1)e for
some positive € when at least one value in {n;: iC1[(1)} islarge enough. Thisimplies that the left
hand side of inequality (5.8) is lessthan -ez\(mi+...+n_{m}-1)e for some positive ¢ if at least
vaue in {n;: i00(1)} islarge enough, regardlessof the valuesin {n;: i00C(1)}. Let [O(1) be the
subset of [ such that the left hand side of inequality (5.8) is lessthan -ez\(m+...+n_{my}-1)e for
some positive € if at least one value in {ni: i0(1)} islarge enough.

To complete the proof, we still need to show that (5.1) holds when none in {n;: i0O(1)} is
large and some value in {n;: i0O(1)} islarge. Similar to inequality (5.10), we denote the sum of
the first threelines of inequality (5.8) as zZ\(i+...+n_{mp}-1)P(n). It iseasy to seethat d(n) is
uniformly bounded from above with resped to n (seeinequality (5.9)). Rewrite inequdlity (5.8)
as

O C
O j_0 i C
A sn -BEM 3 n)oM)+ARN) + Z&z. (5.12)
i0d(2) 5 iooy = on¢ sn } E
i00(2),700(j)

Since z*{ Y n;} is uniformly bounded from above for n in OJ-0(1) and P(n) is uniformly

it

bounded from above for n in [, function z*{ § n,}®(n)is uniformly bounded from above for n
i00(2)

in O- 0(1). Thus, expresson (5.12) is lessthan —z*{ 3 n, —1}ee for some positive € for n in
i00(2)

(0(1) and at least one value in {n;: i0(2)} is large eough, regardless of the values in {n;:
i00(2)}. Let O(2) be the subset of [1-[1(1) such that the left hand side of inequaity (5.8) is less
than —z*{ S n, —Lee for some positive ¢ if at least one value in {n;: i00(2)} is large enough,
i00(2)
regardlessof the values in {n;: i00(2)}. Similarly, for 3<j<jo, we can find [(j), a subset of (-
(0(1) O...00(-1) such that for n in O(j) the left hand side of inequality (5.8) is less than
-z S n —Lee for some postive ¢ if at lesst one value in {n: i00()} is large eough,
i0()

regardless of the values of {n;: i0J0())}. It is easy to seethat for any n in O(1)O...00(jo),
inequality (5.1) holds for some positive . Since [0-0(1)0...00(jo) has only a finite number of
members, we have proved that inequality (5.1) holds for al but a finite number of nJO for some
positive &, provided that a positive vedor u can be found. To seewhy 0O-0(1)0...00(jo) has a
finite number of members, consider the spedal case with my=2, [0(1)={ 1} and 0(2)={2}.

Finaly, we determine vedor u and the values of other parameters. One of the thoices of
u hasthe following structure:
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u=p : Q/, (5.13)
H

where W, is an mm*x mm?® nonnegative matrix with k = min{s, i} for 1<i<s+K, and v is a positive
vedor of szemm®. To determine vedor v, we mnsider the dasscd MAP/PH/s queue.

When p<1, the MAP/PH/s queue is ergodic (Assnusen [1]), which meait that the
corresponding quesi-birth-and-deah (QBD) Markov process {q(t), I(t), li(t), 1 < i < max{s,
g(t)}} of the MAP/PH/s queue is ergodic. When q(t)>s, the transition bocks of the QBD Markov
processare { Bsi1s, Bst1s+1, Bsr1.s+2, ..} (S2€Sedion 2 for definitions and extend the definition of
Bsr1n t0 N>s+K). Leét B'(2) = Bsris + ZBsrisi1 + ZBsiase2 +..., fOr 1<z<z. Lety be the unique
solution to equations yB'(1) = y(Bsi1s + Bsi1si1 + Bsrisz +...) = 0 and ye = 1. Vedor y is
positive since B'(1) isirreducible. It can be verified that

y=00(-paT )0 (-uaT ) O---0(-uaT™). (5.14)

Then it is easy to verify that yBsi1€ = s and Y(Bsi1s+:212Bsi1.se3t...)e = A, Thus, p<1 implies
that Neuts condition y(Bsi1si212Bsi1se3t...)€ = A < s = yBs1 € IS stisfied. Denote by
p(B'(2)) the eigenvalue with the largest red part of B'(2). Then sp(B'(1)) = 0. Similar to the
proof of Lemma 1.3.3 in Neuts [17], it can be proven that the derivative of sp(B'(2) a z=1 is
negative. Thus, sp(B'(2)) < 0 for zcloseto 1 and 1<z< .

Choose z such that z < z, zis close to 1, and sp(B'(2)) < 0. B'(2) is an irreducible M-
matrix (see Gantmacher [11]). Choose v to be the right eigenvedor corresponding to sp(B'(2))
with the first element to be one. Thenv is positive and satisfies B (2)v = sp(B'(2))v, v>0 and vy =
1(v=(v,Vz ..., v.{mm?)). Based on the speda structure of A, choose W« = I, and

O _{mm}OaW,,/z, 0<i<s-1
a1z s<is<s+K-1

W

(5.15)

It can ke verified that every element of vedor u is positive, (A-zI')u = 0, the last mm®
elements of (A + Z " A, (N))u are given by sp(B'(2))v. When K>0, B (2V = (Bsr1s + ZBsr1st1
N=1

+ ZBsi1si2 +...)V = sp(B (2)v < 0. When K=0, B (v = (Bssa(l Og)+ zBss + ZBssirt... )V =
(Bst1s + ZBsiisi1 + ZBsiis2 +...)V = p(B (2)v < 0. Thus, vedor u obtained from equation
(5.13) satisfiesour needs. This completes the proof.

Intuitively, vedors {f,(1,1)+f,(2)} are used to guaranteethat inequality (5.1) holds when
ni islarge for iJ0(1). The difficult part isto make the last mm?® elements of the left hand side of
inequality (5.1) negative, which is achieved by using the MAP/PH/s queue with p<1. Vedors
{fa(1, j)} are used to guaranteethat inequality (5.1) holds when n; islarge for iJC(j) and j> 1.
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Combining Theorems 2 and 3 yields Theorem 1. Notice that neither the necessry
condition ror the sufficient condition hes a dired relationship with the PH-distribution of retrial
times. Some intuition on why the BMAP/PH/s/s+K retrial queue with PH-retrial times and the
BMAP/PH/s queue have the same ergodicity condition shall be offered at the end of Sedion 7.

6. Ergodicity of Retrial Queueswith Impatient Customers

There ae anumber of variations of the retrial queueing system defined in Sedion 2. Among them
are the retrial queueing systems with impatient (non-persistent) customers. In this sdion,
Theorem 1 is extended to retrial queueing systems with impatient customers.

Retrial queues with customer loss at arrival epochs. Consider a BMAP/PH/s/s+K
retrial queueing system with PH-retrial times and impatient customers. When a austomer finds no
server and no waiting position available upon arrival (from outside), the austomer enters the orbit
with probability p and leaves the queueing system with probability 1-p, O<p<l. Once a cistomer
enters the queueing system, the austomer will not leave the system until its srvice is complete.
Thus, the only difference between this retrial queue and the one defined in Sedion 2 occurs at
customer arrival epochs.

Theorem 4. The BMAP/PH/9/s+K retria queueing system with PH-retria times and customer
lossat arrival epochsis ergodic if and only if b= (py)/(sh) <l

Proof. Introducethe Markov process{ Ni(t), 1<i<my, q(t), I(t), Ij(t), 1 <j < max{s, q(t)}} smilar
to that in Sedion 3. The infinitesmal generator of this Markov processis the same & the one
given in Sedion 3 except that

@3 0 S [P(N.KPDurccn D&D---Dg]E
0 N=Zlk_j s C
Ok C
o0 ' o ' C
[D 0 rZ[p(Nikig)Dl+K+N Dl_{n«hs_l}[lga][
D N=Zk j L
A(n,n +K) :E = E (6.1)
) 0 Z[p(N,k,Li)DM O {m} C
0 = C
0 Nz k- C
Ot : C
0 ' o ' C
[0 0 Z[p(N,k,Li)DM O {m} C
] i :
= Zz[p(N,k,l;i)Ab(N)],
N:ZlkJ
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where
Nl _kl N—_kJ "
P(NK,B) = ——— p; (1-p) 2 p . (6.2)
(N - E kj)!kl!"'km 2!
=1 -

Og gN j-i N-j+i i C_

0y Hi i 1-p" (DO, Ol _{m}) Dgd---Og, O<si<jss

Dl:]—i_ j-i

Em N j-i N=j+i i . .
B,=0) S i 1-p" (D, 01 _{m}) 0gO---Og, O<i<s<j<s+K;

[CN=T-i U - s—i

O« N[O . .

%Z 51-| T @1-p) (D, O1 _{my)), O<i<j<s+K.

i 0

and

N
E:E_ X(N =)t

The necessty of the condition for ergodicity can be proven by comparing the retrial queue
with the BMAP/PH/s queue with customer lossat arrival epochs, i.e., every customer leaves the
system upon arrival with probability p. The sample path method used in Sedion 4 can be used
again to prove the result. Details are omitted.

To prove the sufficiency, use the same test function defined in inequality (5.1). Inequality
(5.8) then becomes

2/\{njj2ni —1}%3i2[(2p+ 1-p)" -1]A)(N)e—a(z—1)(mz nh’)re
R (6.3)

. Z%% +3 (1 o) A (N) +<mz 0 ) (A, — 2
= O = O

O
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Again, consider the BMAP/PH/s queue in which every customer leaves the system upon
arrival with probability p. When p = (pA)/(su) < 1, this queueing system is ergodic. The rest of
the proof is smilar to that of Sedion 5. Details are omitted. This completes the proof.

Retrial queues with customer loss at both arrival epochs and retrial epochs.
Consider the BMAP/PH/<9/s+K retrial queueing system with PH-retrial times and customer lossat
arrival epochs. Asaume that when a retrial customer finds no server and no waiting position
available, the austomer goes orhbiting again with probability g and leaves the queueing system with
probability 1-g, 0<g<l.

Theorem 5. The BMAP/PH/9/s+K retria queueing system with PH-retrial times, customer loss
at both arrival epochs and retrial epochs is ergodic if and only if either g<1 or g=1 and p =

(PA)/(su) < 1.

Proof. When g=1, the theorem reduces to Theorem 4. When g<1, the necessty is clea from
Theorem 4. To prove sufficiency, consider the Markov process{ Ni(t), 1<i<my, q(t), I(t), l;(t), 1 <
j < max{s, q(t)}} d efined in Sedion 3. The infinitesmal generator of this Markov processis the
same & that in Theorem 4 except

m, m
A(n!n):Al-'_IZnihi,il +IZnihi q(l =1); (6.4)
A(n,n-e)=nh’A, +nh’(1-q)(l -I).
Using the test functions defined in inequality (5.1), inequality (5.8) beaomes
(5 -85 Azpr1-p)" ~TA N
~a(z=0(3 O + (00 - e 65)

~AA+Z3 @+ 1-p) AN+ (3 nLA + (-2l -)- e

”"%1) SZzA{ SRS h.km:

+a zA{D;n}m (2~ 3 k) =0 ; p(N.k.B) A, (N)]e
i
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It is clea that when g<1, a set of parameters can always be found so that equation (6.5)
holds for all but afinite number of nJOJ for some positive €. For instance, choose z to be dose to
one and u = 0. Other parameters can be determined acordingly. Noticethat the test function of
this case is smpler, since vedors {f,(2), nOJO} do not have to be included in the test function.
This completes the proof.

It is interesting to see that such a queueing mode is aways ergodic when g<l1.
Intuitively, since austomers can be lost upon retrials, on average, more austomers will be lost per
unit time when more austomers are in the orbit. Therefore, the number of customers in the orbit
will not go to infinity. Then the Markov processis ergodic and so the queueing system.

7. Ergodicity of Approximation Models

This dion studies the ergodicity of two modified queueing systems which were introduced as
approximations to the stationary distribution of the queueing system of interest (seeDiamond [3],
Diamond and Alfa [4] to [7], and Neuts and Rao [19]). One of the two modified queues has a
smaler retrial rate than the original retrial queueing system, while the other queue has a larger
retrial rate.

The lower-bound queue. For afixed nonnegative integer N, define aretrial queue similar
to the BMAP/PH/9/s+K retria queue with PH-retria times except that when there ae more than
N customers in the orbit retrials become instant. That is, when there ae more than N customers
in the orbit and a service is complete, a austomer in the orbit enters the queue (or the server)
immediately. This queue is cdled a lower-bound queue since it is believed that it has a smaller
total number of customersin service the queue, or the orbit.

The upper-bound queue. For afixed positive integer N, define aretrial queueing similar
to the BMAP/PH/g/s+K retrial queue with PH-retrial times except that at most N customers in the
orbit are trying to get service d any time. If a austomer finds that there ae N customers orhiting,
the astomer enters the orbit but do not start orbiting until the number of orbiting customers
becmes lessthan N. For customer in the orbit waiting for orbiting, getting into orbiting follows a
first-in-first-orbiting rule. This queue is cdled an upper-bound queue since it is believed that it
has a larger total number of customersin service the queue, or the orbit.

Theorem 6. The lower-bound queue (for any nonnegative integer N) is ergodic if and only if
p<l.

Proof. The necessty of p<1 can be proven by the sample path method used in Theorem 2. The
sufficiency of p<1 can be shown by coupling the lower-bound queue with the BMAP/PH/s
gueueing system when the total number of customers in the system is larger than N. When the
total number of customers in the lower-bound queue is larger than N, the queueing process
reduces to that of the BMAP/PH/s queueing system. Details are omitted. This completes the
proof.
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Theorem 7. When N islarge enough, the upper-bound gqueue is ergodic if and only if p<1.

Proof. The necessty of p<1 can ke proven by the sample path method used in Theorem 2. To
prove sufficiency, consider the Markov process {Ni(t), O<i<smy, q(t), 1(t), Ij(t), 1 < j < max{s,
q(t)}} introduced in Sedion 3 except that No(t) is introduced to record the number of customers
who are in the orbit but not orbiting and Ni(t)+...+ Nim 2(t) < N. No(t) is positive only when
Ni(t)+...+ Nym 2(t) = N. In the proof to Theorem 3, when one value in {n} (n = (N, ...,
n_{m})) islarge enough, inequality (5.1) holds. Suppose that inequality (5.1) holds for n>n; for
eat i (1<i<mp). Choose N that is larger than the sum of {nj +1}. Then the mean-drift method
can be gplied to the crresponding Markov process{Ni(t), Oismy, q(t), I(t), I;(t), 1 <] < max{s,
q(t)}} and inequdity (5.1) holds for al but a finite states. In fad, acording to the proof to
Theorem 3, inequality (5.1) holds whenever No(t)>0, since No(t)>0 implies that N(t)+...+
Nim z(t) = N so that at least one of {Ny(t), ..., Nim #(t)} is larger than its corresponding ny .
Details are omitted. This completes the proof.

Theorem 1, Theorem 6, and Theorem 7 show that the MAP/PH/s/s+K retrial queue with
PH-retrial times, the two modificaions (lower-bound and upper-bound queues), and the dasscd
MAP/PH/s queue ae ergodic if and only if p<1. Why is the condition p<1 a necessary and
sufficient condition for ergodicity of the four quite different queueing systems? We offer some
intuition to this question. Noticethat “retrial” delays the service of an orbiting customer. One of
the consequences isthat idle periods (of servers) are different for the four queueing systems. For
retrial queues, a server may become idle frequently for a period of time when a small number of
customers are in the orbit. On the other hand, the server may be busy for along time or itsidle
times are ait short when a lot of customers are orbiting. On average, the ratio of the total idle
time to the total busy time of a server remains the same for the four queueing systems. In aretrial
gueue, a server may be idle while there ae austomers in the orbit trying for service Thus, a
retrial queueing system may lose some service cgadty when the number of orbiting customersis
not large. Fortunately, the lossof capadty is recovered when the number of orbiting customers
becwmes large. In this case, servers of the retrial queues have to serve austomers from outside a
well asretrial customers who seize avy idle server amost instantly.

A spedal case - the MAP/PH/9/s+K retrial queue with exponential retrial times (my=1) - is
of speda importance because 1) the Markov process{Ni(t), q(t), I(t), I;(t), 1 <j < max{s, q(t)}}
is a quasi-birth-and-deah Markov process and 2) it has the M/M/g/s retrid queue with
exponential retrial times, and MAP/PH/1/1 retrial queue with exponential retrial times as its
spedal cases. Its corresponding lower-bound and upper-bound retrial queues have matrix-
geometric solutions. Theorems 6 and 7 pesent the condition to ensure the eistence of the
matrix-geometric solution.
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