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Ramanujan’s formula for the number r24(n) of representations of a positive integer n as
a sum of 24 squares asserts that

raa(n) = =on(n) = oo (n/2) + oy (n/4)
+ B2yt - 0 (y),
where
> d' ifkeN,
o (k) = 4 W
0 if k € Q\N,
and Ramanujan’s function 7(n) is given by
o
qH 1-¢")**=>"7(n)g", q€C, |¢g<1.
n=1

In this paper, we determine a class of formulae analogous to Ramanujan’s formula for
ro4(n).
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0. Notation

Let N,Ny = NU{0},Z and C denote the sets of positive integers, nonnegative inte-
gers, integers and complex numbers, respectively. Throughout this paper, ¢ denotes
a complex variable with |¢| < 1. We now define the functions that we need.

For k € N the infinite product Ej is defined by

By =[] (1—g"). (0.1)
neN

Ramanujan’s theta functions ¢ and 1 are defined by

plg) =1+23 ¢ =3 ¢ (0.2)
neN nez
and
Ug) =Y "I, (0.3)
n&eNp

see [2, p. 6]. By Jacobi’s triple product identity [2, p. 10] we have

plq) = By *ESE;” (0.4)
and
v(q) = By B3, (0.5)
Ramanujan’s tau function 7(n) (n € N) is given by
qBft = r(n)q", (06)
neN
see [15, Eq. (92), p. 151]. The first five values of 7 are 7(1) = 1,7(2) = —24,7(3) =
252,7(4) = —1472 and 7(5) = 4830. The Bernoulli numbers B, (n € Ny) are
defined by
t — 1"
so that By = 1, By = —%, By = £, By = —3=, Bs = 4, Bs = —35, Bio=2,
Biy = — 2L By = %,... and Bany1 = 0 (n € N). The classical normalized
Eisenstein series Fai(q) (k € N) is defined by
4k > n2k71qn
E =1—-— _— .
w0 =1 g 3 (0.8)

The “sum of the powers of divisors” function ox(n) is defined for & € Ny and
n € N by

or(n) == Z d*. (0.9)
"
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For m ¢ N we set 0% (m) := 0. By taking k = 6 in (0.8), we obtain (as Biz = —22)

65520 —
Eia(q) =1+ 691 o11(n)q". (0.10)

n=1

Finally, if f(q) = >, ey, fng", we define [f(q)]n := fn, n € No.

1. Introduction

Ramanujan’s famous formula [15, p. 162] for the number r94(n) of representations
of a positive integer n as a sum of 24 squares asserts that

16 32 65536
r24(n) = @Ull(n) — @011(H/2) + 691 011(71/4)
33152 65536
F R (1) () — 2 (n/2), (L1)

where the sum of divisors function o1 (n) was defined in (0.9) and Ramanujan’s tau
function in (0.6). Ramanujan [13; 15, p. 153] conjectured and Mordell [10] proved
that 7 satisfies

7(kn) = 7(k)r(n) — k7 (n/k) (1.2)

for all positive integers n and all primes k, see also [6, p. 297]. Taking k = 2 in (1.2)
we have

7(2n) = —247(n) — 20487 (n/2) (1.3)
so that
(=1)""tr(n) = 7(n) + 487(n/2) + 40967 (n/4). (1.4)

Using (1.4) in (1.1) we obtain Ramanujan’s formula in the equivalent form
16 32 65536

7‘24(TL) = @all(n) - @Ull(n/2) + 691 0'11(’/1/4)
33152 1525760 135790592

Multiplying both sides of (1.5) by ¢", and summing over n € Ny, we obtain (as
T24 (0) = ].)

> 1 2 4096
no__ B -~ F 2 " F 4
2;%7“4(”)q 1005 212\ — Jag5 Fr2(a7) + Jags Fra(a)
33152 1525760 135790592
297N TN (?) + 22PN (g 1.
6ol (q) + GOl (¢°) + 6oL (¢%), (1.6)
where
A(q) == E T(n)¢" (= qE124). (1.7)
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Hence, as

oo

Z T24(n)qn — S024(q) _ Ef48E2120EZ48 (18)

by (0.4), we have deduced the identity

H(l _ qn)—48(1 _ q2n)120(1 _ q4n)—48

n=1
1 2 4096
= —F R ——Enq*
1055 212(0) — gg5 Br2(@) + g Brald”)
33152 1525760 135790592
2992 A DO TOUN (2) 4 22009092 A (4 1.
Fol (q) + 691 (¢°) + 61 (¢%) (1.9)

from Ramanujan’s 24 squares formula.

Conversely, using (1.8), (0.10) and (1.7) in (1.9), and then equating coefficients
of ¢" (n € N), we recover Ramanujan’s 24 squares theorem in the form (1.5).

It is our aim in this paper to determine all identities like (1.9). In fact, for
reasons that will be made clear in Sec. 2, we determine all identities of a slightly
more general type than (1.9). We define

Q(q) = (A(@)A*(¢")"V* = 3H1—q (1-¢")'" = wn)g" (1.10)

(so that w(l) = w(2) = 0, w(3) = 1) and prove that there are precisely 28 identities
of the type

o0
¢ [J =g —g)*= (1 —g*m)™
n=1

= A1F12(q) + A2F12(¢?) + AsE12(q*)
+ B1A(q) + B2A(g%) + BaA(g") + CQ(g), (1.11)

where r, a1, as,a4 are integers and Ai, As, Ay, By, B2, B4, C' are rational numbers.
We prove in Sec. 2 the following result.

Theorem 1.1. The only integers r,ay,az2,aq4 and rational numbers Ay, A, Ay,
By, Bs, By, C satisfying (1.11) are given in Table 1.

We now begin our examination of the identities in Theorem 1.1. Each identity
is identified by the number in the left-hand column of Table 1. Identity 1 is pre-
cisely formula (1.9) and so is equivalent to Ramanujan’s 24 squares formula. Thus
the identities of Theorem 1.1 are analogues of Ramanujan’s 24 squares formula.
Theorem 1.1 shows that there are exactly 10 formulae like (1.9), namely those with
C =0, that is, identities 1, 5, 6, 13, 14, 15, 16, 23, 24, 28.
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Since
[[0 - Cor) =TT - a=gya g, (1.12)

we see that the mapping ¢ — —¢ transforms the left-hand side of (1.11) as follows:

oo
qr H(l _ qn)al(l _ q2n)a2(1 _ q4n)a4
n=1

H 1—q") " (1= g)Pmte(l— gt ate (113)
To determine the effect of ¢ — —g on the right-hand side of (1.11), we must deter-
mine Fi2(—q), A(—q) and Q(—q).
Proposition 1.1.

(i) E12(—q) = —E12(q) + 4098 E12(q?) — 4096 E12(q?),
(i) A(—q) = —A( ) — 48A(¢%) — 4096A(q*),
(i) Q(—q) = —Q(q) — 16A(q*).

Proof. (i) By (0.10) we have

2. 65520
E12(q) + Er2(—q) =2+ ——— Z o11(2n)g*". (1.14)
n=1
The identity
0'11(271) = 20490’11(71) — 20480’11(71/2), n e N, (115)

is easily proved. Using (1.15) in (1.14), and appealing to (0.10), we obtain

691

> 2049 - 691 2048 - 691
§ m)g*n = 7~ 2y - 7 .
oulsn 12(47) 65520

Era(qh) —
65520 65500 12(d)

(1.16)

Putting (1.16) into (1.14), we deduce
E15(q) + E12(—q) = 4098E15(q%) — 4096 E12(q*)
from which (i) follows.
(ii) From (1.7) and (1.4) we obtain
A(=q) =Y _(=1)"r(n)g" = = Y (7(n) + 487(n/2) + 40967(n/4))¢"
n=1 n=1
from which (ii) follows.
(iii) By [1, Eq. (3.1), p. 242] we have

E3* = B{°E} + 16¢EELS. (1.17)
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Multiplying (1.17) by —¢®>E; ®E§, we obtain the identity
~PE*EPE} = —~¢*ESEL° — 16¢*E3*. (1.18)
By (1.10) and (1.7) the right-hand side of (1.18) is —Q(q) — 16A(g*). By (1.12)

and (1.10) the left-hand side of (1.18) is —¢*(E; 'E3E;V)®E}% = Q(—q). This
completes the proof of (iii). O

From (1.13) and Proposition 1.1 we see that the identity (1.11) with parameters
r, a1, 02,04, A1, As, Ay, B1, Ba, By, C
transforms under ¢ — —q into the identity (1.11) with parameters
r'say, ay, ay, Ay, Ay, Ay, By, By, By, €
where
r' =r,a} = —ay,d = 3a1 + az,aly = —a; + aq,
A} = (1)1 Ay, A = (—1)7(—4098A4; + As),
A} = (—1)"(—4096A; + Ay), B} = (=1)""1 By,
Bl = (—1)"(—48B;1 + Bs),
B = (=1)"(—=4096B; + By — 16C),C" = (—1)"T1C.

Thus the identities 17,18, 19,20, 21, 22,23, 24,25,26,27,28 in Theorem 1.1 are
obtained from the identities 10,11,12,7,8,9,5,6, 3,4, 2, 1 respectively by changing
q to —q, and thus are not really new. Hence, we need only to consider the identities
1-16 in Theorem 1.1.

First we observe that the identities 6,11, 14 and 15 are trivial. Identity 6 is

QBT ERE? = A(g) + 48A(g2) + 4096A(q").

This follows by mapping ¢ — —q in A(q) = ¢E?* and appealing to (1.12) and
Proposition 1.1(ii). Identity 11 is

@B B3 ES = 16A(q") + Q(q).

This follows by mapping ¢ — —q in Q(q) = ¢ E{E}% and appealing to (1.12) and
Proposition 1.1(iii). Identities 14 and 15 are

B = A(gY), ¢PE = A(g%),

respectively, which follow from A(q) = ¢E?* by mapping ¢ — ¢* and ¢ — ¢°
respectively.

Further, identities 13 and 16 result from mapping ¢ — ¢ in identities 5 and 28
respectively.

Thus we are left to consider the identities 1-5, 7-10 and 12. Of these 10 identities
we find that two are known (identities 1 and 5) and the remaining eight are new
(see Theorems 1.2-1.9).
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By considering the first few terms in the expansion of E' ES2Eb Bl Ebie
(b1,b2,b4,bs,b16 € Z) in powers of g, it is easy to check that

EVEPENEPEN =1 if and only if by = by = by = bg = big = 0.
Using this result, together with (0.4) and (0.5), it is easy to prove that
B By Byt = o' ()¢ (@®)¢" (a)" (09" (a*)0 (¢1)%* (¢°)
for some integers ¢, u, v, w, z,y, z if and only if
4day + 2a9 + aq4 = 0. (1.19)

The condition (1.19) is satisfied by identities 1, 2, 3, 5, 7 and 10 but not by identities
4, 8,9 and 12.
If (1.19) is satisfied, then

E{'Es?Ef* = =" ()22 (¢?). (1.20)
Thus, as ¢(q)Y2(¢)v(¢?) = 1, we have
BV Ey? Byt = ¢ (@™ (@927 (g%) (1.21)
for any integer t.

Identity 1. As we have already mentioned this identity is formula (1.9). Equating
the coefficients of ¢" (n € N), we recover Ramanujan’s 24 squares formula (1.5).

Identity 2. Taking a1 = —40,a2 = 96,a4 = —32 and ¢ = 16 in (1.21), identity 2
becomes

a0"%(q)v®(q) = qE; YB3 B %

1 690

1
= ——F — ——Fi(®) + —=A
65520 12(q) 65520 12((1)+691 (q)
42152
+ 69—i’A(q2) + 8192A(g*) + 2569(q). (1.22)

Equating the coefficients of ¢" (n € N) in (1.22), we obtain the following new result
analogous to Ramanujan’s 24 squares formula.

Theorem 1.2. Let n € N. Then the number of representations of n — 1 as a sum
of 16 squares and 8 triangular numbers is

1 1 690
r(n —1=160+ SA) = @all(n) — @0’11(7]/2) + @T(n)
42152
+ > 7(n/2) + 81927 (n/4) + 256w(n).

691
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Identity 3. Taking a3 = —32,a2 = 72,a4 = —16 and ¢t = 8 in (1.21), identity 3
becomes

2@8 (q)w16 (q) _ q2E1—32E272E4—16

1 1 1
e Bi(q)— ——Fia(q?) — ——A
1012320229 ~ Toas320712(0) ~ 11056 2@
1123 ,
+ T35 A0%) + 256A(q") + 162(q). (1.23)

Equating the coefficients of ¢"(n € N,n > 2) in (1.23), we obtain another new
formula analogous to Ramanujan’s 24 squares formula.

Theorem 1.3. Let n € N satisfy n > 2. Then the number of representations of
n — 2 as a sum of 8 squares and 16 triangular numbers is

1 1
r(n—2=80+164) = T7r011(n) = 7r5=5011(1/2) = 7=27(n)
1123
fatiad 2) + 2 4)+1 .

Identity 4. Equating the coefficients of ¢ (n € N) in identity 4, we obtain the
following new result.

Theorem 1.4. Let n € N. Then

_ _ 16 65536
By 2 ESEY), = —@011( n/2) + o1 ——o11(n/4) + 327(n)
851328 45219840
2 ER—— 4 4 .
601 T(n/2) + 601 7(n/4) — 4096w(n)

Identity 5. Taking a1 = —24, as = 48, a4 = 0 and ¢t = 0 in (1.21), identity 5
becomes

1 1

3,/,24 3E 24E E o E 2
V) = = Tor73120 1219 ~ Tgrraran P12(@)
1 259
C Alg) = 2L A().
1768069 ~ o112
Equating the coefficients of ¢"(n € N,;n > 3), we deduce
1 1 259
toa(n —3) = L 9) — . 2
24(n = 3) = Treegs 1 (M) — 780671 (/2) ~ 1768067 ~ 321127 (/%)

where to4(n — 3) denotes the number of representations of the nonnegative inte-
ger n — 3 as a sum of 24 triangular numbers. A general formula for the number
tos(n) of representations of n as a sum of 2s triangular numbers was first given
by Ramanujan [14, Sec. 12; 15, pp. 190-191]. Cooper [4, Theorems 3.5 and 3.6]
has given an elementary proof of Ramanujan’s formula. The special case 2s = 24
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of Ramanujan’s formula gives the above formula for t34(n — 3). The formula for
taa(n — 3) has been stated explicitly by Ono, Robins and Wahl [12, Theorem 8,
p. 86] and Cooper [4, p. 137].

Identity 7. Taking a; = —16,a2 = 24,a4 = 16 and ¢ = 0 in (1.21), identity 7
becomes
¢*" ()9 (¢%) = ¢* By CES'EL°
1 1

e Bu(q) - ———E1s(q?
568360920 29 ~ 368360920 °12(¢)
1 259 1
A — =2 A(?) = AlgY) — —Q(q).
58303369 T 353792 2(0) — Al0) — 75 U9)

Equating the coefficients of ¢" (n € N,n > 4), we obtain the following result.

Theorem 1.5. Letn € N satisfy n > 4. Then the number of representations of n—4
as a sum of 16 triangular numbers plus twice the sum of 8 triangular numbers is

1 1 1
4= 16A +2(8A)) = —— o oy 1
r(n +262)) = 55303367 ™) ~ 38303367 2 ~ 2330336

259 1
— 353792T(n/2) —7(n/4) — Ew(n)

Identity 8. Equating the coefficients of ¢" (n € N,n > 2) in identity 8 gives the
following result.

Theorem 1.6. Let n € N satisfy n > 2. Then
[PET B E 8, = 7(n/2) + 2567 (n/4) + 16w(n).

Identity 9. Equating the coefficients of ¢" (n € N) in identity 9, we obtain the
following result.

Theorem 1.7. Let n € N. Then

16 65536
[E1_16E’272E4_32]n = _@Ull(n/2) =+ 691 Ull(n/4) + 16T(n)
320640 65536

o1 7(n/2) — 691 7(n/4) — 4096w (n).

Identity 10. Taking a1 = —8,a2 = 0,a4 = 32 and ¢ = 0 in (1.21), identity 10
becomes

q5¢8(Q)¢16(q2) — q5E1_8E22

1 1
e B - ———E(q?
120301872029 ~ T30391872012(4)
1 259 1 1
e A() = —2  A(?) — =AY — —Q(q).
15853769 ~ Bagoorz (1) T g0 — 5558U9)
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Equating the coefficients of ¢" (n € N,n > 5), we obtain the following result.

Theorem 1.8. Letn € N satisfy n > 5. Then the number of representations of n—>5
as a sum of 8 triangular numbers plus twice the sum of 16 triangular numbers is

1 1
r(n =5 =8A+2(164)) = Tmgeamson(n) = pageszeon (n/2)
1 259
~ Bszre’ ™)~ see06ma /) (”/ 4
1
— %w(n)

Identity 12. Equating the coefficients of ¢" (n € N) in identity 12 gives the fol-
lowing result.

Theorem 1.9. Let n € N. Then

(B PESE 0], = 1(n) + 327(n/2) — 256w(n).

2. Proof of Theorem 1.1.

Let H denote the Poincaré upper half-plane, that is H = {z € C|Im(z) > 0}. For
z € 'H the Dedekind eta function n(z) is defined by

( . 27rzz/24 H 27'mnz

see [, p. 19] for example. Let T’ denote the modular group, that is

I = SLy(Z) = {(‘C‘ Z)

The Dedekind eta function 7n(z) is a holomorphic modular form of weight 1/2 for
I' with a certain multiplier system, which we denote by v,,. For all M € T, v,(M)
is a 24th root of unity depending only on M. The determination of v, (M) was
first addressed by Dedekind in the nineteenth century, then by Rademacher in 1931
and later by Petersson in 1954. As we need the value of v, (M) explicitly, we now
state Petersson’s formula in the form given by Knopp [7, p. 51]. In order to do this

we introduce the notation (§), and (%)* for (* s) e T, so that a,b,¢,d € Z and

C

ad —bc=1.1f ¢ =0, then d = +1 and we define

(0.~ ().

If ¢ is even and ¢ # 0, then d is odd and we define

C C
Y — [ ) (Lq)Gen0-D(sen(d)-1)/4
(d) . ( |d| ) (=1) ’

a,@c,dEZ,ad—bc:l}.
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where (‘%) is the Jacobi symbol of quadratic reciprocity and sgn(z) = ry7 for any
nonzero real number z. If ¢ is odd and d = 0, then ¢ = +1 and we define

B - (&

Finally, if ¢ is odd and d # 0, we define

d\ " [ d
c)] " \e /)~
We can now state Petersson’s formula.

Theorem 2.1. For M = (& Z) € I' the multiplier system of the Dedekind eta

function n(z) is given by

(M) = <é

) 2mil(atd)e=bd(=1)=30)/24 ¢ o o o
C

and
nV(M) _ (E) eQﬂ'i((a—i—d)c—bd(cz—1)+3d—3—30d)/24 ch is even.

For a positive integer N, we define the Hecke congruence group of level N by

To(N) := {(CC‘ Z) erT

Clearly T'o(1) = TI', T'o(N) < T" and I'g(kN) < I'g(IV) for any positive integer k.
We denote the complex vector space of holomorphic modular forms of weight k& for
[o(N) with trivial multiplier system by My (I'o(N)).

We now address the question: Under what conditions does the eta quotient
N (2)n®(22)n*(4z2) (a1, a2, a4 € Z) belong to M12(Tp(4))? This kind of question
was probably first addressed by Newman [11].

czOmodN}.

Theorem 2.2. Let ay,a0,a4 € Z. Then
n* (2)n* (22)n* (4z) € Mi2(L'o(4))

if and only if

a1 + as + ayg = 24, (2.1)
ay + 2as + 4ayg > 0, (2.2)
a1 + 2as +ag > 0, (2.3)
4daq + 2a9 + aq > 0, (2.4)

and

8|a1, 24|a2, 8|a4. (25)
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Proof. Suppose first that a1, as,as € Z satisty (2.1)—(2.5). We show that g(z) :=
N (2)n*2(22)n*(4z) is a holomorphic modular form of weight 12 for I'(4) with
trivial multiplier system.

From the infinite product representation of 7(z) we see that n(z) is a nonzero
holomorphic function on H. Thus ¢(z) is a holomorphic function on H (for any
a1,az,a4 € Z). By (2.2)-(2.4) we have

i (c7m)2am >0

m
meN
ml|4

for all ¢ € N with ¢|4. Thus by [9, Corollary 2.3, p. 37], g(z) is holomorphic at
all cusps (including oo). Since 7(z) is a modular form of weight 1/2 for T' with
multiplier system v,, g(z) transforms like a modular form of weight

1
5((11 + as —|—a4) =12

for I'p(4) with multiplier system v, given by

L(a by (o BT (o 2\Ta an)™

9\e d) "\c d "\e/2 d "\e/d d)
for all (¢ %) € To(4). Thus to complete the proof that g(z) belongs to Mi2(I'o(4))
we have only to prove that

Vg <CCL Z) =1 forall <CCL Z) eTo(4).

Now by (2.1) we have

a b a b\ a 26\ a 4b Hmmma
Yo\e a) =" \c a) ™ c¢/2 d Y c/4 d
5 a 4b
"\e/4 d

as vy is a 24th root of unity and by (2.5) we have 24 | ag. Since 8 |a; (by (2.5)) we
complete the proof by showing that

a b i
V"cd

o (;4 Lilb>

=1 forall (‘c‘ Z) € To(4). (2.6)
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Suppose first that ¢ =0 (mod 8) so that ¢/4 is even. Then, by Petersson’s theorem

(Theorem 2.1), we have with w = 7%/
v (00 €\ (a+d)e—bd(c*~1)+3d—3—3cd
"\e d) (2).
» a 4b C/_4 wla+td)(c/4)—4bd((c/4)2—1)+3d—3—3(c/4)d
"\c/4 d d ),

3(at+d)c _ 3bdc? 9cd
= 4w s — 2 —3bd— 25

so that

V <a b) ;
"\c d _ Ola+d)c—6bdc>~24bd—18cd |
L (@ 4b
"\c/4 d
Now ¢ =0 (mod 8) implies
6(a + d)c — 6bdc® — 24bd — 18cd =0 (mod 24)

so that (2.6) holds.
Now suppose that ¢ =4 (mod 8) so that ¢/4 is odd. Then, by Theorem 2.1, we

have
v <a b) (E) pla+d)e—bd(c?—1)+3d—3—3cd
¢ d d/ s
_ iwm_%_gbdmd—&scﬂ%
so that

8
a b
Y c d

_ w6(a+d)076bdc2724bd+24d724724cd+60

(@ 4b
"\c/4 d
Now ¢ =0 (mod 4) implies
6(a + d)c — 6bdc® — 24bd + 24d — 24 — 24cd + 6c=0  (mod 24)

so that (2.6) holds. This completes the proof that g(z) € My2(To(4)).
Conversely, suppose that ai,as,a4 € Z are such that

9(2) := 0" (2)n"* (22)n* (42) € M12(T'o(4)).
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We prove that (2.1)-(2.5) hold. As g(z) is a modular form of weight 12, Eq. (2.1)
holds. As g(z) is holomorphic at all cusps, inequalities (2.2)—(2.4) hold by [9, Corol-
lary 2.3, p. 37]. Thus we are left to prove (2.5). As g has a trivial multiplier system
for T'p(4) we have

u (@ b all/ a 2b a2u a 4b 247&17&2_1
"\c d "\c/2 d "\c/4 d N

for all (¢ %) € Ty(4). Choose (¢ ) = (§ 4) € To(4). Then by Theorem 2.1, we

C
have with w = ¢2m/24

11\ 47 1 2Y o 1 4y o
%<89)—w, %<49>—w, v (3 a) =

17a1 + 22a2 +2(24 — a1 —a2) =0 (mod 24),

so that

and thus
3a1 +4a3 =0 (mod 24). (2.7)
Next choose (¢ 5) = (5 ) € To(4). Here

1 0 20 1 O 22 1 0 _ 23
%<41)_w, %<21)_w, v (1) =,

20a1 + 22as +23(24 — a1 —az) =0  (mod 24),

so that

and hence
3a1 +a2 =0 (mod 24). (2.8)
From (2.8) we deduce az = 0 (mod 3). Subtracting (2.8) from (2.7), we obtain
3az = 0 (mod 24) so az = 0 (mod 8). Hence ag = 0 (mod 24) and (by (2.8)) a1 =
0 (mod 8). Finally a4 = 24—a1—az = 0 (mod 8). This completes the proof of (2.5).
The proof of Theorem 2.2 is now complete. O

We now determine the integers aq, as, a4 satisfying (2.1)—(2.5).
Theorem 2.3. The only integers ay,as,aq satisfying (2.1)—(2.5) are given in

Table 2.

Proof. Let ai,as,a4 € Z satisfy (2.1)-(2.5). By (2.5) we have a; = 8A4; and
ag = 24 A, for some integers A; and As. Then (2.1)—(2.4) give

ay =24 — 8A; — 24A,, (2.9)

A +2A; < 4, (2.10)
Az > —1, (2.11)

A+ Ay > —1 (2.12)
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Table 2. Values of a1, a2, aq satisfying (2.1)—(2.5).

No. al as aq no al as aq
1 —48 120 —48 15 0 24 0
2 =40 96 —32 16 0 48  —24
3 =32 72 —16 17 8 —24 40
4 =32 96 —40 18 8 0 16
5 =24 48 0 19 8 24 -8
6 —24 72 =24 20 16 —24 32
7 —16 24 16 21 16 0 8
8 —16 48 -8 22 16 24  —16
9 —16 72 —-32 23 24 =24 24

10 -8 0 32 24 24 0 0

11 —8 24 8 25 32 —24 16

12 -8 48 —16 26 32 0 -8

13 0 —24 48 27 40 —24 8

14 0 0 24 28 48 =24 0

Thus —6 < A; < 6 and —1 < Ay < 5. A simple computer search through the
lattice points of the box {(z,y) € Z?| -6 < 2 < 6,—1 < y < 5} yielded 28 lattice
points (A, Az) satistying (2.9)-(2.12). The corresponding 28 values of (a1, a2, a4)
are listed in Table 2. O

For z € H and k € N we define the Eisenstein series &1 (2) by

ka( -1 - Z ook 1 27rinz

so that with ¢ = €*™* we have Faj(q) = 1 — B—% o 0ok-1(n)g" = Eop(z). Tt is
well known that €a1(z) is a modular form of weight 2k for the full modular group
I’ with trivial multiplier system if k > 2 [9, p. 19]. Thus in particular we have

G12(2), &12(22), &i2(42) € Mia(To(4)).
Theorem 2.4. A basis for the complex vector space M12(To(4)) comprises
€2(2), €12(22), €2(42), n*(2), n*(22), *(42), P (2)n"0(42).
Proof. By the corollary to Proposition 4 in [8] we have
dim(Mi2(Lo(4))) = 7.
We have already noted that

§12(2), £12(22), &i2(42) € M12(To(4)), (2.13)

and, by Theorem 2.2, we have

4 2), n*(22), 0P (4z), 1P(2)n'°(42) € Mia(To(4)). (2.14)
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The seven modular forms listed in (2.13) and (2.14) are linearly independent over
C. Hence they form a basis for M12(T(4)). O

By [9, Corollary 2.3, p. 37] n*4(2), n?*(22), n**(42) and ®(2)n'%(4z) are cuspidal
eta products.

Proof of Theorem 1.1. Let r, a1, a2, aq be integers and Ay, As, Ay, By, B2, B4, C
be rational numbers such that (1.11) holds. Set ¢ = ™. As |q| < 1 we have z € H.
Now

E15(q") = B12(e?™) = &1a(k2), k=1,2,4,
A(g") = n*(kz), k=1,2,4,
Q(q) = 1°(2)n'°(42),
and

¢TI — ™)™ (1= g2 (1 — g')as = qr =58~ T =0 (2)50 (22)5% (42),

n=1
so that (1.11) becomes
g BTy ()2 (22)0™ (42)
= A1&12(2) + A2812(22) + As&i2(42)
+ Bin*(2) + Ban®*(22) + Ban®*(42) + Cn®(2)n'5(42).

The right-hand side belongs to M12(T'(4)). Hence

g T E T M (2)n" (22)n™ (42) € Mia(To(4)).
Since n® (2)n?2(22)n?*(42) is a modular form of weight 3 (a1 +az + as) with respect

to some multiplier system, it must be the case that ¢" 27 ~ 12 % transforms like a
modular form with respect to some multiplier system. However this is clearly not

possible if » — 55 — 73 — % # 0. Hence we must have r = g4 + 13 + ¢ and thus

n* ()0 (2z)n** (4z) € M12(T'o(4)).
Then, by Theorem 2.2, we see that ai,as,as must satisfy (2.1)-(2.5). Hence
(a1, asz,a4) is one of the 28 triples given in Theorem 2.3. For each of the 28 triples

(a1, a2, a4) in Theorem 2.3, Theorem 2.4 ensures that Ay, Ay, Ay, By, Ba, By, C are
uniquely determined by

N (2)n? (22)n* (42) = A1€12(2) + A2&12(22) + Ag&i2(42)
+ Bup (2) + Ban*(22) + Burf*! (42) + Cnf* (2)n'% (42).
Expanding each of 7% (2)n®2(22)n® (4z2), &12(2), . . ., % (2)n'%(42) in powers of e27*
and equating the coefficients of e?™"*(n = 0, 1,2, 3,4,5,6), we obtain seven linear

equations for the seven quantities Ap, As,...,C. From these we obtain the values
of Ay, Ag,...,C given in Theorem 1.1. O
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3. Final Remarks
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The second author has recently given the following arithmetic formula for 7(n),

namely,

=t Yt - 303 - 3ad),
(Zl,...,rg)GZS
a:%+---+w§:2n

as a special case of a general product-to-sum formula [16, Theorem 4.1]. As another
application of this product-to-sum formula we obtain a formula for w(n). In Theo-
rem 1.1 of [16] we take r =0, = 2,t = 0,u = 0,v = 2,w = 0,2 = 0,y = 1 so that

k =2,1=3,m = 8. We obtain the following formula for w(n).

Theorem 3.1. Let n € N satisfy n > 3. Then

1
win) = ¢ > (o] — 207) (2} — 22%) (25 — 33a3).

(21,...,x8)EZL8
x%+---+wi+2w§+m+2x§:n

We conclude with the following property of w(n).
Theorem 3.2. Let n € N. Then
wn)=0 forn=2 (mod 4).

Proof. We recall the parameters « and z defined in [2, p. 120], namely,
¢*(=q)
©*(q)
From Berndt’s catalogue of formulas [2, pp. 122-123] we deduce

By = 27 M/0g—1/240/24(1 _ 1)1/6,1/2,

. z2=¢%(q).

z=1-

By = 27 1/3¢=1/12,1/12(1 _ p)1/12,1/2,
By = 27 2/3¢=V/651/6(1 _ g)1/24,1/2,
Hence
A(q) == ¢PESEFE} = 271223(1 — 2)2'2
Jacobi’s change of sign principle [3, p. 565] tells us that

z(—q) = 2(—q) = (1—1)"/%2,

SO

Thus

(3.1)



1118 F. Uygul & K. S. Williams

Cheng’s rotation principle [3, p. 565] asserts

o) = i =) (1 - 2)Y?)
J;(ZQ) = (1—i(1—x)1/4)4

Mapping ¢ to ig in (3.1), and appealing to (3.2), we find
Aliq) + A(—iq) = 2722 (1 — x)2"2.
Thus A(q) — A(iq) + A(—q) — A(—iq) = 0. Set a,, = [A(q)],. Then

. 2(ig) = %(1 —i(1—2)Y"?z. (3.2)

E ang" = 7 E an(1 ="+ (=1)" — (=9)")q" = 0.
n=0 n=0

n=2 (mod 4)
Hence

wn) = [*EPEP*EY), = [A(Q)]n =an =0 forn=2 (mod 4),

as claimed. O

Theorems 1.2, 1.3, 1.5, 1.8, and 3.2 show that the number of representations
(T1, ..., T16,T17, -, To4) € Z6 x N§ of n — 1 as

r17(T17 + 1 Toa(Tos + 1
I IS AL (G et B T1C TR )

2 2 ’
the number of representations (1, ..., s, Tg, ..., T21) € Z® x N}® of n — 2 as
To(xg + 1 Tog(Tog + 1
ST 1 ek S 71 T )
2 2
the number of representations (z1,...,224) € N3* of n — 4 as

1 (1 +1 T16(T16 + 1
M—|—-~-—|—M—|—ac17(x17—|—1)+~-~—|—x24(x24—|—1),

2 2
and the number of representations (z1, ..., T24) 6N34 of n—>5 as
(v +1 xg(rg + 1
%+...+%+$9($9+1)+...+$24($24+1)7

depend only upon o11(n), o11(n/2),7(n) and 7(n/2) when n = 2 (mod 4).

In this paper we have considered certain eta quotients in the space Mi2(I'o(4)).
In [17] the second author has essentially considered similar eta quotients in the
space M3(I'g(4)) but in an entirely different manner.
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