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Abstract

Cyclic quartic fields possessing a unique normal integral basis are
characterized and the normal integral basis is given explicitly.

1. Introduction
Let K be an abelian extension of finite degree over the rational field

Q. By the Kronecker-Weber theorem [8, Theorem 6.5, p. 289], K is

contained in a cyclotomic field Q(&,,) (&, = 2™/ ™) for some positive
integer m. The least positive integer f with the property K c Q&y) is
called the conductor of K and is denoted by f(K) [8, p. 421]. Moreover [8,
Proposition 8.1, p. 421]

K < Q(&,,) if and only if f(K)|m. (1.1)

It is known [8, p. 175] that an abelian field K has a normal integral basis
if and only if it is contained in a cyclotomic field Q(&,) with m
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squarefree, that is, by (1.1) if and only if f(K) is squarefree. If K is
abelian with squarefree conductor f(K), then the normal integral basis

of K is unique (up to permutation and change of sign) precisely when
either Gal(K/Q) is the direct product of cyclic groups of order 4 and/or
order 2, or Gal(K/Q) is the direct product of cyclic groups of order 3

and/or order 2, see Thompson [10, Theorem 1, p. 1119] or Higman
[4, Theorem 6].

In this note we determine explicitly a normal integral basis for K in
radical form, when K is a cyclic quartic field with squarefree conductor.
To do this we make use of the representation of K given by Hardy et al.
[3, Theorem 1, p. 1], the formula for the conductor of K given in [3,
Theorem 5, p. 34] or [9], and the integral basis for K given by Hudson and
Williams [6, Theorem, p. 146]. From a theoretical point of view we can

give the normal integral basis as the conjugates of Trg ,)/K(Cf(K))

[8, Proposition 4.15(1), p. 174]. However this is not a practical way of
obtaining a normal integral basis as the degree of Q({ f)/ Q can be large.

This was observed by Acciaro and Fieker [1] in the case of cyclic fields of
prime degree.

It is shown in [3] that a cyclic quartic extension K/Q can be

expressed uniquely in the form

K = QWA(D + BVD)), (1.2)

where A, B, C and D are integers such that

A is squarefree and odd, (1.3)
D=B2+C?%is squarefree, B > 0, C > 0, (1.4)
GCD(A, D) =1. (1.5)

An algorithm to express K in this form has been given by Huard et al. [5].
The conductor of f(K) of K is given by

f(K) = 2'|A|D, (1.6)
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where
3, if D =2(mod4)or D =1(mod4), B =1(mod 2),
1=1{2, if D=1(mod4), B=0(mod2), A+ B =3(mod4), (1.7
0, if D =1(mod4), B =0(mod2), A+ B =1(mod 4),

see [3], [9]. Thus
f(K) is squarefree < [ =0

< D =1(mod4), B =0(mod 2), A + B =1(mod 4). (1.8)

Now let K be a cyclic quartic extension of Q with a squarefree

conductor f(K) so that K has a unique normal integral basis. Then K can

be expressed uniquely in the form (1.2), where A, B, C and D are integers
satisfying (1.3)-(1.5) and

D =1(mod4), B=0(mod2), C =1(mod2), A+ B =1(mod4). (1.9)
We set

o = JA(D + BYD), B =+AD - BYD), (1.10)

and define € = 1 by
A = eC (mod 4). (1.11)

An integral basis for K is
{1, %(1 + VD), %(1 + 4D +a +¢p), %(1 VD +a- es)}, (1.12)

see [6, Theorem, p. 146]. We prove

Theorem. Let K be a cyclic quartic field with a squarefree conductor.
Then its unique (up to permutation and change of sign) normal integral
basis consists of the following four elements

':11—(1+J—D_+a+8[3),%(1—«/5—a+sﬁ),%(1+«/§—a—s[3)

and

—}I(].—‘\/—5+(1—8B),

where o.and B are defined in (1.10) and € in (1.11).
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2. Proof of Theorem

The first element specified in the theorem, namely %(1 +vD +a +¢p),

is the third element in the integral basis given in (1.12) and so is an
integer of K. Using the automorphism of K given by

o—>B, B -a VD - -VD,
we see that the other three elements given in the theorem are the
conjugates of %(1 + D + a + ¢p) and so are also integers of K. Since the

first and fourth elements in the theorem are members of (1.12), the sum
of all four elements is 1, and the sum of the first and third elements is

%(1 + /D), it is clear that the four elements of the theorem comprise a

normal integral basis for K.
3. Example
Let K = Q(y-(13 + 2v13)). Here

A=-1 B=2 C=3 D=13 ¢=1,

o = y-13-2V13, B =+-13+2+13,

so by the theorem a normal integral basis for K consists of the four
elements

%(1+«/ﬁ+\/—13—2«/'1§+\/—13+2‘/ﬁ), '

%(1—\/1_—\/—13—2~/1_3+\/—T3+2\/I§)’

%(1“/5—\/—13—2«/1_ ~J13+ 213),

%(1—«/ﬁ+ﬁ3—2\/1_—ﬁ13+2~/ﬁ).

We conclude by determining the unique normal integral basis of K by



CYCLIC QUARTIC FIELDS 239

means of a trace calculation. By (1.6) and (1.7) the conductor of K is
f(K)=13. Let o =Cg =e™/13. We have [Qo):Q]=0¢(13)=12.
[K : Q] = 4 and [Q(0) : K] = 3. We determine

T’"Q(m)/K((D) =0+ (x)3 A+ 0)9

and its conjugates. From the evaluation of the quartic Gauss sum given
by Matthews [7], see [2, Theorem 4.2.4, p. 163] (with p =13, a =3,
|b|=2, C=1), we have

12

4
1+4(m+m3+m9)=zm” ~ J13 +iv26 - 6413.
n=0

Hence

o+ 0+’ =:11—(—1+\/1_3+w/—26+6«/1—3)

:%4—(—1+Jﬂ3_+\/13—2J1_—\/j13+2ﬁ§).

Similarly we have

0? + 0% + 0 =%(—1—«/1_3+\/—26—6~/ﬁ)

:%(—1“/ﬁ+\/:13—2~/ﬁ+\f—13+2«[1§),

ot ol + 02 = %(-1 + VI3 - {-26 + 6+13)

=%(-1+«/1—3—\/—713—2«/1_3+\/—713+2\/i§),

o7 + 5% + ol = %(4 _ V13 - -26 - 6413)

=%(_1—\/1——\f—13—2\/1_—ﬁ3+2~/1_§)-

Thus the normal integral basis obtained from T rQ((,))/K(U)) and its

conjugates is (as it should be!) the same as the one determined above.
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