Far East J. Math. Sci. (FIMS) 16(1) (2005), 1-16

TWO TERM CLASS NUMBER FORMULAE OF
DIRICHLET TYPE

SHAWN GODIN and KENNETH S. WILLIAMS
(Received August 24, 2004 )

Submitted by K. K. Azad

Abstract

Let D be the discriminant of a quadratic field. Let q1 and g9 be

rational numbers such that 0<q91<g2<1. A sum of the form

(—3—), where n runs through the positive integers in the
1| D|<n<qg| D |

specified range and (gj is the Kronecker symbol, is called a short

character sum. A generalization of a theorem of Johnson and Mitchell is
proved and used to find new formulae expressing the class number
h(- € D|) as a linear combination of two short character sums for

certain positive integers e and all discriminants D in certain arithmetic
progressions.

1. Introduction

Let K be a quadratic field. Let D be the discriminant of K so that
K = QD). A quadratic field is uniquely determined by its discriminant.

An integer which is the discriminant of a quadratic field is called a
fundamental discriminant. We denote the class number of K by h(D).
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In 1840 Dirichlet [2, 3] proved several class number formulae, such as

h(- p) = Z (-’L—j, p = 7 (mod 8), 1)

0<n<p/2

where p is a prime. We note that (%) = (:'ﬁj by the law of quadratic
)

reciprocity, where — p is the discriminant of Q(v- p). In 1982 Hudson

and Williams [13] defined a class number formula of Dirichlet type to be a
formula of the form
h(-ep) = c Z [ﬂ), p =r (mod m), (2)
(k-1) p/le<n<kp]le
where

(1) p is a prime greater than 3,

(2) e is a positive integer such that —ep is the discriminant of an

imaginary quadratic field, that is, a negative fundamental discriminant,

(3) 1 is a positive integer,

(4) k is a positive integer satisfying 1 < k < %(le +1),

B) m = 41_1 g, where g runs through the distinct primes dividing le,
qlle

(8) r is an integer satisfying 1 < r <m, (r, 2le) =1,

(7) c is a rational number.

Hudson and Williams [13] undertook a computer search to find all
such formulae with e and [ in the ranges 1 <e <28 and 1 < le < 30.
Within these limits 127 formulae were found. Of the 127 formulae, 84
were found in the literature. For example

o= Y (L) p=7mod2a), @
0<n<p/6 p
M-p =z ij, p = 43 (mod 120), @)

3p/10<n<p/3
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W-sp)=2 Y (ij p =19 (mod 20), ®)
p/5<n<2p/5
W-8p)=-4 Y (l) p=17(mod8), ©)
3p/8<n<p/2
h(-15p) = —4 %) p =13 (mod 120), @

11p/30<n<2p/5

can be found in Holden [7], Johnson and Mitchell [14], Lerch [16],
Dirichlet [3] and Karpinski [15] respectively. Others can be found in [1],
(2], [4], [6], [8]-[12], [17]. The remaining 43 formulae were new. Examples
of these are

h(-p) = Z (i) p = 43 (mod 56), 8)
5p/l4<n<3p/7 ’
W-3p)=-2 Y (i) p =17 (mod 24), ©)
p/3<n<p/2
W-sp)=2 Y (&) p = 39 (mod 40). (10) .

p/4<n<3p/10

In 1999 Schinzel,Urbanowicz and Van Wamelen [19] extended the
idea of a class number formula from that defined by Hudson and Williams
to

h(-¢D|)=c Z (g), |D|=sy (modim), 1y
Q| D [<n<qg| D |

where

(1) q; and gy are rational numbers with 0 < q1 <Qqg, q; +qg <1,
andqzs%ifql =0,

(2) r is the least common denominator of q; and gqg,

(3) D(#1) is a fundamental discriminant with (D, r) = 1,

(4) e is a positive integer such that (e, D) = 1, —e| D | is a fundamental

discriminant and e| D|> 4,
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(5) D <0 is excluded if g9 > ?12—

Using an identity due to Zagier, the authors derived 222 formulae in
the ranges 1 < e < 30 and 1 < r < 60. These formulae are listed in [19]
and [20]. They include the 127 formulae found by Hudson and Williams.

We call the class number formulae of the forms (2) and (11) single
term class number formulae of Dirichlet type. The sums appearing in (2)
and (11) are called short character sums.

2. Two Term Class Number Formulae of Dirichlet Type

In this paper we determine class number formulae involving two

=)

|D| = sy (modm), (12)

short character sums, namely, formulae of the type

h(-¢ D)) =¢ Z (Qj + ¢y

n
q1| D |<n<qz| D | q3| D |<n<q4| D |

where

(1) e is a positive integer,

(2) D is an odd fundamental discriminant with (D, e) =1 such that
-efD|<-4isa fundamental discriminant,

(3) ¢y, cg €Q,

(4) a1, 92, 93, 94 € Q with least common denominator r such that

elr,

, 1
(5)0<q; <g2<93<q4 =75,
(6) gy = q3 is allowed only if ¢; # ¢,

(T m = 41—[ p, where p runs through the distinct primes dividing r,
plr

®) sp € {1, 2, .., m-1} and (sg, m) =1,
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(9) neither of the short character sums is itself a rational multiple of
the class number, that is, there are no class number formulae of the forms

h(-¢D|) = C Z (%), |D|=sy (mod m), (13)
q1| D |<n<gz| D |

or
D
W-¢D)=C; Y (;j |D|=s, (mod m).  (14)
q3| D |<n<qq| D |

We call class number formulae of the form (12) two term class number
formulae of Dirichlet type.

A few formulae of the type (12) have appeared in the literature. For
example Dirichlet [3] has shown that if d is a positive fundamental
discriminant with d = 1 (mod 4), then

m-sa)=2 (2)-2 Y (4. (15)
d n 3 d n

0<n<§- §d<n<5

In ord=r to determine possible class number formulae of the type (12),
a computer search was carried out within certain limits. For each e €

{1, 2, ..., 30} and each (qy, 92, 93,94) € Q4 satisfying e|r, r < 30 and
0<q; <9y £q3 <qy < %, where r is the least common denominator of

91, 92, 43, 44, a sequence of 10 fundamental discriminants D was found
for each sy ef{l,2, ..,m-1} with (sp, m)=1 satisfying (D, e)=1,
elD|>4 and |D| = sy (mod m), where m = 4H p. For each such D,

()

were calculated. If the ratio a : B : v was the same for all the D in the

a="h(-¢D|), B= Z (2) y =

n
q1| D |<n<gq| D | q3| D |<n<qy| D |

sequence, the computer checked to see if there were one term formulae
for each of the sums. If not, the system of equations given by a = ¢;B + coy

for the D in the sequence was checked for a unique solution (c;, ¢g). If
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there was a unique solution to the system of equations, then

(%)

became a conjectured formula for | D | = sy (mod m). When the programs

M-dD)=c; Y [%)+c2

q1| D |<n<qe| D | q3| D |<n<qy| D |

were run over 8316 conjectured formulae were found. These formulae can
be found in [5] and on the website http:/math.carleton.ca, and include the
following three formulae

- 3 (B T (2)

! 1 1 2
Ei D |<n<g| D| 3| D |<n<g{ D|

| D| =3 (mod 40), (16)

M-3D)=2 Y (;BL)‘Z > (%)

1 1 5 1
ﬁl D |<n<§| D| —151 D |<n<§| D]

|D|=13 (mod24), (17)
D
(%)

|D| =3 (mod40).  (18)

h-5D|) = -2 Z (g)w Zz

1 3
0<”<€| D| ﬁl D |<n<g| D|

How the conjectured formulae were proved is described in the next
section.

3. Extension of a Theorem of Johnson and Mitchell

Hudson and Williams [13] used symmetries of the Legendre symbol

(%) as well as a theorem of Johnson and Mitchell [14] relating short

character sums to prove their 127 single term class number formulae of
Dirichlet type. Our conjectured two term class number formulae involve
the Kronecker symbol [D) rather than the Legendre symbol (%) S0 in

n

order to prove them we must extend Johnson and Mitchell's result to
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short character sums involving the Kronecker symbol. We prove the
following theorem [5] using the ideas of [14].

Theorem 3.1. Let D be a nonsquare integer = 0 or 1 (mod 4). Let n
and q be positive integers such that (qn, D) = 1. Set

S(r, n, D) = z (g), r=12 .. n (19)
(-)|D|___rD]|
n n
Then
[(g-1)/2]
(BJS(r, n, D) = Z S(jn +r, nq, D)
q =
Jj=0
la/2]
+ sgn(D)Z S(jn - r + 1, nq, D). (20)
el

Proof. The set
iezl-llq-1/2]<j<[q/2]
is a complete residue system modulo q. As (g, D) = 1 the set
UID|1jez ~lq-1/2< J < [a/2]

is also a complete residue'system modulo q. Hence

_ D
S(r,n, D) = &[DZ: ( j

n n

la/2] D
. j=-§1)/2] (r-1)] D|ZSG<M ( ¢ )

n. n
a=j| D |(mod q)

-1)|D]| . : .
As (n,|D|) =1 the rational number (r}—l)ll is an integer if and
only if n|r —1, thatis,ifandonlyif r =1, as 0 <r-1<n. When r =1

r-D[D] _ 0 contributes (g) - (2) =0 to the inner
n

the term a = 0
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sum. Hence

la/2]
S(r, n, D) = ‘IZ z —D—)

j=—{avy2) ¢-01BT. A"

n n
a=j| D |(mod q)

Set
[q/2] D
S = Z Z (;) @21)
j=1-)|D[_ rfD|
asjl D |(mod q)
and
2 D
So= D, 2 (7;) (22)
i=lg-v/2] (-1 D|__ _rD|
a2l D |(mod ¢)
so that

S(r, n, D) = S; + Ss. (23)

In (21), by changing the summation variable a in the inner sum to

b=]|D|—a
q

, we obtain

[q/2]

D
2 2 D[-b
j=1 (n-nD|_, _Un-r+D| D| A D|-ba
qn qn

la/2]
>y wo(g) e
j=1 (jn-r)| D| b<(jn—r+1)| D|
qn qn

| is not an integer unless j =1 and r = n.

‘We show next that (—J"’;q;lli)—

Suppose

(—Jn_—qr;)—uz_lel. Then gn|(jn-r)|D|. As (qn,|D[) =1 we

must have gn|jn —r. Thus n|r. But 1 <r <n so r = n. Hence qlj-1.
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Butlsjs[%}<q s0 0<j-1<gq. Thus j=1. When (j, r) = (1, n)

we have W =0. As (%) =0 for b =0, we deduce from (24)
that
lg/2]
D . D
see0(Zy, Y (3
j=1 (jn—r)|D[S1)< jn—-r+1)| D |
qn qn
D la/2]
= sgn(D) (?) ; S(jn - r +1, gn, D). (25)

Next, changing the summation variable j in the outer sum in (22) to — j,

in the inner sum, we obtain

: j| D
and then changing a to ¢ = %Il

[(g-1)/2]

WSy )

j=0 (r—1)|D|<a<r]D|
n n
a=-j| D |(mod q)
-1)/2
- @=7D]
= Grerninf 7 grenin 9P
qn qn

[(q-1)/2]

5 > (2

j=0 (jn+r-1)| D| c<(1n+r)|D|

qn qn
(@
q

[(g_1)/2]
(jn+r-1)|D|
qn
(jn+r-1)|D|

qn

(?) 26)

J=0 (jn+r-1)| D| c<(jn+r)| D|
qn qn

We now show that is not an integer unless j = 0 and

r =1. Suppose €Z. Hence qn|(jn+r-1)|D|. As (qn,|D|)=1
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we have gn|jn+r—-1. Thus n|r-1. But 1<r<n so 0 <r -1 < n. Hence

r=1. Thus q|j. But 0<]<[q21}<q so j=0. When (j, r) = (0, 1) we

have @H—rq;& =0. As (g) =0 for ¢ =0, we deduce from (26)
that
[(e-1)/2]
_(D D
s=(g)x > (2
j=0  (jn+r-1)| D |<C<(jll+l')| D|
qn - qn
- (?)S(jn +r, qn, D). (27
Thus from (23), (25) and (27) we obtain
la/2] [(g-1)/2]

S(r, n, D)—sgn(D)( )ZS(}IL—I’+1 qn, D)+( ) ZS(jn+r, qn, D).
=0

Multiplying both sides of this equation by (g) (= £1), we obtain (20).

We note that by (19)

ZS(r u, D= Z (gj - DZ (g) 0. (28

-)|D|_, D] a=0
n n

Theorem 38.2. Let D be a nonsquare integer = 0 or 1 (mod4). Let n
and q be positive integers such that (gn, D) =1. For k =1, 2, ..., qn set
S, = S(k, qn, D). (29)

Then S;, Sy, ..., Sq,, satisfy the linear equations

»s;=0 (30)

and

[(q-0)/2] lg/2]

. q
S +sgn(D S; ) S . _...=0,r=12, .., n(31)
j=0 jn+r g ( )z jn-r+1 = \q jZ:; rq-q+j
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Proof. Equation (30) follows immediately from (28) and (29) (with qn

replacing n). Equation (31) is a simple consequence of Theorem 3.1. For
r=1,2,..,n we kave

S(r, n, D) = Z (Qj

a
(-)IDT 1D
n n

> ()
(rg-g+j-1)|D[___(rg-q+j)| D| N
qn & qn

M-Q

J

1l
—

q
= ZS(rq -q+J,qn, D)
= :

q
B ZSrq—q+j'

Jj=1
The asserted linear equations now follow from Theorem 3.1.

We remark that when g=1 formula (31) yields only the trivial

assertion

S, +sgn(D)x 0 - (?)Sr = 0.
We also require class number formulae in terms of the Kronecker
symbol. These are provided by the following theorem of Lerch [16, 17] and

Mordell [18]. A proof is given in [20].

Theorem 38.3. Let dj <0 and dy >0 be coprime fundamental

discriminants. Then

ddy) =2 Y [d—lj [d—zj (32)

n

1<a<|d; /2 1Sll$0d2/l d |
= -2 E (ii_z_j (d_lj (33)
a n
1<a<dg /2 1<n<a|d; |/dg

For our purposes we need the following consequence of Theorem 3.3.
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Theorem 3.4. (i) Let D > 0 be an odd fundamental discriminant. Let
e be a positive integer such that —e is a fundamental discriminant (so
that e = 3 (mod 4) or e = 4, 8 (mod 16)) coprime with D. Then —e| D | is

a negative fundamental discriminant and

W-eD)=2 Y.

( (%j]S(a, e, D). (34)
1<a<e/2\a<k<e[2

(ii) Let D < 0 be an odd fundamental discriminant. Let e be a positive

fundamental discriminant (so that e =1 (mod4) or e = 0 (mod 4) and

% =2, 3 (mod4)) coprime with D. Then — ¢| D | is a negative fundamental

discriminant and

M-eD)=-2 Y [ 3 (%)}S(a, e, D). (35)
1<a<e/2

a<k<e/2

Proof. We prove (i). From (32) we obtain

wedop=2 ¥ (3 ¥ ()

1<a<e/2 1<n<a| D |/e
=€
=2 Z = ZS(n, e, D)
1<a<e/2 1<n<a

=9 Z Z (—_aE)S(n, e, D)

1<a<e/21<n<a

=2 z %)S(n, e, D)

1<n<e/2 n<a<e/2
—e
-2 Y Y (Zs@e D)
1<a<e/2 a<n<e[2

The proof of (i) is essentially the same as that of (i) using (33) in
place of (32).

We now have the necessary mathematical machinery to describe the
computer implementation of the proofs of the conjectured class number
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formulae of the form (12). For each conjectured formula, we solve the
homogeneous system of linear equations resulting from Theorem 3.2 by
taking all pairs of positive integers g(> 1) and n with gqn = r (r =lcm of

the denominators qq, gg, g3, q4) for S;, S, ..., S,, where Sj = S(j, r, D),
in terms of some integral parameters &y, ..., k._;, where ¢ is the rank of

the coefficient matrix of the system. Then, by means of Theorem 3.4, as

e|r, h(-e| D|) can be expressed in terms of Sy, ..., S, and thus in terms

of ky, ..., k,_;. Also, as r is the least common denominator of gy, g2, g3, qy4,

@ Y (Dre ¥ (2

the quantity

q1| D |<n<qg| D| q3| D |<n<q4| D |
can be expressed in terms of Sj, ..., S, and thus in terms of &, ..., k,_;.
If the two expressions in terms of ky, ..., k._; agree, then the formula is a

valid one. The congruence class to which | D| belongs determines the
quantities sgn(D) and (—?) occurring in Theorem 3.2. All conjectured

formulae were found to be valid by these means. In the next section we
give the details of the proof of one of these formulae.

4. Proof of One Conjectured Formula

We give the details of the proof of one of the conjectured formulae,
namely (17) based on the method described at the end of Section 3.

Let D be a fundamental discriminant with |D| =13 (mod 24), so
that D > 0, sgn(D) = +1, (g) =-1, (g) = +1. Taking (g, n) = (2, 6),
(3, 4), (4,38), (6,2), and (12,1) in Theorem 3.2 (these are all pairs of
positive integers (g, n) with ¢ > 1 such that gn = 12), we obtain

Sl+SZ+S3+S4 +S5+SG+S7 +SS +Sg +SlO+Sll+S12 =0,
S,.+S7__r+S2,._1+S2r =0, r =1, 2, 3, 4, 5, 6,

S,. + Sr+4 + S5_,. = (S3r_2 + S3r-l + S3r) =0, r=1,2, 3, 4,
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Sr + Sr+3 + S4—r + S7—r - (S4r—3 + S4r~2 + S4r—1 + S4r) =0, r=123,

Sr + S,.+2 + Sr+4 + S3—I‘ + S5_,. + S7—I‘ = (SGI‘—:') + SGI‘—4 + SG,._3 + SGI‘—Z
+S67"‘1 + S6r) = 0’ r= 1: 27

Sl +S2 +S3 +S4 +SS +S6 —(S7 +SS+SQ +SIO +Sll +S12)= 0.

Solving these 1+6+4+3+2+1=17 linear equations for the 12
unknowns Sj, ..., Sj2, we obtain

Sy =83 =819 = S12 =k,

Sy =S¢ = S7 =Sy1 = -k,
S4 = Sg = kz,
Ss = Sg = —ky,

for some k;, ky € Z.

By Theorem 3.4 (i) we have
-3
(552

= 28(1, 12, D) + 2S(2, 12, D) + 2S(3, 12, D) + 25(4, 12, D)

h(-3| D) =2 (
1<a<3/2\ a<k<3/2

= 25(1, 3, D)

= 2Sl = 2S2 - 2S3 + 2S4
Using the parametric equations for the S; we obtain
h("'3] D D = 2(k1) + 2(—k1) + 2(k1) + 2(k2) = 2k1 + 2k2

Similarly, using the parametric equations for the S, in the right

hand side of (17), we obtain

e ¥ @ X [E)

1 1 5 1
l—ZI D |<n<§[ D| EI D |<n<§| D|
= 2(S(2, 12, D) + S(3, 12, D)

+ S(4, 12, D)) - 2S(6, 12, D)
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= 232 + 283 + 234 = 2S6

Il

2(=ky) + 2(ky ) + 2(kg) — 2(~ky)

= 2k1 + Zkz

This completes the proof of (17).
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