EVALUATION OF WEBER'S FUNCTIONS AT QUADRATIC IRRATIONALITIES

HABIB MUZAFFAR

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University Ottawa, Ontario K1S 5B6, Canada e-mail: hmuzaffa@math.carleton.ca

KENNETH S. WILLIAMS

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University Ottawa, Ontario K1S 5B6, Canada e-mail: williams@math.carleton.ca

Abstract

Let $\eta(z)$ denote the Dedekind eta function. Let $ax^2 + bxy + cy^2$ be a positive-definite, primitive, integral, binary quadratic form of discriminant $d(=b^2-4ac<0)$. The value of $|\eta((b+\sqrt{d})/2a)|$ is determined for an arbitrary discriminant d. This result generalizes the corresponding result when d is fundamental, which was obtained by van der Poorten and Williams [Canad. J. Math. 51 (1999), 176-224. Corrigendum, Canad. J. Math. 53 (2001), 434-448]. As a consequence of our evaluation of $|\eta(z)|$ for $z=((b+\sqrt{d})/2a)$, formulae are obtained for the moduli of Weber's functions f(z), $f_1(z)$ and $f_2(z)$ [Lehrbuch der Algebra, Vol. III, Chelsea Publishing Co., New York, 1961, p. 114]. From

2000 Mathematics Subject Classification: Primary 11F20; Secondary 11E16, 11E25.

Key words and phrases: Dedekind eta function, Weber's functions, class invariants, binary quadratic forms, Kronecker's limit formula.

Research of the second author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

Received November 15, 2003

© 2004 Pushpa Publishing House

these formulae the values of $f(\sqrt{-m})$, $f_1(\sqrt{-m})$ and $f_2(\sqrt{-m})$ are determined for an arbitrary positive integer m.

1. Introduction

The Dedekind eta function $\eta(z)$ is defined for all $z=x+iy\in\mathbb{C}$ with y>0 by

$$\eta(z) = e^{\pi i z/12} \prod_{m=1}^{\infty} (1 - e^{2\pi i m z}). \tag{1}$$

The fundamental transformation formulae of $\eta(z)$ are [18, pp. 17-18], [20, p. 113]

$$\eta(z+1) = e^{\pi i/12} \eta(z), \quad \eta\left(-\frac{1}{z}\right) = \sqrt{-iz} \, \eta(z).$$
 (2)

We also note that

$$\eta(iy) \in \mathbb{R}^+, \ e^{-\pi i/24} \, \eta\left(\frac{1+iy}{2}\right) \in \mathbb{R}^+,$$
(3)

for y > 0. Weber's three functions f(z), $f_1(z)$ and $f_2(z)$ are defined in terms of the Dedekind eta function as follows:

$$f(z) = \frac{e^{-\pi i/24} \, \eta\left(\frac{z+1}{2}\right)}{\eta(z)},\tag{4}$$

$$f_1(z) = \frac{\eta\left(\frac{z}{2}\right)}{\eta(z)},\tag{5}$$

and

$$f_2(z) = \sqrt{2} \, \frac{\eta(2z)}{\eta(z)} \,,$$
 (6)

see [20, p. 114]. It is convenient to set

$$f_0(z) = f(z)$$

so that $f_i(z)$ is defined for i = 0, 1, 2. Weber's functions satisfy the relations [20, p. 114]

$$f_0(z)^8 = f_1(z)^8 + f_2(z)^8$$
 (7)

and

$$f_0(z)f_1(z)f_2(z) = \sqrt{2}.$$
 (8)

For n a positive integer, Ramanujan's class invariants G_n and g_n are defined by

$$G_n = 2^{-1/4} f_0(\sqrt{-n}) \tag{9}$$

and

$$g_n = 2^{-1/4} f_1(\sqrt{-n}), (10)$$

see [2, p. 183]. From (3)-(6) we see that $f_i(\sqrt{-n}) \in \mathbb{R}^+$ for i=0,1,2 so that G_n , $g_n \in \mathbb{R}^+$. The values of G_n and G_n have been determined for many values of G_n . Traditionally G_n is determined for odd values of G_n and G_n for even values of G_n [2, p. 184]. Berndt gives a wealth of values of G_n for which G_n and G_n have been determined by various authors using such techniques as modular equations, Kronecker's limit formula or class field theory [2, Chapter 34]. In this paper we use Kronecker's limit formula together with some new results on binary quadratic forms to determine the value of

$$\left| \eta \left(\frac{b + \sqrt{d}}{2a} \right) \right|$$
,

where a, b, c, d are integers such that $ax^2 + bxy + cy^2$ is a positive-definite, primitive, integral, binary quadratic form of discriminant $d(=b^2-4ac<0)$, see Theorem 1 in Section 9. The Chowla-Selberg formula [5, 17] gives the value of

$$\prod_{K=[a,b,c]\in H(d)} \left| \, \eta\!\!\left(\frac{b+\sqrt{d}}{2a}\right) \right|$$

for a fundamental discriminant d, that is, a discriminant d for which $d/m^2 \equiv 0$ or $1 \pmod 4 \Rightarrow |m| = 1$. This formula was extended to an arbitrary discriminant d by Kaneko [10], Nakkajima and Taguchi [13], and Kaplan and Williams [11]. We show that this result is a simple

consequence of Theorem 1, see Corollary 1 in Section 9. Theorem 1 extends a recent result of van der Poorten and Williams [16] giving the value of $|\eta((b+\sqrt{d})/2a)|$ in the case when d is fundamental, see Corollary 2 in Section 9. Appealing to (4)-(6) and Theorem 1, we obtain the values of

$$\left| f_i \left(\frac{b + \sqrt{d}}{2a} \right) \right|, \quad i = 0, 1, 2,$$

see Theorem 2 in Section 10. From Theorem 2 we deduce the values of

$$f_i(\sqrt{-m}), i = 0, 1, 2,$$

for an arbitrary positive integer m, see Theorem 3 in Section 10. We illustrate Theorem 3 by deducing from it the known result (Weber [20])

$$f(\sqrt{-19}) = \theta,\tag{11}$$

where θ is the unique real root of the cubic equation $x^3 - 2x - 2 = 0$, see Theorem 4 in Section 11. In a future paper we plan to obtain further explicit results of this type from our formulae.

Throughout this paper n denotes a positive integer, p denotes a prime and d is an integer satisfying

$$d < 0, d \equiv 0 \text{ or } 1 \pmod{4}.$$
 (12)

We denote the Kronecker symbol, see for example [9, p. 278], by $\left(\frac{d}{m}\right)$ or (d/m) as convenient. The unique integer v such that $p^v \mid n$ and $p^{v+1} \nmid n$ is denoted by $v_p(n)$. The largest positive integer f such that

$$f^2 \mid d, d/f^2 \equiv 0 \text{ or } 1 \pmod{4}$$
 (13)

is called the *conductor* of d. The integer $\Delta = d/f^2$ is called the fundamental discriminant associated with d. If $ax^2 + bxy + cy^2$ is a positive-definite, primitive, integral, binary quadratic form of discriminant d, the class of this form under the action of the modular group is denoted by [a, b, c]. We describe briefly how two classes A_1 and A_2 of forms of the same discriminant d can be multiplied (composed). This method of composing two classes is due to Dirichlet. Representatives

of the classes A_1 and A_2 can be chosen so that

$$A_1 = [a, B, cC]$$
 and $A_2 = [c, B, aC]$.

Then the product (composition) of A_1 and A_2 is given by

$$A_1A_2 = [ac, B, C].$$

For more details the reader should consult [7, Chapter IX]. With respect to this multiplication, the classes of forms of discriminant d form a finite abelian group H(d) called the *form class group* of discriminant d. The order of H(d) is called the *class number* of discriminant d and is denoted by h(d). The identity I of the group H(d) is the principal class

$$I = \begin{cases} [1, 0, -d/4], & \text{if } d \equiv 0 \pmod{4}, \\ [1, 1, (1-d)/4], & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$
 (14)

The inverse of the class $K = [a, b, c] \in H(d)$ is the class $K^{-1} = [a, -b, c]$. The genus group G(d) is defined to be

$$G(d) = H(d)/H^{2}(d).$$
 (15)

Its order is

$$|G(d)| = 2^{t(d)},$$
 (16)

where t(d) is a nonnegative integer. The reader will find the exact value of t(d) in [9, p. 277]. An element of G(d) is called a *genus*. The reader will find discussions of the theory of binary quadratic forms in [3], [7], [8] and [15].

If x and y are integers such that

$$n = ax^2 + bxy + cy^2,$$

then (x, y) is called a *representation* of the positive integer n by the form $ax^2 + bxy + cy^2$. As $ax^2 + bxy + cy^2$ is a positive-definite form the number $R_{(a,b,c)}(n,d)$ of representations of n by the form $ax^2 + bxy + cy^2$ is finite. It is well-known that if $Ax^2 + Bxy + Cy^2$ is a form equivalent to the form $ax^2 + bxy + cy^2$, then $R_{(A,B,C)}(n,d) = R_{(a,b,c)}(n,d)$. Hence we can define

214

the number of representations of the positive integer n by the class $K \in H(d)$ by

$$R_K(n, d) = R_{(a,b,c)}(n, d)$$
 for any form $ax^2 + bxy + cy^2 \in K$. (17)

If $G \in G(d)$ the number of representations of n by the classes in the genus G is denoted by $R_G(n, d)$ and is given by

$$R_G(n, d) = \sum_{K \in G} R_K(n, d).$$
 (18)

The total number of representations of n by the classes in H(d) is

$$N(n, d) = \sum_{K \in H(d)} R_K(n, d) = \sum_{G \in G(d)} R_G(n, d).$$
 (19)

The number w(d) of automorphs of a primitive, positive-definite, binary quadratic form of discriminant d is given by (see for example [15, pp. 172-176])

$$w(d) = \begin{cases} 6, & \text{if } d = -3, \\ 4, & \text{if } d = -4, \\ 2, & \text{if } d < -4. \end{cases}$$
 (20)

In Sections 2-8 we develop the results on binary quadratic forms that we need in order to prove our main results, namely Theorems 1, 2, 3 in Sections 9 and 10.

2. Three Lemmas

Our first lemma is well-known.

Lemma 2.1. Let n_1 and n_2 be relatively prime positive integers.

(i) Let B be an integer such that $0 \le B < 2n_1n_2$, $B^2 \equiv d \pmod{4n_1n_2}$. Then there exist unique integers b_1 and b_2 such that

$$0 \le b_1 < 2n_1, \ b_1^2 \equiv d \pmod{4n_1}, \ b_1 \equiv B \pmod{2n_1},$$

$$0 \leq b_2 < 2n_2, \ b_2^2 \equiv d \, (\text{mod } 4n_2), \ b_2 \equiv B \, (\text{mod } 2n_2).$$

(ii) Let b_1 and b_2 be integers such that $0 \le b_1 < 2n_1$, $b_1^2 \equiv d \pmod{4n_1}$, $0 \le b_2 < 2n_2$, $b_2^2 \equiv d \pmod{4n_2}$. Then there exists a unique integer B with

$$0 \le B < 2n_1n_2, \ B^2 \equiv d \, (\text{mod } 4n_1n_2),$$

$$B \equiv b_1 \pmod{2n_1}, \ B \equiv b_2 \pmod{2n_2}.$$

Proof. This is essentially [7, Lemma 2, p. 134].

Lemma 2.2. Let p be a prime which does not divide d. Let h_1 be an integer such that

$$0 \le h_1 < 2p, \ h_1^2 \equiv d \pmod{4p}.$$

Then, for each positive integer n, there is a unique integer h_n such that

$$0 \le h_n < 2p^n$$
, $h_n \equiv h_1 \pmod{2p}$, $h_n^2 \equiv d \pmod{4p^n}$.

Proof. We note that $p \nmid h_1$ since $p \nmid d$. We use induction on n. The result is clearly true for n = 1. We assume that the result is true for n = N. Thus there is a unique integer h_N with

$$0 \le h_N < 2p^N, \ h_N \equiv h_1 \pmod{2p}, \ h_N^2 \equiv d \pmod{4p^N}.$$

Note that $p \nmid h_N$. Hence there is a unique integer λ_N satisfying

$$0 \le \lambda_N < p, \ \lambda_N h_N \equiv -\frac{(h_N^2 - d)}{4p^N} \pmod{p}.$$

We set $h_{N+1} = h_N + 2\lambda_N p^N$. Then we have $0 \le h_{N+1} \le 2p^N - 1 + 2(p-1)p^N < 2p^{N+1}$ and $h_{N+1} \equiv h_N \equiv h_1 \pmod{2p}$. Also

$$h_{N+1}^2 = h_N^2 + 4\lambda_N h_N p^N + 4\lambda_N^2 p^{2N} \equiv h_N^2 - (h_N^2 - d) \equiv d \pmod{4p^{N+1}}.$$

To show that h_{N+1} is unique, let $h'_{N+1} \neq h_{N+1}$ be another integer such that

$$0 \le h'_{N+1} < 2p^{N+1}, \ h'_{N+1} \equiv h_1 \pmod{2p}, \ h'^2_{N+1} \equiv d \pmod{4p^{N+1}}.$$

We define nonzero integers u and v by

$$u = \frac{1}{2} (h'_{N+1} - h_{N+1}), \ v = \frac{1}{2} (h'_{N+1} + h_{N+1}).$$

Then $u \equiv 0 \pmod{p}$ and $uv \equiv 0 \pmod{p^{N+1}}$. Let $p^{\alpha} \parallel u$ and $p^{\beta} \parallel v$, so that $\alpha \geq 1$, $\alpha + \beta \geq N + 1$. If $\beta \geq 1$, then $p \mid u$ and $p \mid v$ so that $p \mid v - u = h_{N+1}$, a contradiction. Hence $\beta = 0$ and $\alpha \geq N + 1$. Thus

$$h'_{N+1} \equiv h_{N+1} \pmod{2p^{N+1}}, \ 0 \le h_{N+1}, \ h'_{N+1} < 2p^{N+1}.$$

This gives $h'_{N+1} = h_{N+1}$, a contradiction. Hence h_{N+1} is unique and the induction is complete.

Lemma 2.3. Let a, b, c, n be integers with a > 0, n > 0, $[a^n, b, c] \in H(d)$ and (a, b) = 1. Then

$$[a^n, b, c] = [a, b, a^{n-1}c]^n$$
.

Proof. Note that $[a^{n-i}, b, a^i c] \in H(d)$ for $0 \le i \le n$. We have $[a, b, a^{n-1} c][a^{n-i}, b, a^i c] = [a^{n-(i-1)}, b, a^{i-1} c]$ for $1 \le i \le n$. Thus

$$[a^{n}, b, c] = [a, b, a^{n-1}c][a^{n-1}, b, ac]$$

$$= [a, b, a^{n-1}c]^{2}[a^{n-2}, b, a^{2}c]$$

$$= [a, b, a^{n-1}c]^{3}[a^{n-3}, b, a^{3}c]$$

$$= \cdots$$

$$= [a, b, a^{n-1}c]^{n-1}[a, b, a^{n-1}c]$$

$$= [a, b, a^{n-1}c]^{n},$$

which is the asserted result.

3. The Integer k(n, d)

In Definition 3.1 we define the first of three integers that we shall

need which count the number of solutions of the congruence $h^2 \equiv d \pmod{4n}$ having certain properties.

Definition 3.1. We define k(n, d) to be the number of integers h satisfying

$$0 \le h < 2n, \ h^2 \equiv d \pmod{4n}.$$

When (n, d) = 1 the value of k(n, d) is well-known, see for example [7, p. 78].

Lemma 3.1. *If* (n, d) = 1, *then*

$$k(n, d) = \prod_{p \mid n} \left(1 + \left(\frac{d}{p}\right)\right).$$

Next we generalize Lemma 3.1.

Lemma 3.2. *If* (n, f) = 1, *then*

$$k(n, d) = \begin{cases} 0, & \text{if there exists a prime p with } p^2 \mid n \text{ and } p \mid d, \\ \prod_{p \mid n} \left(1 + \left(\frac{d}{p}\right)\right), & \text{otherwise.} \end{cases}$$

Proof. We first assume that there exists a prime p with $p^2 \mid n$ and $p \mid d$ and that there exists an integer h with $0 \le h < 2n$, $h^2 \equiv d \pmod{4n}$. Then $p \mid h$ and so $p^2 \mid d$. Since $d = \Delta f^2$ and $p \nmid f$, we have $p^2 \mid \Delta$. If p > 2, then this is a contradiction since Δ is fundamental. If p = 2, then we have

$$\frac{\Delta}{4} \equiv \frac{\Delta f^2}{4} \equiv \frac{d}{4} \equiv \left(\frac{h}{2}\right)^2 \equiv 0 \text{ or } 1 \pmod{4},$$

which is again a contradiction as Δ is fundamental. Hence k(n, d) = 0.

Next, we assume that there is no prime p with $p^2 \mid n$ and $p \mid d$. Hence if p is a prime with $p \mid n$, then $p \mid n$ or $p^2 \mid n$, and $p \nmid d$. Thus, if p > 2, then the number of solutions of the congruence $h^2 \equiv d \pmod{p^{v_p(n)}}$ is

 $1 + \left(\frac{d}{p}\right)$. If p = 2, then the number of solutions of the congruence $h^2 \equiv d \pmod{2^{2+v_2(n)}}$ is

$$\begin{cases} 2, & \text{if } 2 \nmid n, \\ 2\left(1 + \left(\frac{d}{2}\right)\right), & \text{if } 2 \parallel n, \\ 2\left(1 + \left(\frac{d}{2}\right)\right), & \text{if } 2^2 \mid n, 2 \nmid d. \end{cases}$$

Hence the total number of solutions of the congruence $h^2 \equiv d \pmod{4n}$ is

$$2\prod_{p\mid n}\left(1+\left(\frac{d}{p}\right)\right).$$

The result follows as k(n, d) is half this number.

4. The Integer H(n, d)

In Definition 4.1 we define the second of the three integers related to the congruence $h^2 \equiv d \pmod{4n}$. This integer is denoted by H(n, d). We give a comprehensive treatment of the evaluation of $H(p^j, d)$, where p is a prime and j is a nonnegative integer, even though not all of these properties will be used in later sections.

Definition 4.1. We define H(n, d) to be the number of integers h satisfying

$$0 \le h < 2n, \ h^2 \equiv d \pmod{4n}, \ \left(n, \ h, \ \frac{h^2 - d}{4n}\right) = 1.$$

Clearly $H(n, d) \le k(n, d)$. We determine for use later $H(p^j, d)$ when $p \mid f$ and $j \ge 1$. In this case we have

$$H(p^{j}, d) = \operatorname{card}\left\{h : 0 \le h < 2p^{j}, h^{2} \equiv d \pmod{4p^{j}}, p \nmid \frac{h^{2} - d}{4p^{j}}\right\}.$$

Lemma 4.1. Let $\Delta = p^{\upsilon}s$, $f = p^{u}t$, $p \nmid st$, $u \ge 1$, p odd, so that $\upsilon = 0$ or 1. If $\upsilon = 0$, then

$$H(p^{j}, d) = \begin{cases} 0, & \text{if } j = 2l + 1, \ 0 \le l < u, \\ p^{l} - p^{l-1}, & \text{if } j = 2l, \ 1 \le l < u, \end{cases}$$

$$H(p^{j}, d) = \begin{cases} p^{u} - \left(1 + \left(\frac{s}{p}\right)\right)p^{u-1}, & \text{if } j = 2u, \\ \left(1 + \left(\frac{s}{p}\right)\right)(p^{u} - p^{u-1}), & \text{if } j > 2u. \end{cases}$$

If v = 1, then

$$H(p^{j}, d) = \begin{cases} 0, & \text{if } j = 2l + 1, \ 0 \le l < u, \\ p^{u}, & \text{if } j = 2u + 1, \\ p^{l} - p^{l-1}, & \text{if } j = 2l, \ 1 \le l \le u, \\ 0, & \text{if } j > 2u + 1. \end{cases}$$

Proof. Since $p \mid f$ and p is odd, we have

$$H(p^{j}, d) = \operatorname{card}\left\{h : 0 \le h < 2p^{j}, h^{2} \equiv d \pmod{4p^{j}}, p \nmid \frac{h^{2} - d}{p^{j}}\right\}$$

for $j \ge 1$. Also

$$h^2 \equiv d \pmod{4p^j} \Leftrightarrow h \equiv d \pmod{2}$$
 and $h^2 \equiv d \pmod{p^j}$.

For $1 \le j \le 2u + v$, as $d = p^{2u+v} st^2 \equiv 0 \pmod{p^j}$, we have

$$h^2 \equiv d \pmod{4p^j} \Leftrightarrow h \equiv d \pmod{2} \text{ and } h^2 \equiv 0 \pmod{p^j}.$$
 (21)

(a) Let j = 2l + 1, $0 \le l < u$. Then, by (21), we have

$$h^2 \equiv d \pmod{4p^j} \Leftrightarrow h \equiv d \pmod{2}$$
 and $h \equiv 0 \pmod{p^{l+1}}$

$$\Leftrightarrow h = \lambda p^{l+1} \text{ and } \lambda \equiv d \pmod{2}.$$
 (22)

For h satisfying (22), we have

$$\frac{h^2 - d}{p^j} = p\lambda^2 - st^2 p^{2(u-l)+v-1} \equiv 0 \pmod{p}.$$

Thus $H(p^j, d) = 0$.

(b) Next let j = 2u + 1, v = 1. Then, by (21), we have

$$h^2 \equiv d \pmod{4p^j} \Leftrightarrow h \equiv d \pmod{2} \text{ and } h \equiv 0 \pmod{p^{u+1}}$$

 $\Leftrightarrow h = \lambda p^{u+1} \text{ and } \lambda \equiv d \pmod{2}.$ (23)

For h satisfying (23), we have

$$0 \le h < 2p^j \iff 0 \le \lambda < 2p^u$$

and

$$\frac{h^2 - d}{p^j} = \lambda^2 p - st^2 \not\equiv 0 \pmod{p}.$$

Hence $H(p^j, d) = p^u$.

(c) Next let $j=2l,\,1\leq l\leq u.$ Then, by (21), we have

$$h^2 \equiv d \pmod{4p^j} \Leftrightarrow h \equiv d \pmod{2} \text{ and } h \equiv 0 \pmod{p^l}$$

 $\Leftrightarrow h = \lambda p^l \text{ and } \lambda \equiv d \pmod{2}.$ (24)

For h satisfying (24), we have

$$0 \le h < 2p^j \iff 0 \le \lambda < 2p^l,$$

and

$$\frac{h^2 - d}{p^j} = \lambda^2 - p^{2(u-l)+v} s t^2$$

$$\equiv \begin{cases} \lambda^2 \pmod{p}, & \text{if } 1 \le l < u \text{ or } l = u, v = 1, \\ \lambda^2 - s t^2 \pmod{p}, & \text{if } l = u, v = 0. \end{cases}$$

Thus, for $1 \le l < u$ or l = u, v = 1, we have

$$\begin{split} H(p^j, d) &= \operatorname{card}\{\lambda : 0 \le \lambda < 2p^l, \ \lambda \equiv d \ (\text{mod } 2), \ \lambda \not\equiv 0 \ (\text{mod } p)\} \\ &= p^l - p^{l-1}, \end{split}$$

WEBER'S FUNCTIONS AT QUADRATIC IRRATIONALITIES 221

and for l = u, v = 0, we have

$$H(p^{j}, d) = \operatorname{card}\{\lambda : 0 \le \lambda < 2p^{u}, \lambda \equiv d \pmod{2}, \lambda^{2} \not\equiv st^{2} \pmod{p}\}$$

$$= \begin{cases} p^{u}, & \text{if } \left(\frac{s}{p}\right) = -1, \\ p^{u} - 2p^{u-1}, & \text{if } \left(\frac{s}{p}\right) = 1, \end{cases}$$

$$= p^{u} - \left(1 + \left(\frac{s}{p}\right)\right)p^{u-1}.$$

(d) Next let j > 2u + 1, v = 1. Then the congruence

$$h^2 \equiv d \equiv p^{2u+1}st^2 \pmod{4p^j}$$

has no solutions so that $H(p^j, d) = 0$.

(e) Finally let j > 2u, v = 0. Let h satisfy

$$h^2 \equiv d \equiv p^{2u} st^2 \pmod{4p^j}, \ 0 \le h < 2p^j, \ p \nmid \frac{h^2 - d}{p^j}.$$

Then $p^u \mid h$. Let $h = p^u h_1$ so that

$$h_1^2 \equiv st^2 \pmod{4p^{j-2u}}, \ 0 \le h_1 < 2p^{j-u}, \ p \nmid \frac{h_1^2 - st^2}{p^{j-2u}},$$

as
$$(h^2 - d)/p^j = (h_1^2 - st^2)/p^{j-2u}$$
. Thus

$$H(p^{j}, d) = \operatorname{card}\left\{h_{1}: 0 \leq h_{1} < 2p^{j-u}, h_{1}^{2} \equiv st^{2} \pmod{4p^{j-2u}}, p \nmid \frac{h_{1}^{2} - st^{2}}{p^{j-2u}}\right\}.$$

If $\left(\frac{s}{p}\right) = -1$, then it is clear that

$$H(p^{j}, d) = 0 = \left(1 + \left(\frac{s}{p}\right)\right)(p^{u} - p^{u-1}).$$

If
$$\left(\frac{s}{p}\right) = 1$$
, then

$$h_1^2 \equiv st^2 \pmod{4p^{j-2u}} \Leftrightarrow h_1^2 \equiv st^2 \equiv d \pmod{4}$$
 and $h_1^2 \equiv st^2 \pmod{p^{j-2u}}$

$$\Leftrightarrow h_1 \equiv d \pmod{2}$$
 and $h_1^2 \equiv st^2 \pmod{p^{j-2u}}$.

The congruence

$$h_1^2 \equiv st^2 \pmod{p^{j-2u}} \tag{25}$$

has two solutions satisfying $0 < h_1 < p^{j-2u}$. If x is one such solution, then the other is $p^{j-2u} - x$. As these two solutions are of opposite parity, we may assume that $x \equiv d \pmod{2}$. Thus the solutions to (25) satisfying

$$0 \le h_1 < 2p^{j-u}, h_1 \equiv d \pmod{2},$$

are

$$h_1 = x + 2mp^{j-2u}$$
 and $h_1 = p^{j-2u} - x + (2m+1)p^{j-2u}$

for $0 \le m \le p^u - 1$. For $h_1 = x + 2mp^{j-2u}$, we have

$$\frac{h_1^2 - st^2}{p^{j-2u}} \equiv 4mx + \frac{x^2 - st^2}{p^{j-2u}} \pmod{p},$$

so that

$$\frac{h_1^2 - st^2}{p^{j-2u}} \equiv 0 \pmod{p} \Leftrightarrow m \equiv -(4x)^{-1} \frac{x^2 - st^2}{p^{j-2u}} \pmod{p}.$$

Similarly we find for $h_1 = p^{j-2u} - x + (2m+1)p^{j-2u}$ that

$$\frac{h_1^2 - st^2}{p^{j-2u}} \equiv 0 \pmod{p} \Leftrightarrow m \equiv (4x)^{-1} \frac{x^2 - st^2}{p^{j-2u}} - 1 \pmod{p}.$$

Thus

$$H(p^{j}, d) = 2(p^{u} - p^{u-1}) = \left(1 + \left(\frac{s}{p}\right)\right)(p^{u} - p^{u-1}),$$

completing the proof of Lemma 4.1.

Lemma 4.2. Let $n \equiv 1 \pmod{8}$ and let l and m be integers with $l \geq 3$ and m > 0. Then

$$\operatorname{card}\left\{x: x^2 \equiv n \pmod{2^l}, \ 0 \le x < 2^l m, \ \frac{x^2 - n}{2^l} \operatorname{odd}\right\} = 2m.$$

Proof. The congruence $x^2 \equiv n \pmod{2^l}$ has four solutions satisfying $0 < x < 2^l$. Let x_0 be the least one of these. Then $0 < x_0 < 2^{l-1}$ (otherwise $2^l - x_0$ would be a smaller solution). The other three solutions are given by $x_1 = 2^l - x_0$, $x_2 = x_0 + 2^{l-1}$, $x_3 = 2^{l-1} - x_0$. Then we have

$$\frac{x_1^2 - n}{2^l} \equiv \frac{x_0^2 - n}{2^l} \pmod{2}$$

and

$$\frac{x_2^2 - n}{2^l} \equiv \frac{x_3^2 - n}{2^l} \equiv 1 + \frac{x_0^2 - n}{2^l} \pmod{2}.$$

The solutions to $x^2 \equiv n \pmod{2^l}$ satisfying $0 \le x < 2^l m$ are $x_i + 2^l r$ for $0 \le r < m, 0 \le i \le 3$. Also

$$\frac{(x_i + 2^l r)^2 - n}{2^l} \equiv \frac{x_i^2 - n}{2^l} \pmod{2}.$$

Thus the required number is 2m.

Lemma 4.3. Let $\Delta = 2^{\upsilon}s$, $f = 2^{u}t$, $2 \nmid st$, $u \ge 1$, so that $\upsilon = 0, 2, 3$, and

$$s \equiv \begin{cases} 1 \pmod{4}, & if \ v = 0, \\ 3 \pmod{4}, & if \ v = 2. \end{cases}$$

If $v = 2v_1$, where $v_1 = 0$ or 1, then

$$H(2^{j},d) = \begin{cases} 0, & \text{if } j = 2l+1, \, 0 \leq l \leq u+v_{1}-2, \\ 2^{l-1}, & \text{if } j = 2l, \, 1 \leq l \leq u+v_{1}-1, \\ 0, & \text{if } j = 2u+2v_{1}-1, \, s \equiv 1 \, (\text{mod } 4), \\ 2^{u+v_{1}-1}, & \text{if } j = 2u+2v_{1}-1, \, s \equiv 3 \, (\text{mod } 4), \\ 0, & \text{if } j = 2u+2v_{1}, \, s \not\equiv 5 \, (\text{mod } 8), \\ 2^{u+v_{1}}, & \text{if } j = 2u+2v_{1}, \, s \not\equiv 5 \, (\text{mod } 8), \\ 0, & \text{if } j > 2u+2v_{1}, \, s \not\equiv 1 \, (\text{mod } 8), \\ 2^{u+v_{1}}, & \text{if } j > 2u+2v_{1}, \, s \not\equiv 1 \, (\text{mod } 8). \end{cases}$$

If v = 3, then

$$H(2^{j}, d) = \begin{cases} 0, & \text{if } j = 2l + 1, \ 0 \le l < u, \\ 2^{u}, & \text{if } j = 2u + 1, \\ 2^{l-1}, & \text{if } j = 2l, \ 1 \le l \le u, \\ 0, & \text{if } j > 2u + 1. \end{cases}$$

Proof. For $j \ge 1$, we have

$$H(2^{j}, d) = \operatorname{card}\left\{h : 0 \le h < 2^{j+1}, h^{2} \equiv d \pmod{2^{j+2}}, \frac{h^{2} - d}{2^{j+2}} \operatorname{odd}\right\}.$$

If $i + 2 \le 2u + v$, then we have

$$h^2 \equiv d \pmod{2^{j+2}} \Leftrightarrow h^2 \equiv 0 \pmod{2^{j+2}}.$$

(a) Let $j=2l+1,\ 0\le l\le u+(v-3)/2$ (so that $0\le l\le u$ if v=3 and $0\le l\le u+v_1-2$ if $v=2v_1$ where $v_1=0$ or 1). Then

$$h^2 \equiv d \pmod{2^{j+2}} \Leftrightarrow h^2 \equiv 0 \pmod{2^{2l+3}} \Leftrightarrow h = \lambda 2^{l+2} \text{ for some integer } \lambda.$$

For any such h, we have

$$0 \le h < 2^{j+1} = 2^{2l+2} \iff 0 \le \lambda < 2^l$$

and

$$\begin{split} \frac{h^2-d}{2^{j+2}} &= 2\lambda^2 - st^2 2^{2u-2l+v-3} \\ &= \begin{cases} 0 \ (\text{mod} \ 2), & \text{if} \ v=3, \ l< u \ \text{or} \ v=2v_1, \ v_1=0 \ \text{or} \ 1, \\ 1 \ (\text{mod} \ 2), & \text{if} \ v=3, \ l=u. \end{cases} \end{split}$$

Thus

$$H(2^{j}, d) = \begin{cases} 0, & \text{if } v = 3, \ j = 2l+1, \ 0 \le l < u, \\ 0, & \text{if } v = 2v_{1}, \ v_{1} = 0 \text{ or } 1, \ j = 2l+1, \ 0 \le l \le u+v_{1}-2, \\ 2^{u}, & \text{if } v = 3, \ j = 2u+1. \end{cases}$$

(b) Next let $j=2l,\, 1\leq l\leq u+v/2-1$ (so that $1\leq l\leq u$ if v=3 and $1\leq l\leq u+v_1-1$ if $v=2v_1,\, v_1=0$ or 1). Then

$$h^2 \equiv d \pmod{2^{j+2}} \Leftrightarrow h^2 \equiv 0 \pmod{2^{2l+2}} \Leftrightarrow h = \lambda 2^{l+1} \text{ for some integer } \lambda.$$

For such h we have

$$0 \le h < 2^{j+1} = 2^{2l+1} \iff 0 \le \lambda < 2^l$$
,

and

$$\begin{split} \frac{h^2-d}{2^{j+2}} &= \lambda^2 - 2^{2u-2l+v-2} s t^2 \\ &= \begin{cases} \lambda \, (\text{mod } 2), & \text{if } v=3 \text{ or } v=2v_1, \, v_1=0 \text{ or } 1, \, l < u+v_1-1, \\ \lambda + 1 \, (\text{mod } 2), & \text{if } v=2v_1, \, v_1=0 \text{ or } 1, \, l = u+v_1-1. \end{cases} \end{split}$$

Thus, in all cases under consideration, we have $H(2^{j}, d) = 2^{l-1}$.

(c) Next let v=3 and j>2u+1. Then the congruence $h^2\equiv d\equiv 2^{2u+3}st^2\pmod{2^{j+2}}$ has no solutions so that $H(2^j,d)=0$.

If $v=2v_1,\ v_1=0$ or 1 and $j+2>2u+v=2u+2v_1,$ it is easily shown that

$$\begin{split} H(2^j,\,d) &= \operatorname{card} \bigg\{ h_1 \,:\, 0 \,\leq \, h_1 \,<\, 2^{j+1-u-v_1}\,, \\ h_1^2 &\equiv \, st^2 (\operatorname{mod} \, 2^{j+2-2u-2v_1}), \, \frac{h_1^{\,2} \,-\, st^{\,2}}{2^{j+2-2u-2v_1}} \operatorname{odd} \bigg\}. \end{split}$$

(d) Let
$$j=2u+2v_1-1,\,v=2v_1,\,v_1=0$$
 or 1. Then

$$H(2^j, d) = \operatorname{card}\left\{h_1 : 0 \le h_1 < 2^{u+v_1}, h_1^2 \equiv \operatorname{st}^2 \pmod{2}, \frac{h_1^2 - \operatorname{st}^2}{2} \operatorname{is} \operatorname{odd}\right\}.$$

We have

$$h_1^2 \equiv st^2 \pmod{2} \Leftrightarrow h_1 \text{ is odd.}$$

If h_1 is odd, then $h_1^2 - st^2 \equiv 1 - s \pmod{4}$. Thus, for the cases under consideration, we have

$$H(2^{j}, d) = \begin{cases} 0, & \text{if } s \equiv 1 \pmod{4}, \\ 2^{u+v_1-1}, & \text{if } s \equiv 3 \pmod{4}. \end{cases}$$

(e) Next let $j=2u+2v_1,\,v=2v_1,\,v_1=0$ or 1. Then

$$H(2^j,\,d)=\mathrm{card}\bigg\{h_1\,:\,0\leq h_1\,<2^{u+v_1+1},\,h_1^2\,\equiv st^2(\mathrm{mod}\,4),\,\frac{h_1^2-st^2}{4}\,\mathrm{odd}\bigg\}.$$

If $s \equiv 3 \pmod 4$, then the congruence $h_1^2 \equiv st^2 \equiv 3 \pmod 4$ has no solutions so that $H(2^j, d) = 0$. If $s \equiv 1 \pmod 4$, then $h_1^2 \equiv st^2 \pmod 4 \Leftrightarrow h_1$ is odd. If h_1 is odd, then $h_1^2 - st^2 \equiv 1 - s \pmod 8$. Thus

$$H(2^{j}, d) = \begin{cases} 0, & \text{if } s \equiv 1 \pmod{8}, \\ 2^{u+v_1}, & \text{if } s \equiv 5 \pmod{8}. \end{cases}$$

(f) Finally let $j>2u+2v_1$, $v=2v_1$, $v_1=0$ or 1. Then the congruence $h_1^2\equiv st^2\ (\mathrm{mod}\ 2^{j+2-2u-2v_1})$

has no solutions if $s \not\equiv 1 \pmod{8}$ so that $H(2^j, d) = 0$. If $s \equiv 1 \pmod{8}$, then $H(2^j, d) = 2(2^{u+v_1-1}) = 2^{u+v_1}$ by Lemma 4.2.

From Lemmas 4.1 and 4.3 we deduce for p|f that

$$0 \le H(p^j, d) \le 2p^u \le 2f.$$
 (26)

5. The Integer $H_K(n)$

We now define the third of our three integers connected to the congruence $h^2 \equiv d \pmod{4n}$.

Definition 5.1. For $K \in H(d)$, we define $H_K(n)$ to be the number of integers h satisfying

$$0 \le h < 2n, \ h^2 \equiv d \pmod{4n}, \ \left[n, \ h, \frac{h^2 - d}{4n}\right] = K.$$

It is clear from Definitions 3.1, 4.1 and 5.1 that

$$0 \le H_K(n) \le H(n, d) \le k(n, d)$$
 (27)

and

$$\sum_{K \in H(d)} H_K(n) = H(n, d).$$
 (28)

It is a classical result of elementary number theory [15, p. 174] that for $K \in H(d)$,

$$R_K(n, d) = w(d) \sum_{m^2 \mid n} H_K(n/m^2).$$
 (29)

By (27) and Lemma 3.2, we have

Lemma 5.1. Let $K \in H(d)$. If (n, f) = 1, then

$$H_K(n) = 0$$
, if there is a prime p with $p^2 | n, p | d$,

and

$$0 \le H_K(n) \le \prod_{p|n} \left(1 + \left(\frac{d}{p}\right)\right)$$
, otherwise.

Lemma 5.2. Let $K \in H(d)$. Then

$$H_K(1) = \begin{cases} 1, & \text{if } K = I, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. We have

$$H_K(1) = \sum_{\substack{h=0\\h^2 \equiv d \pmod{4}\\ [1, h, (h^2-d)/4] = K}}^{1} 1$$

The only possibility for h in the sum is h = 0 if $d \equiv 0 \pmod{4}$ and h = 1 if $d \equiv 1 \pmod{4}$. Hence

$$H_K(1) = \begin{cases} 0, & \text{if } K \neq \begin{cases} [1, 0, -d/4], & \text{if } d \equiv 0 \pmod{4}, \\ [1, 1, (1-d)/4], & \text{if } d \equiv 1 \pmod{4}, \end{cases} \\ 1, & \text{if } K = \begin{cases} [1, 0, -d/4], & \text{if } d \equiv 0 \pmod{4}, \\ [1, 1, (1-d)/4], & \text{if } d \equiv 1 \pmod{4}, \end{cases} \end{cases}$$

and the result follows.

If p is a prime with $\left(\frac{d}{p}\right)=1$, by Lemma 3.1 we have k(p,d)=2. Let h_1 and h_2 be the two solutions of $h^2\equiv d\pmod{4p},\ 0\le h<2p$, chosen so that $h_1< h_2$. Since $p\nmid d$, we have $p\nmid h_1,\ p\nmid h_2$ and $h_2=2p-h_1$. We have

$$\left[p, h_i, \frac{h_i^2 - d}{4p}\right] \in H(d), i = 1, 2.$$

Also

$$\begin{bmatrix} p, h_2, \frac{h_2^2 - d}{4p} \end{bmatrix} = \begin{bmatrix} p, 2p - h_1, \frac{(2p - h_1)^2 - d}{4p} \end{bmatrix}$$
$$= \begin{bmatrix} p, -h_1, \frac{h_1^2 - d}{4p} \end{bmatrix} = \begin{bmatrix} p, h_1, \frac{h_1^2 - d}{4p} \end{bmatrix}^{-1}.$$

Motivated by these observations, we make the following definition.

Definition 5.2. If p is a prime with $\left(\frac{d}{p}\right) = 1$, we let h_1 and h_2 be the solutions of $h^2 \equiv d \pmod{4p}$, $0 \le h < 2p$, with $h_1 < h_2$. We define $K_p \in H(d)$ by

$$K_p = \left[p, h_1, \frac{h_1^2 - d}{4p} \right],$$

so that

$$K_p^{-1} = \left[p, h_2, \frac{h_2^2 - d}{4p} \right].$$

If p is a prime with $\left(\frac{d}{p}\right) = 0$, $p \nmid f$, then we define $K_p \in H(d)$ by

$$K_{p} = \begin{cases} [p, 0, -d/4p], & \text{if } p > 2, d \equiv 0 \pmod{4}, \\ [p, p, (p^{2} - d)/4p], & \text{if } p > 2, d \equiv 1 \pmod{4}, \\ [2, 0, -d/8], & \text{if } p = 2, d \equiv 8 \pmod{16}, \\ [2, 2, (4-d)/8], & \text{if } p = 2, d \equiv 12 \pmod{16}. \end{cases}$$

Clearly $K_p = K_p^{-1}$.

Lemma 5.3. Let p be a prime and let $K \in H(d)$.

(a) If
$$\left(\frac{d}{p}\right) = -1$$
, then $H_K(p) = 0$.

(b) If $\left(\frac{d}{p}\right) = 1$ and $K_p \neq K_p^{-1}$, then p is represented by exactly two classes of H(d), namely K_p and K_p^{-1} . If $\left(\frac{d}{p}\right) = 1$ and $K_p = K_p^{-1}$, then p is represented by exactly one class of H(d) namely K_p . Moreover

$$H_K(p) = \begin{cases} 0, & if \ K \neq K_p, \, K_p^{-1}, \\ 1, & if \ K = K_p \neq K_p^{-1} \ or \ K = K_p^{-1} \neq K_p, \\ 2, & if \ K = K_p = K_p^{-1}. \end{cases}$$

(c) If
$$\left(\frac{d}{p}\right) = 0$$
 and $p \mid f$, then $H_K(p) = 0$.

(d) If $\left(\frac{d}{p}\right) = 0$ and $p \nmid f$, then p is represented by exactly one class in H(d), namely K_p and

$$H_K(p) = \begin{cases} 0, & \text{if } K \neq K_p, \\ 1, & \text{if } K = K_p. \end{cases}$$

Proof. (a) This follows immediately from Lemma 5.1.

(b) Let L be a class of H(d) which represents p. Then there exist integers r and s such that L = [p, r, s]. Note that $r^2 - 4ps = d$ and (p, r, s) = 1. Let r = 2pt + h with $0 \le h < 2p$. We have $h^2 \equiv r^2 \equiv d \pmod{4p}$.

Hence $h = h_1$ or h_2 . Thus

$$L = [p, 2pt + h, s] = \left[p, h, \frac{h^2 - d}{4p}\right] = K_p \text{ or } K_p^{-1}.$$

Also

$$H_K(p) = \sum_{\substack{0 \le h < 2p \\ h^2 \equiv d \pmod{4p} \\ [p, h, (h^2 - d)/4p] = K}} 1 = \sum_{\substack{h = h_1, h_2 \\ [p, h, (h^2 - d)/4p] = K}} 1.$$

The required result follows from this and the definition of K_p (Definition 5.2).

- (c) This follows from Lemma 4.1, Lemma 4.3 and (27).
- (d) Let L be a class of H(d) that represents p. Then there exist integers r, s with (p, r, s) = 1, $r^2 4ps = d$ and L = [p, r, s]. Let r = 2pt + h, $0 \le h < 2p$. Then $h^2 \equiv r^2 \equiv d \pmod{4p}$. By Lemma 3.2 we have k(p, d) = 1. The unique solution h of $h^2 \equiv d \pmod{4p}$, $0 \le h < 2p$ is

$$h = \begin{cases} 0, & \text{if } p > 2, d \equiv 0 \pmod{4}, \\ p, & \text{if } p > 2, d \equiv 1 \pmod{4}, \\ 0, & \text{if } p = 2, d \equiv 8 \pmod{16}, \\ 2, & \text{if } p = 2, d \equiv 12 \pmod{16}. \end{cases}$$

Hence $L = [p, 2pt + h, s] = [p, h, (h^2 - d)/4p] = K_p$. The result for $H_K(p)$ follows at once.

Lemma 5.4. Let $K \in H(d)$ and let k be an integer with $k \geq 2$. Then

$$H_K(p^k) = \begin{cases} \sum_{L^k = K} H_L(p), & \text{if } p \nmid d, \\ 0, & \text{if } p \mid d, p \mid f, \end{cases}$$

where the sum is taken over all $L \in H(d)$ with $L^k = K$.

Proof. First we consider the case $p \nmid d$. We have

$$H_K(p^k) = \sum_{\substack{0 \le h < 2p^k \\ h^2 \equiv d \pmod{4p^k} \\ [p^k, h, (h^2 - d)/4p^k] = K}} 1.$$

For each h occurring in the sum we have $p \nmid h$. Thus, by Lemma 2.3, we have

$$\left[p^{k}, h, \frac{h^{2}-d}{4p^{k}}\right] = \left[p, h, \frac{h^{2}-d}{4p}\right]^{k}.$$

Hence

$$\begin{split} H_K(p^k) &= \sum_{\substack{0 \leq h < 2p^k \\ h^2 \equiv d \pmod{4p^k} \\ [p, h, (h^2 - d)/4p]^k \equiv K}} 1 \\ &= \sum_{\substack{0 \leq h_1 < 2p \\ h \equiv h_1 \pmod{2p} \\ h^2 \equiv d \pmod{4p^k} \\ [p, h, (h^2 - d)/4p]^k \equiv K}} 1 \\ &= \sum_{\substack{0 \leq h_1 < 2p \\ h_1^2 \equiv d \pmod{4p} \\ h^2 \equiv d \pmod{4p^k} \\ [p, h, (h^2 - d)/4p]^k \equiv K}} 1. \end{split}$$

For $h \equiv h_1 \pmod{2p}$, we have $[p, h, (h^2 - d)/4p] = [p, h_1, (h_1^2 - d)/4p]$. Thus

$$H_K(p^k) = \sum_{\substack{0 \le h_1 < 2p \\ h_1^2 \equiv d \pmod{4p} \\ [p, h_1, (h_1^2 - d)/4p]^k = K}} \sum_{\substack{0 \le h < 2p^k \\ h \equiv h_1 \pmod{2p} \\ h^2 \equiv d \pmod{4p^k}}$$

By Lemma 2.2, corresponding to each h_1 , there is a unique h satisfying the conditions of the inner sum. Thus

$$\begin{split} H_K(p^k) &= \sum_{\substack{0 \leq h_1 < 2p \\ h_1^2 \equiv d \pmod{4p} \\ [p, h_1, (h_1^2 - d)/4p]^k = K}} 1 = \sum_{\substack{L \in H(d) \\ [p, h_1, (h_1^2 - d)/4p]^k = K}} \sum_{\substack{0 \leq h_1 < 2p \\ [p, h_1, (h_1^2 - d)/4p] = L}} 1 \\ &= \sum_{\substack{L \in H(d) \\ L^k = K}} \sum_{\substack{0 \leq h_1 < 2p \\ h_1^2 \equiv d \pmod{4p} \\ L^k = K}} 1 = \sum_{\substack{L \in H(d) \\ L^k = K}} H_L(p). \end{split}$$

In the case $p \mid d$, $p \nmid f$, the result follows from Lemma 5.1.

Lemma 5.5. Let n_1 and n_2 be relatively prime positive integers. Let $K \in H(d)$. Then

$$H_K(n_1n_2) = \sum_{K_1K_2=K} H_{K_1}(n_1)H_{K_2}(n_2),$$

where K_1 , K_2 run through all the classes in H(d) whose product is K.

Proof. We have

$$\begin{split} H_K(n_1n_2) = \sum_{\substack{0 \leq B < 2n_1n_2 \\ B^2 \equiv d \pmod{4n_1n_2} \\ [n_1n_2, B, (B^2 - d)/4n_1n_2] = K}} 1. \end{split}$$

If $B(0 \le B < 2n_1n_2, B^2 \equiv d \pmod{4n_1n_2})$ is such that $[n_1n_2, B, (B^2 - d)/4n_1n_2] = K$, then as $(n_1, n_2) = 1$, we have

$$\left[n_1, B, \frac{B^2 - d}{4n_1}\right] \in H(d) \text{ and } \left[n_2, B, \frac{B^2 - d}{4n_2}\right] \in H(d).$$

Hence

$$\left[n_1 n_2, \ B, \ \frac{B^2 - d}{4 n_1 n_2}\right] = \left[n_1, \ B, \ \frac{B^2 - d}{4 n_1}\right] \left[n_2, \ B, \ \frac{B^2 - d}{4 n_2}\right].$$

Conversely, if $B (0 \le B < 2n_1n_2, B^2 \equiv d \pmod{4n_1n_2})$ is such that

$$\left[n_1, B, \frac{B^2 - d}{4n_1}\right], \left[n_2, B, \frac{B^2 - d}{4n_2}\right] \in H(d)$$

and

$$\left[n_1, B, \frac{B^2 - d}{4n_1}\right] \left[n_2, B, \frac{B^2 - d}{4n_2}\right] = K,$$

then

$$\left[n_1 n_2, B, \frac{B^2 - d}{4n_1 n_2}\right] = K.$$

Thus

$$\begin{split} H_K\big(n_1n_2\big) &= \sum_{\substack{0 \leq B < 2n_1n_2\\ B^2 \equiv d \; (\text{mod } 4n_1n_2)\\ [n_1, \; B, \; (B^2-d)/4n_1] \in H(d)\\ [n_2, \; B, \; (B^2-d)/4n_2] \in H(d)\\ [n_1, \; B, \; (B^2-d)/4n_1][n_2, \; B, \; (B^2-d)/4n_2] = K} \end{split}$$

$$= \sum_{K_1K_2=K} \sum_{\substack{0 \le B < 2n_1n_2 \\ B^2 \equiv d \pmod{4n_1n_2} \\ [n_1, B, (B^2-d)/4n_1] = K_1 \\ [n_2, B, (B^2-d)/4n_2] = K_2}$$

$$= \sum_{K_1K_2=K} \sum_{\substack{0 \leq b_1 < 2n_1 \\ 0 \leq b_2 < 2n_2}} \sum_{\substack{0 \leq B < 2n_1n_2 \\ B^2 \equiv d \pmod{4n_1n_2} \\ B \equiv b_1 \pmod{2n_1} \\ B \equiv b_2 \pmod{2n_2} \\ [n_1, B, (B^2 - d)/4n_1] = K_1 \\ [n_2, B, (B^2 - d)/4n_2] = K_2}$$

$$=\sum_{K_1K_2=K}\sum_{0\leq b_1<2n_1}\sum_{0\leq b_2<2n_2}\sum_{0\leq B<2n_1n_2}\sum_{B^2\equiv d\pmod{4n_1n_2}}\sum_{b_1^2\equiv d\pmod{4n_1}}\sum_{b_2^2\equiv d\pmod{4n_2}}\sum_{B=b_1\pmod{4n_1n_2}}\sum_{B\equiv b_1\pmod{4n_1n_2}}\sum_{B\equiv b_1\pmod{2n_1}}\sum_{B\equiv b_2\pmod{2n_2}}[n_1,\,B,\,(B^2-d)/4n_1]=K_1\\[n_2,\,B,\,(B^2-d)/4n_2]=K_2$$

$$=\sum_{K_1K_2=K}\sum_{0\leq b_1<2n_1}\sum_{0\leq b_2<2n_2}\sum_{0\leq b_2<2n_2}\sum_{B^2\equiv d\pmod{4n_1n_2}}\sum_{B^2\equiv d\pmod{4n_1n_2}}\sum_{[n_1,\,b_1,\,(b_1^2-d)/4n_1]=K_1}[n_2,\,b_2,\,(b_2^2-d)/4n_2]=K_2}\sum_{B\equiv b_1\pmod{2n_1}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{[n_1,\,b_1,\,(b_1^2-d)/4n_1]=K_1}\sum_{0\leq b_2<2n_2}\sum_{b_2^2\equiv d\pmod{4n_2}}\sum_{B\equiv b_2\pmod{2n_2}}\sum_{[n_1,\,b_1,\,(b_1^2-d)/4n_1]=K_1}\sum_{[n_2,\,b_2,\,(b_2^2-d)/4n_2]=K_2}\sum_{E\equiv b_1\pmod{2n_2}}\sum_{[n_1,\,b_1,\,(b_1^2-d)/4n_1]=K_1}\sum_{[n_2,\,b_2,\,(b_2^2-d)/4n_2]=K_2}\sum_{E\equiv b_1\pmod{2n_2}}\sum_{E\equiv b_1\pmod{2n_2}}\sum_{[n_1,\,b_1,\,(b_1^2-d)/4n_1]=K_1}\sum_{[n_2,\,b_2,\,(b_2^2-d)/4n_2]=K_2}\sum_{E\equiv b_1\pmod{2n_2}}\sum_{E\equiv b_1\pmod{2n_2}\sum_{E$$

as asserted.

6. The Quantities [K, L] and $\chi(K, L)$

As H(d) is a finite abelian group, there exist positive integers h_1, h_2 , ..., h_v and $A_1, A_2, ..., A_v \in H(d)$ such that

$$h_1 h_2 \cdots h_{\nu} = h(d), \ 1 < h_1 | h_2 | \cdots | h_{\nu}, \ \operatorname{ord}(A_i) = h_i \ (i = 1, ..., \nu),$$

and, for each $K \in H(d)$, there exist unique integers $k_1, ..., k_v$ with

$$K = A_1^{k_1} \cdots A_{\nu}^{k_{\nu}} \ (0 \le k_j < h_j, \, 1 \le j \le \nu).$$

We fix once and for all the generators A_1 , ..., A_v . With this notation we make the following definition.

Definition 6.1. For $j = 1, ..., \nu$ we set

$$\operatorname{ind}_{A_j}(K) = k_j,$$

and for $K, L \in H(d)$, we set

$$[K, L] = \sum_{j=1}^{\nu} \frac{\operatorname{ind}_{A_j}(K)\operatorname{ind}_{A_j}(L)}{h_j}.$$

The following is immediate.

Lemma 6.1. Let $K, L, M \in H(d)$. Then

$$[K, L] = [L, K], [K, I] = 0, [KL, M] = [K, M] + [L, M] \pmod{1},$$

and

$$[K^r, L^s] \equiv rs[K, L] \pmod{1}$$
 for integers r, s.

Definition 6.2. For $K, L \in H(d)$, we set

$$\chi(K, L) = e^{2\pi i [K, L]}.$$

The next lemma follows immediately from Lemma 6.1 and Definition 6.2.

Lemma 6.2. Let $K, L, M \in H(d)$. Let r and s be integers. Then

$$\chi(K, L) = \chi(L, K), \ \chi(K, I) = 1, \ \chi(KL, M) = \chi(K, M)\chi(L, M),$$

and

$$\chi(K^r, L^s) = \chi(K, L)^{rs}.$$

Moreover

$$\sum_{U \in H(d)} \chi(K, U) = \begin{cases} h(d), & \text{if } K = I, \\ 0, & \text{if } K \neq I, \end{cases}$$

and

$$\sum_{U\in H(d)}\chi(K,\,U)\chi(L,\,U)^{-1}\,=\begin{cases}h(d),& if\ K=L,\\0,& if\ K\neq L.\end{cases}$$

7. The Quantities
$$Y_K(n)$$
, $j(K, d)$ and $\sum_{n=1}^{\infty} \frac{Y_K(n)}{n^s}$

It is convenient to make the following definition.

Definition 7.1. Let $K \in H(d)$. We set

$$Y_K(n) = \sum_{L \in H(d)} \chi(K, L) H_L(n).$$

If p is a prime such that $p \mid f$, we have by (26),

$$0 \le H(p^j, d) \le 2f.$$

Thus for $K \in H(d)$, we have

$$|Y_K(p^j)| = \left| \sum_{L \in H(d)} \chi(K, L) H_L(p^j) \right| \le \sum_{L \in H(d)} H_L(p^j) = H(p^j, d) \le 2f, \quad (30)$$

by (28). We next develop the properties of $Y_K(n)$.

Lemma 7.1. $Y_K(1) = 1$ for $K \in H(d)$.

Proof. We have

$$Y_K(1) = \sum_{L \in H(d)} \chi(K, L) H_L(1) = \chi(K, I) = 1$$

by Lemmas 5.2 and 6.2.

Lemma 7.2. Let $K \in H(d)$ and let n_1 and n_2 be relatively prime positive integers. Then

$$Y_K(n_1n_2) = Y_K(n_1)Y_K(n_2).$$

Proof. We have

$$\begin{split} Y_K(n_1n_2) &= \sum_{L \in H(d)} \chi(K, \, L) H_L(n_1n_2) \\ &= \sum_{L \in H(d)} \chi(K, \, L) \sum_{L_1L_2 = L} H_{L_1}(n_1) H_{L_2}(n_2) \quad \text{(by Lemma 5.5)} \\ &= \sum_{L \in H(d)} \sum_{L_1L_2 = L} \chi(K, \, L_1L_2) H_{L_1}(n_1) H_{L_2}(n_2) \\ &= \sum_{L_1 \in H(d)} \sum_{L_2 \in H(d)} \chi(K, \, L_1) \chi(K, \, L_2) H_{L_1}(n_1) H_{L_2}(n_2) \end{split}$$
 (by Lemma 6.2)

$$\begin{split} &= \sum_{L_1 \in H(d)} \chi(K, L_1) H_{L_1}(n_1) \sum_{L_2 \in H(d)} \chi(K, L_2) H_{L_2}(n_2) \\ &= Y_K(n_1) Y_K(n_2), \end{split}$$

as asserted.

Lemma 7.3. Let $K \in H(d)$ and let p be a prime.

(a) If
$$\left(\frac{d}{p}\right) = -1$$
, then $Y_K(p^{\alpha}) = 0$ for $\alpha \ge 1$.

(b) If
$$\left(\frac{d}{p}\right) = 1$$
, then $Y_K(p^{\alpha}) = \chi(K, K_p)^{\alpha} + \chi(K, K_p)^{-\alpha}$ for $\alpha \ge 1$.

(c) If $p \mid d$, $p \nmid f$, then

$$Y_K(p^{\alpha}) = \begin{cases} \chi(K, K_p), & \text{if } \alpha = 1, \\ 0, & \text{if } \alpha \ge 2. \end{cases}$$

(d) For all primes p and all integers $\alpha \geq 0$, we have

$$|Y_K(p^{\alpha})| \leq 2f.$$

Proof. If $p \nmid d$, we have by Lemma 5.4,

$$Y_K(p^{\alpha}) = \sum_{L \in H(d)} \chi(K, L) H_L(p^{\alpha}) = \sum_{L \in H(d)} \chi(K, L) \sum_{M^{\alpha} = L} H_M(p).$$
 (31)

(a) This follows from (31) and Lemma 5.3(a).

(b) Let
$$\left(\frac{d}{p}\right) = 1$$
. If $K_p^{\alpha} \neq K_p^{-\alpha}$, then we have, by (31) and Lemma 5.3(b),

$$\begin{split} Y_K(p^\alpha) &= \sum_{L \neq K_p^\alpha, K_p^{-\alpha}} \chi(K, L) \sum_{M^\alpha = L} H_M(p) + \chi(K, K_p^\alpha) \sum_{M^\alpha = K_p^\alpha} H_M(p) \\ &+ \chi(K, K_p^{-\alpha}) \sum_{M^\alpha = K_p^{-\alpha}} H_M(p) \\ &= \chi(K, K_p^\alpha) H_{K_p}(p) + \chi(K, K_p^{-\alpha}) H_{K_p^{-1}}(p) \\ &= \chi(K, K_p^\alpha) + \chi(K, K_p^{-\alpha}). \end{split}$$

Similarly, if $K_p^{\alpha} = K_p^{-\alpha}$, we have

$$\begin{split} Y_K(p^{\alpha}) &= \chi(K, K_p^{\alpha}) \sum_{M^{\alpha} = K_p^{\alpha}} H_M(p) \\ &= \begin{cases} \chi(K, K_p^{\alpha}) (H_{K_p}(p) + H_{K_p^{-1}}(p)), & \text{if } K_p \neq K_p^{-1}, \\ \chi(K, K_p^{\alpha}) H_{K_p}(p), & \text{if } K_p = K_p^{-1}, \end{cases} \\ &= 2\chi(K, K_p^{\alpha}) \\ &= \chi(K, K_p^{\alpha}) + \chi(K, K_p^{-\alpha}). \end{split}$$

Thus, in both cases, we have

$$Y_K(p^\alpha) = \chi(K, K_p^\alpha) + \chi(K, K_p^{-\alpha}) = \chi(K, K_p)^\alpha + \chi(K, K_p)^{-\alpha},$$

by Lemma 6.2.

(c) Let $p \mid d$, $p \nmid f$. By Lemma 5.4, we have

$$Y_K(p^{\alpha}) = \sum_{L \in H(d)} \chi(K, L) H_L(p^{\alpha}) = 0 \text{ if } \alpha \geq 2.$$

Also, by Lemma 5.3(d), we have

$$Y_K(p) = \sum_{L \in H(d)} \chi(K, L) H_L(p) = \chi(K, K_p).$$

(d) The asserted inequality follows from Lemma 7.1, (30), and parts (a), (b), (c) of this lemma.

We next investigate the series $\sum_{n=1}^{\infty} \frac{Y_K(n)}{n^s}$.

Lemma 7.4. Let p be a prime and let $K \in H(d)$. Then the series

$$\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}$$

WEBER'S FUNCTIONS AT QUADRATIC IRRATIONALITIES 239 converges absolutely and uniformly for $s \ge 1$. Moreover, for $s \ge 1$, we have

$$\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}} = \begin{cases} 1, & if\left(\frac{d}{p}\right) = -1, \\ \frac{1 - \frac{1}{p^{2s}}}{p^s} \\ \left(1 - \frac{\chi(K, K_p)}{p^s}\right) \left(1 - \frac{\chi(K, K_p)^{-1}}{p^s}\right), & if\left(\frac{d}{p}\right) = 1, \\ 1 + \frac{\chi(K, K_p)}{p^s}, & if\left(\frac{d}{p}\right) = 1, \end{cases}$$

Proof. By Lemma 7.3(d) the series $\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}$ converges absolutely and uniformly for $s \ge 1$. The values of $\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}$ for the cases given in the statement of the lemma follow immediately on using Lemmas 7.1 and 7.3.

Lemma 7.5. Let $K \in H(d)$. Then for s > 1, we have

$$\sum_{n=1}^{\infty} \frac{Y_K(n)}{n^s} = \prod_{\substack{\frac{d}{p} = 1 \\ p \mid d}} \frac{1 - \frac{1}{p^{2s}}}{\left(1 - \frac{\chi(K, K_p)}{p^s}\right) \left(1 - \frac{\chi(K, K_p)^{-1}}{p^s}\right)} \times \prod_{\substack{p \mid d \\ p \mid f}} \left(1 + \frac{\chi(K, K_p)}{p^s}\right) \prod_{\substack{p \mid f \\ p \mid f}} \sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}.$$

Proof. Let s > 1. For any prime p, Lemma 7.3(d) gives

$$\sum_{j=1}^{\infty} \left| \frac{Y_K(p^j)}{p^{js}} \right| \le \sum_{j=1}^{\infty} \frac{2f}{p^{js}} = \frac{2f}{p^s - 1}.$$

Hence $\sum_{p} \sum_{j=1}^{\infty} \left| \frac{Y_K(p^j)}{p^{js}} \right|$ converges so that

$$\prod_{p} \left(1 + \sum_{j=1}^{\infty} \left| \frac{Y_K(p^j)}{p^{js}} \right| \right) = \prod_{p} \sum_{j=0}^{\infty} \left| \frac{Y_K(p^j)}{p^{js}} \right|$$

converges. Since $Y_K(n)$ is multiplicative (Lemma 7.2), it follows that

$$\sum_{n=1}^{\infty} \frac{Y_K(n)}{n^s} = \prod_{p} \sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}.$$

The result now follows on using Lemma 7.4.

Lemma 7.6. Let $K(\neq I) \in H(d)$. Then

$$j(K, d) = \lim_{s \to 1^{+}} \prod_{p} \left(1 - \frac{\chi(K, K_{p})}{p^{s}} \right) \left(1 - \frac{\chi(K^{-1}, K_{p})}{p^{s}} \right)$$

$$\left(\frac{d}{p} \right) = 1$$
(32)

exists and is a nonzero real number such that $j(K, d) = j(K^{-1}, d)$.

Proof. The existence of the above limit and the fact that it is nonzero has been proved by Bernays [1, Teil I, Section 3, Section 4, pp. 36-68], The fact that it is real follows easily since

$$\prod_{p} \left(1 - \frac{\chi(K, K_p)}{p^s}\right) \left(1 - \frac{\chi(K^{-1}, K_p)}{p^s}\right)$$
$$\left(\frac{d}{p}\right) = 1$$

is real for s > 1. The equality $j(K, d) = j(K^{-1}, d)$ is clear.

Lemma 7.7. Let $K(\neq I) \in H(d)$. Set

$$t_1(d) = \prod_{\left(\frac{d}{p}\right)=1} \left(1 - \frac{1}{p^2}\right),\tag{33}$$

WEBER'S FUNCTIONS AT QUADRATIC IRRATIONALITIES 241

$$A(K, d, p) = \sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^j},$$
(34)

$$l(K, d) = \prod_{\substack{p \mid d \\ p \mid f}} \left(1 + \frac{\chi(K, K_p)}{p} \right) \prod_{\substack{p \mid f}} A(K, d, p).$$
 (35)

Then

$$\sum_{n=1}^{\infty} \frac{Y_K(n)}{n^s} = \frac{t_1(d)}{j(K, d)} l(K, d) (1 + o(1))$$

as $s \to 1^+$.

Proof. By the uniform convergence of $\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}}$ for $s \ge 1$ (Lemma

7.4), we have

$$\sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^{js}} = A(K, d, p)(1 + o(1)), \tag{36}$$

as $s \to 1^+$. Also

$$\prod_{\left(\frac{d}{p}\right)=1} \left(1 - \frac{1}{p^{2s}}\right) = t_1(d) \left(1 + o(1)\right),\tag{37}$$

$$1 + \frac{\chi(K, K_p)}{p^s} = \left(1 + \frac{\chi(K, K_p)}{p}\right)(1 + o(1)),\tag{38}$$

as $s \to 1^+$. The required result follows from (36), (37), (38), Lemmas 7.5 and 7.6.

Lemma 7.8. Let s > 1. Then

$$\zeta(2s)\sum_{n=1}^{\infty} \frac{Y_I(n)}{n^s} = \frac{1}{w(d)} \sum_{n=1}^{\infty} \frac{N(n, d)}{n^s}.$$

Proof. We have

$$\zeta(2s) \sum_{n=1}^{\infty} \frac{Y_I(n)}{n^s} = \sum_{L \in H(d)} \sum_{m=1}^{\infty} \frac{1}{m^{2s}} \sum_{n=1}^{\infty} \frac{H_L(n)}{n^s}$$

$$= \sum_{L \in H(d)} \sum_{l=1}^{\infty} \frac{1}{l^s} \sum_{m^2 \mid l} H_L(l/m^2)$$

$$= \frac{1}{w(d)} \sum_{L \in H(d)} \sum_{l=1}^{\infty} \frac{R_L(l, d)}{l^s} \text{ (by (29))}$$

$$= \frac{1}{w(d)} \sum_{l=1}^{\infty} \frac{N(l, d)}{l^s} \text{ (by (19))},$$

completing the proof.

8. The Series
$$\sum_{n=1}^{\infty} \frac{R_K(n,d)}{n^s}$$

We now turn our attention to the series $\sum_{n=1}^{\infty} \frac{R_K(n, d)}{n^s}$.

Lemma 8.1. Let $K \in H(d)$. For s > 1, we have

$$\sum_{n=1}^{\infty} \frac{R_K(n, d)}{n^s} = \frac{w(d)}{h(d)} \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K)^{-1} \left(\zeta(2s) \sum_{n=1}^{\infty} \frac{Y_L(n)}{n^s} \right) + \frac{1}{h(d)} \sum_{n=1}^{\infty} \frac{N(n, d)}{n^s}.$$

Proof. We have

$$\begin{split} & \sum_{L \in H(d)} \chi(L, K)^{-1} Y_L(n) \\ &= \sum_{L \in H(d)} \chi(L, K)^{-1} \sum_{M \in H(d)} \chi(L, M) H_M(n) \\ &= \sum_{M \in H(d)} H_M(n) \sum_{L \in H(d)} \chi(L, M) \chi(L, K)^{-1} \end{split}$$

$$= H_K(n)h(d),$$

by Lemma 6.2. Thus

$$H_K(n) = \frac{1}{h(d)} \sum_{L \in H(d)} \chi(L, K)^{-1} Y_L(n).$$

Hence, for s > 1, we have

$$\sum_{n=1}^{\infty} \frac{R_K(n, d)}{n^s} = w(d) \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m^2 \mid n} H_K(n/m^2)$$

$$= w(d) \zeta(2s) \sum_{n=1}^{\infty} \frac{H_K(n)}{n^s}$$

$$= \frac{w(d) \zeta(2s)}{h(d)} \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{L \in H(d)} \chi(L, K)^{-1} Y_L(n)$$

$$= \frac{w(d)}{h(d)} \sum_{L \in H(d)} \chi(L, K)^{-1} \left(\zeta(2s) \sum_{n=1}^{\infty} \frac{Y_L(n)}{n^s} \right)$$

$$= \frac{w(d)}{h(d)} \sum_{L \in H(d)} \chi(L, K)^{-1} \left(\zeta(2s) \sum_{n=1}^{\infty} \frac{Y_L(n)}{n^s} \right)$$

$$+ \frac{w(d)}{h(d)} \zeta(2s) \sum_{n=1}^{\infty} \frac{Y_I(n)}{n^s}.$$

The result follows on using Lemma 7.8.

We now consider the behavior of the series $\sum_{n=1}^{\infty} \frac{N(n,d)}{n^s}$ as $s \to 1^+$. We denote Euler's constant by γ .

Lemma 8.2. As $s \to 1^+$ we have

$$\sum_{n=1}^{\infty} \frac{N(n, d)}{n^s} = \frac{2\pi h(d)}{\sqrt{|d|}} \frac{1}{s-1} + B(d) + O(s-1),$$

where

$$B(d) = \frac{2\pi h(d)}{\sqrt{|d|}} \log(2\pi) + \frac{4\pi \gamma h(d)}{\sqrt{|d|}} - \frac{2\pi h(d)}{\sqrt{|d|}} \sum_{p|f} \alpha_p(\Delta, f) \log p - \frac{\pi h(d)w(\Delta)}{\sqrt{|d|}h(\Delta)} \sum_{m=1}^{|\Delta|} \left(\frac{\Delta}{m}\right) \log \Gamma\left(\frac{m}{|\Delta|}\right),$$
(39)

and

$$\alpha_{p}(\Delta, f) = \frac{(p^{v_{p}(f)} - 1)(1 - (\Delta/p))}{p^{v_{p}(f) - 1}(p - 1)(p - (\Delta/p))}.$$
(40)

Proof. Let $G \in G(d)$. Recall from (16) that $|G(d)| = 2^{t(d)}$. By [9, Theorem 10.2], we have as $s \to 1^+$,

$$\sum_{n=1}^{\infty} \frac{R_G(n, d)}{n^s} = \frac{\pi h(d)}{2^{t(d)-1} \sqrt{|d|}} \frac{1}{s-1} + B_G(d) + O(s-1), \tag{41}$$

where

$$B_G(d) = \frac{1}{2^{t(d)}} B(d) - \frac{8\pi}{\sqrt{|d|}} \sum_{\substack{d_1 \in F(d) \\ d_1 > 1}} \beta(d_1, d, G) \log(\eta_{d_1}), \tag{42}$$

$$\beta(d_1, d, G) = \frac{-w(d)\gamma_{d_1}(G)f(d/d_1)h^*(d_1)h(\Delta(d/d_1))}{w(\Delta(d/d_1))2^{t(d)+1}}$$

$$\times \sum_{m \mid f(d/d_1)} \frac{1}{m} \prod_{p \mid f/m} \left(1 - \frac{\left(\frac{d_1}{p}\right)}{p} \right) \left(1 - \frac{\left(\frac{\Delta(d/d_1)}{p}\right)}{p} \right)$$

$$\times \prod_{\substack{p \mid m \\ p \mid f/m}} \left(1 - \frac{\left(\frac{\Delta}{p}\right)}{p} \right), \tag{43}$$

 η_{d_1} and $h^*(d_1)$ are the fundamental unit and classnumber of the real

quadratic field $\mathbb{Q}(\sqrt{d_1})$, respectively, $F(d) = \{d_1 : d_1 \text{ is a fundamental discriminant, } d_1 \mid d \text{ and } d/d_1 \equiv 0, 1 \pmod{4}\}$, and each γ_{d_1} is a group character of G(d), see [9, pp. 277-279]. Hence, as $s \to 1^+$, we have

$$\sum_{n=1}^{\infty} \frac{N(n, d)}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{G \in G(d)} R_G(n, d) \text{ (by (19))}$$

$$= \sum_{G \in G(d)} \sum_{n=1}^{\infty} \frac{R_G(n, d)}{n^s}$$

$$= \sum_{G \in G(d)} \left(\frac{\pi h(d)}{2^{t(d)-1} \sqrt{|d|}} \frac{1}{s-1} + B_G(d) + O(s-1) \right) \text{ (by (41))}$$

$$= \frac{2\pi h(d)}{\sqrt{|d|}} \frac{1}{s-1} + \sum_{G \in G(d)} B_G(d) + O(s-1).$$

But

$$\sum_{G \in G(d)} B_G(d) = B(d) - \frac{8\pi}{\sqrt{\mid d \mid}} \sum_{G \in G(d)} \sum_{\substack{d_1 \in F(d) \\ d_1 > 1}} \beta(d_1, \ d, \ G) \log(\eta_{d_1}) = B(d),$$

since

$$\sum_{G \in G(d)} \gamma_{d_1}(G) = 0 \text{ for } d_1 > 1,$$

see [9, p. 279]. This completes the proof of the lemma.

Lemma 8.3. Let $K \in H(d)$. Then

$$\sum_{n=1}^{\infty} \frac{R_K(n, d)}{n^s} = \frac{2\pi}{\sqrt{|d|}} \frac{1}{s-1} + A(K, d) + o(1),$$

as $s \to 1^+$, where

$$A(K, d) = \frac{B(d)}{h(d)} + \frac{\pi^2 w(d)}{6h(d)} \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K)^{-1} \frac{t_1(d)}{j(L, d)} l(L, d). \tag{44}$$

Proof. The asserted result follows on using Lemmas 7.7, 8.1 and 8.2.

Lemma 8.4. Let $K = [a, b, c] \in H(d)$. Then

$$\sum_{n=1}^{\infty} \frac{R_K(n, d)}{n^s} = \frac{2\pi}{\sqrt{|d|}} \frac{1}{s-1} + B(a, b, c) + o(1),$$

as $s \to 1^+$, where

$$B(a, b, c) = \frac{4\pi\gamma}{\sqrt{|d|}} - \frac{2\pi \log(|d|)}{\sqrt{|d|}} - \frac{8\pi}{\sqrt{|d|}} \log\left(a^{-1/4} \left| \eta\left(\frac{b + \sqrt{d}}{2a}\right) \right| \right). \tag{45}$$

Proof. This is Kronecker's limit formula, see for example [18, Theorem 1, p. 14] or [9, p. 300].

9. Evaluation of
$$|\eta((b+\sqrt{d})/2a)|$$

We are now in a position to prove our main result. It is convenient to define for $K \in H(d)$,

$$E(K, d) = \frac{\pi\sqrt{|d|}w(d)}{48h(d)} \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K)^{-1} \frac{t_1(d)}{j(L, d)} l(L, d). \tag{46}$$

Theorem 1. Let $K = [a, b, c] \in H(d)$. Then

$$\left| a^{-1/4} \right| \eta \left(\frac{b + \sqrt{d}}{2a} \right) = (2\pi |d|)^{-1/4} \prod_{p|f} p^{\alpha_p(\Delta, f)/4}$$

$$\times \left(\prod_{m=1}^{|\Delta|} \Gamma \left(\frac{m}{|\Delta|} \right)^{(\Delta/m)} \right)^{\frac{w(\Delta)}{8h(\Delta)}} e^{-E(K, d)}.$$

Proof. By Lemmas 8.3 and 8.4, we have

$$A(K, d) = B(a, b, c).$$
 (47)

Using (44) and (45) in (47) and after simplifying and exponentiating the resulting equality, we obtain the asserted result.

We remark that the product $\prod_{p\mid f}p^{lpha_p(\Delta,f)/4}$ in Theorem 1 can be

replaced by
$$\prod_{p} p^{\alpha_{p}(\Delta,f)/4}$$
, as $\alpha_{p}(\Delta, f) = 0$ for $p \nmid f$, see (40).

Next, we use Theorem 1 to deduce the following result of Kaneko [10], Nakkajima and Taguchi [13], and Kaplan and Williams [11], which is the extension of the Chowla-Selberg formula [5], [17] to arbitrary discriminants.

Corollary 1.

$$\left| \prod_{[a,b,c] \in H(d)} a^{-1/4} \right| \eta \left(\frac{b + \sqrt{d}}{2a} \right) = (2\pi |d|)^{-h(d)/4} \left(\prod_{p \mid f} p^{\alpha_p(\Delta,f)} \right)^{h(d)/4} \times \left(\prod_{m=1}^{|\Delta|} \Gamma \left(\frac{m}{|\Delta|} \right)^{(\Delta/m)} \right)^{\frac{w(\Delta)h(d)}{8h(\Delta)}}$$

Proof. The result follows on multiplying the result of Theorem 1 over all the h(d) classes of H(d) and the observation that

$$\sum_{K \in H(d)} \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K)^{-1} \frac{t_1(d)}{j(L, d)} l(L, d)$$

$$= \sum_{\substack{L \in H(d) \\ L \neq I}} \frac{t_1(d) l(L, d)}{j(L, d)} \sum_{K \in H(d)} \chi(L^{-1}, K)$$

$$= 0,$$

by Lemma 6.2.

Next we deduce the following result of van der Poorten and Williams [16] from Theorem 1.

Corollary 2. Let d be a fundamental discriminant with d < 0. Let $K = [a, b, c] \in H(d)$. Then

$$a^{-1/4} \left| \eta \left(\frac{b + \sqrt{d}}{2a} \right) \right| = (2\pi |d|)^{-1/4} \left(\prod_{m=1}^{|d|} \Gamma \left(\frac{m}{|d|} \right)^{(d/m)} \right)^{\frac{w(d)}{8h(d)}}$$

$$\times \exp \left(-\frac{\pi w(d)\sqrt{|d|}}{48h(d)} \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K) \frac{t_1(d)}{j(L, d)} l(L, d) \right).$$

Proof. Since d is fundamental, we have $\Delta = d$ and f = 1. From (35) we obtain

$$l(L, d) = \prod_{p \mid d} \left(1 + \frac{\chi(L, K_p)}{p}\right).$$

Thus

$$l(L^{-1}, d) = \prod_{p \mid d} \left(1 + \frac{\chi(L^{-1}, K_p)}{p} \right) = \prod_{p \mid d} \left(1 + \frac{\chi(L, K_p^{-1})}{p} \right) = l(L, d)$$

since $\chi(L^{-1}, K_p) = \chi(L, K_p^{-1})$ by Lemma 6.2 and $K_p = K_p^{-1}$ if $p \mid d$ and $p \nmid f$, see Definition 5.2. Hence

$$\sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K)^{-1} \frac{t_1(d)}{j(L, d)} l(L, d)$$

$$= \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L^{-1}, K) \frac{t_1(d)}{j(L, d)} l(L, d)$$

$$= \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K) \frac{t_1(d)}{j(L^{-1}, d)} l(L^{-1}, d)$$

$$= \sum_{\substack{L \in H(d) \\ L \neq I}} \chi(L, K) \frac{t_1(d)}{j(L, d)} l(L, d),$$

since $j(L, d) = j(L^{-1}, d)$ by Lemma 7.6. The result now follows on using Theorem 1.

10. Evaluation of Weber's Functions at Quadratic Irrationalities

We prove

Theorem 2. Let $K = [a, b, c] \in H(d)$. Set

$$q_0 = a + b + c$$
, $q_1 = c$, $q_2 = a$,

$$\lambda_i = \begin{cases} 1, & \text{if } q_i \equiv 2 \, (\text{mod } 4), \\ 1, & \text{if } q_i \equiv 0 \, (\text{mod } 4), \, b \equiv 1 \, (\text{mod } 2), \\ 1/2, & \text{if } q_i \equiv 0 \, (\text{mod } 4), \, b \equiv 0 \, (\text{mod } 2), \\ 2, & \text{if } q_i \equiv 1 \, (\text{mod } 2). \end{cases}$$

for i = 0, 1, 2,

$$\begin{split} M_0 &= \left[2a\lambda_0, \, \lambda_0(2a+b), \, \frac{\lambda_0}{2} \left(a+b+c \right) \right] \in H(\lambda_0^2 d), \\ M_1 &= \left[2a\lambda_1, \, \lambda_1 b, \, \frac{\lambda_1}{2} \, c \right] \in H(\lambda_1^2 d), \\ M_2 &= \left[\frac{\lambda_2}{2} \, a, \, \lambda_2 b, \, 2\lambda_2 c \right] \in H(\lambda_2^2 d), \\ m_i &= 2 - 2^{1-\nu_2(\lambda_i)} = \begin{cases} 0, & \text{if } \lambda_i = 1, \\ 1, & \text{if } \lambda_i = 2, \\ -2, & \text{if } \lambda_i = 1/2. \end{cases} \end{split}$$

for i = 0, 1, 2. Then

$$\left| f_i \left(\frac{b + \sqrt{d}}{2a} \right) \right| = \left(\frac{2}{\lambda_i} \right)^{1/4} 2^{m_i \frac{1 - (\Delta/2)}{2 - (\Delta/2)} 2^{\frac{1}{2} - v_2(f)}} e^{E(K, d) - E(M_i, \lambda_i^2 d)}$$

for i = 0, 1, 2.

Proof. We note that $\Delta(\lambda_i^2d) = \Delta(d) = \Delta$ and $f(\lambda_i^2d) = \lambda_i f(d) = \lambda_i f$. Applying Theorem 1 to the classes K, M_0 , M_1 and M_2 , we obtain expressions for

$$\left| \eta \left(\frac{b + \sqrt{d}}{2a} \right) \right|, \ \left| \eta \left(\frac{1 + \frac{b + \sqrt{d}}{2a}}{2} \right) \right|, \ \left| \eta \left(\frac{1}{2} \frac{b + \sqrt{d}}{2a} \right) \right| \ \text{and} \ \left| \eta \left(2 \frac{b + \sqrt{d}}{2a} \right) \right|.$$

Using these expressions in (4), (5) and (6), we obtain

$$\left| f_i \left(\frac{b + \sqrt{d}}{2a} \right) \right| = \left(\frac{2}{\lambda_i} \right)^{1/4} \left(\prod_p p^{(\alpha_p(\Delta, \lambda_i f) - \alpha_p(\Delta, f))/4} \right) e^{E(K, d) - E(M_i, \lambda_i^2 d)}$$

for i = 0, 1, 2.

If p is odd, we have $\alpha_p(\Delta, \lambda_i f) = \alpha_p(\Delta, f)$ as $v_p(\lambda_i f) = v_p(f)$. Thus

$$\prod_{p} p^{(\alpha_{p}(\Delta,\lambda_{i}f) - \alpha_{p}(\Delta,f))/4} = 2^{(\alpha_{2}(\Delta,\lambda_{i}f) - \alpha_{2}(\Delta,f))/4} = 2^{m_{i}\frac{1 - (\Delta/2)}{2 - (\Delta/2)}2^{-2 - \upsilon_{2}(f)}}$$

as required.

The following theorem follows easily from Theorem 2 as $f_i(\sqrt{-n}) \in \mathbb{R}^+$ for i = 0, 1, 2.

Theorem 3. Let n be a positive integer and let d = -4n. Let $K = [1, 0, n] \in H(d)$.

(a)
$$n \equiv 0 \pmod{4}$$
. Set
$$M_0 = \begin{bmatrix} 4, 4, n+1 \end{bmatrix} \in H(4d),$$

$$M_1 = \begin{bmatrix} 1, 0, \frac{n}{4} \end{bmatrix} \in H\left(\frac{d}{4}\right),$$

$$M_2 = \begin{bmatrix} 1, 0, 4n \end{bmatrix} \in H(4d).$$

Let $n=4^{\alpha}\mu$, where α is a positive integer and $\mu\equiv 1,\ 2$ or $3\ (mod\ 4)$.

(i) $\mu \equiv 1$ or $2 \pmod{4}$ (so that Δ is even and $v_2(f) = \alpha$). We have

$$f_0(\sqrt{-n}) = 2^{\frac{1}{2^{\alpha+3}}} e^{E(K,d)-E(M_0,4d)},$$

$$f_1(\sqrt{-n}) = 2^{\frac{2^{\alpha+1}-1}{2^{\alpha+2}}} e^{E(K,d)-E(M_1,d/4)},$$

$$f_2(\sqrt{-n}) = 2^{\frac{1}{2^{\alpha+3}}} e^{E(K,d)-E(M_2,4d)}.$$

(ii) $\mu \equiv 3 \pmod{4}$ (so that $\Delta \equiv -\mu \pmod{8}$ and $v_2(f) = \alpha + 1$). If $\mu \equiv 3 \pmod{8}$, we have

$$f_0(\sqrt{-n}) = 2^{\frac{1}{3 \cdot 2^{\alpha+2}}} e^{E(K,d)-E(M_0,4d)},$$

$$f_1(\sqrt{-n}) = 2^{\frac{3 \cdot 2^{\alpha}-1}{3 \cdot 2^{\alpha+1}}} e^{E(K,d)-E(M_1,d/4)},$$

$$f_2(\sqrt{-n}) = 2^{\frac{1}{3 \cdot 2^{\alpha+2}}} e^{E(K,d)-E(M_2,4d)}.$$

If $\mu \equiv 7 \pmod{8}$, then we have

$$f_0(\sqrt{-n}) = e^{E(K,d) - E(M_0, 4d)},$$

$$f_1(\sqrt{-n}) = \sqrt{2}e^{E(K,d) - E(M_1, d/4)},$$

$$f_2(\sqrt{-n}) = e^{E(K,d) - E(M_2, 4d)}.$$

(b) $n \equiv 1 \pmod{4}$ (so that Δ is even and f is odd). Set

$$M_0 = \left[2, 2, \frac{n+1}{2}\right] \in H(d),$$

 $M_1 = \left[4, 0, n\right] \in H(4d),$
 $M_2 = \left[1, 0, 4n\right] \in H(4d).$

Then

$$\begin{split} f_0(\sqrt{-n}) &= 2^{1/4} e^{E(K,d) - E(M_0,d)}, \\ f_1(\sqrt{-n}) &= 2^{1/8} e^{E(K,d) - E(M_1,4d)}, \\ f_2(\sqrt{-n}) &= 2^{1/8} e^{E(K,d) - E(M_2,4d)}. \end{split}$$

(c) $n \equiv 2 \pmod{4}$ (so that Δ is even and f is odd). Set

$$M_0 = [4, 4, n + 1] \in H(4d),$$
 $M_1 = \left[2, 0, \frac{n}{2}\right] \in H(d),$ $M_2 = [1, 0, 4n] \in H(4d).$

Then

$$f_0(\sqrt{-n}) = 2^{1/8} e^{E(K,d) - E(M_0, 4d)},$$

$$f_1(\sqrt{-n}) = 2^{1/4} e^{E(K,d) - E(M_1, d)},$$

$$f_2(\sqrt{-n}) = 2^{1/8} e^{E(K,d) - E(M_2, 4d)}.$$

(d) $n \equiv 3 \pmod{4}$ (so that $n \equiv -\Delta \pmod{8}$ and $f \equiv 2 \pmod{4}$). Set

$$\begin{split} M_0 &= \left[1, \, 1, \, \frac{n+1}{4}\right] \in H\left(\frac{d}{4}\right), \\ M_1 &= \left[4, \, 0, \, n\right] \in H(4d), \\ M_2 &= \left[1, \, 0, \, 4n\right] \in H(4d). \end{split}$$

Then, for $n \equiv 3 \pmod{8}$, we have

$$\begin{split} f_0(\sqrt{-n}) &= 2^{1/3} e^{E(K,d) - E(M_0,d/4)}, \\ f_1(\sqrt{-n}) &= 2^{1/12} e^{E(K,d) - E(M_1,4d)}, \\ f_2(\sqrt{-n}) &= 2^{1/12} e^{E(K,d) - E(M_2,4d)}, \end{split}$$

and, for $n \equiv 7 \pmod{8}$, we have

$$\begin{split} f_0(\sqrt{-n}) &= \sqrt{2} \, e^{E(K,d) - E(M_0,d/4)}, \\ f_1(\sqrt{-n}) &= e^{E(K,d) - E(M_1,4d)}, \\ f_2(\sqrt{-n}) &= e^{E(K,d) - E(M_2,4d)}. \end{split}$$

11. Evaluation of $f(\sqrt{-19})$

We illustrate Theorem 3(d) by using it to determine the (known) value of $f(\sqrt{-19})$, see for example [2], [20]. In another paper we plan to use our results to determine other values of Weber's functions.

We take n=19 so that d=-76, $\Delta=-19$, f=2, K=[1,0,19] = $I\in H(-76)$ and $M_0=[1,1,5]\in H(-19)$. By Theorem 3(d) we have

$$f(\sqrt{-19}) = 2^{1/3} e^{E(K, -76) - E(M_0, -19)}, \tag{48}$$

where E(K, d) is defined in (46). Since h(-19) = 1, we have $E(M_0, -19) = 0$, so that (48) becomes

$$f(\sqrt{-19}) = 2^{1/3}e^{E(K, -76)}. (49)$$

Also $H(-76) = \{I, A, A^{-1}\}$, where A = [4, 2, 5]. We have $v = 1, h_1 = 3$, $\chi(A, A) = e^{2\pi i/3}$, $\chi(A, A^{-1}) = e^{-2\pi i/3}$ and $\chi(A^{-1}, A^{-1}) = e^{2\pi i/3}$. By (46) we have

$$E(K, -76) = \frac{\pi\sqrt{19}}{36} \frac{t_1(-76)}{j(A, -76)} (l(A, -76) + l(A^{-1}, -76)),$$

since $j(A, -76) = j(A^{-1}, -76)$ by Lemma 7.6.

For L = A and A^{-1} , we have by (35),

$$l(L, -76) = \left(1 + \frac{\chi(L, K_{19})}{19}\right) A(L, -76, 2) = \frac{20}{19} A(L, -76, 2).$$

Next, by (34), we have

$$A(L, -76, 2) = 1 + \sum_{j=1}^{\infty} \frac{Y_L(2^j)}{2^j}.$$

By Lemma 4.3 we have

$$H(2^{j}, -76) = 0$$
 for $j = 1$ and $j > 2$.

For any class $M \in H(-76)$ we have by (27),

$$0 \le H_M(2^j) \le H(2^j, \, -76)$$

so that

$$H_M(2^j) = 0$$
 for $j = 1$ and $j > 2$.

Thus, by Definition 7.1, we obtain

$$Y_L(2^j) = \sum_{M \in H(-76)} \chi(L, M) H_M(2^j) = 0 \text{ for } j = 1 \text{ and } j > 2.$$

Hence

$$A(L, -76, 2) = 1 + \frac{Y_L(4)}{4}$$
.

From Definition 5.1 we deduce that

$$H_I(4) = 0$$
, $H_A(4) = 1$, $H_{A^{-1}}(4) = 1$,

so that, for L = A and A^{-1} , we have

$$Y_L(4) = \sum_{M \in H(-76)} \chi(L, M) H_M(4) = e^{2\pi i/3} + e^{-2\pi i/3} = -1.$$

Hence

$$A(L, -76, 2) = 1 - \frac{1}{4} = \frac{3}{4}$$
.

Thus

$$l(L, -76) = 15/19$$
 for $L = A$ and A^{-1}

so that

$$E(K, -76) = \frac{5\pi}{6\sqrt{19}} \frac{t_1(-76)}{j(A, -76)}.$$
 (50)

By (32) we have

$$j(A, -76) = \lim_{s \to 1^{+}} \prod_{\left(\frac{-76}{p}\right)=1} \left(1 - \frac{1}{p^{s}}\right)^{2}$$

$$\times \prod_{\left(\frac{-76}{p}\right)=1} \left(1 - \frac{\chi(A, K_{p})}{p^{s}}\right) \left(1 - \frac{\chi(A^{-1}, K_{p})}{p^{s}}\right)$$

$$K_{p} \neq K$$

$$= \lim_{s \to 1^{+}} \prod_{\substack{\frac{-76}{p} = 1 \\ K_{n} = K}} \left(1 - \frac{1}{p^{s}}\right)^{2} \prod_{\substack{\frac{-76}{p} = 1 \\ K_{n} \neq K}} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}}\right).$$

Applying a result of Spearman and Williams [19] to the irreducible polynomial $x^3 - 2x - 2$, we deduce that if $\left(\frac{-76}{p}\right) = 1$, then

 $x^3 - 2x - 2 \equiv 0 \pmod{p}$ is solvable $\Leftrightarrow p$ is represented by K = [1, 0, 19]

$$\Leftrightarrow K_p = K.$$

Hence

$$j(A, -76) = \lim_{s \to 1^{+}} \prod_{\substack{\left(\frac{-76}{p}\right) = 1\\ solvable}} \left(1 - \frac{1}{p^{s}}\right)^{2}$$

$$x^{3} - 2x - 2 \equiv 0 \pmod{p}$$

$$\text{solvable}$$

$$\times \prod_{\substack{\left(\frac{-76}{p}\right) = 1\\ solvable}} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}}\right). \tag{51}$$

As $\operatorname{disc}(x^3-2x-2)=-76<0$, x^3-2x-2 has one real root and two non-real roots. Let θ be the unique real root of $c(x)=x^3-2x-2$. As c(1)=-3<0 and c(2)=2>0 we have $1<\theta<2$, so that θ is positive. We set $F=\mathbb{Q}(\theta)$. Next we link E(K,-76) to the Dedekind zeta function $\zeta_F(s)$ of the cubic field F. By a theorem of Llorente and Nart [12], we find that rational primes decompose into prime ideals in the field F as follows:

$$2 = P^3$$
, $N(P) = 2$,
 $19 = PQ^2$, $N(P) = N(Q) = 19$.

If
$$\left(\frac{-76}{p}\right) = 1$$
 and $x^3 - 2x - 2 \equiv 0 \pmod{p}$ is solvable, then

$$p = PQR, N(P) = N(Q) = N(R) = p.$$

If
$$\left(\frac{-76}{p}\right) = 1$$
 and $x^3 - 2x - 2 \equiv 0 \pmod{p}$ is insolvable, then

$$p=P, N(P)=p^3.$$

If
$$\left(\frac{-76}{p}\right) = -1$$
, then

$$p = PQ, N(P) = p, N(Q) = p^2.$$

Thus

$$\zeta_F(s) = \prod_P (1 - (N(P))^{-s})^{-1}$$

$$= (1 - 2^{-s})^{-1} (1 - 19^{-s})^{-2} \prod_{\substack{\left(\frac{-76}{p}\right) = 1\\ \text{solvable}}} (1 - p^{-s})^{-3}$$

$$\times \prod_{\substack{\left(\frac{-76}{p}\right)=1\\x^3-2x-2\equiv 0 \pmod{p}\\\text{insolvable}}} (1-p^{-3s})^{-1} \prod_{\substack{\left(\frac{-76}{p}\right)=-1\\y\text{insolvable}}} (1-p^{-s})^{-1} (1-p^{-2s})^{-1}$$

$$= \zeta(s) (1 - 19^{-s})^{-1} \prod_{\substack{\left(\frac{-76}{p}\right) = 1\\ solvable}} (1 - p^{-s})^{-2}$$

$$\times \prod_{\substack{\left(\frac{-76}{p}\right)=1\\ x^3-2x-2\equiv 0 (\text{mod } p)\\ \text{insolvable}}} (1+p^{-s}+p^{-2s})^{-1} \prod_{\substack{\left(\frac{-76}{p}\right)=-1\\ \text{insolvable}}} (1-p^{-2s})^{-1}$$

$$=\zeta(s)\zeta(2s) \left(1-2^{-2s}\right) \left(1-19^{-s}\right)^{-1} \left(1-19^{-2s}\right)$$

$$\prod_{\left(\frac{-76}{p}\right)=1} (1 - p^{-2s}) \prod_{\left(\frac{-76}{p}\right)=1} (1 - p^{-s})^{-2}$$

$$x^3 - 2x - 2 \equiv 0 \pmod{p}$$
solveble

$$\times \prod_{\left(\frac{-76}{p}\right)=1} (1+p^{-s}+p^{-2s})^{-1}.$$

$$x^3-2x-2\equiv 0 \pmod{p}$$
insolvable

Hence

$$\lim_{s \to 1^+} (s-1)\zeta_F(s) = \frac{\pi^2}{6} \left(1 - \frac{1}{4} \right) \left(1 + \frac{1}{19} \right) \frac{t_1(-76)}{j(A, -76)} = \frac{3\pi}{\sqrt{19}} E(K, -76), \quad (52)$$

by (50), (51) and (33). It is well-known that [14, p. 326]

$$\lim_{s \to 1^+} (s-1)\zeta_F(s) = \frac{2^{s+t}\pi^t R_F h_F}{W_F \mid d_F \mid^{1/2}},$$

where

s = number of real embeddings of F,

2t = number of imaginary embeddings of F,

 h_F = class number of F,

 W_F = number of roots of unity in F,

 $d_F = \text{discriminant of } F$,

 $R_F = \text{regulator of } F$.

Here we have

$$s = 1, t = 1, h_F = 1, W_F = 2, d_F = -76, R_F = \log(1 + \theta),$$

as $1 + \theta$ is the fundamental unit of F, see [6, p. 519]. Hence

$$\lim_{s \to 1^{+}} (s - 1)\zeta_{F}(s) = \frac{\pi}{\sqrt{19}} \log(1 + \theta). \tag{53}$$

By (52) and (53), we obtain

$$E(K, -76) = \frac{1}{3}\log(1+\theta) = \log\left(\frac{\theta}{2^{1/3}}\right)$$

since $\theta^3 = 2\theta + 2$. Thus, by (49), we have

$$f(\sqrt{-19}) = 2^{1/3}e^{E(K, -76)} = 0.$$

We have reproved the following result of Weber [20].

Theorem 4. Let θ be the unique real root of

$$x^3 - 2x - 2 = 0$$
.

Then

$$f(\sqrt{-19}) = \theta.$$

References

- [1] P. Bernays, Über die Darstellung von positiven, ganzen Zahlen durch die primitiven, binären quadratischen Formen einer nicht-quadratischen Diskriminante, Ph.D. Thesis, Göttingen, 1912.
- [2] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer, New York, 1998.
- [3] D. A. Buell, Binary Quadratic Forms, Springer-Verlag, New York, 1989.
- [4] S. Chowla, Collected Papers (3 Volumes), J. G. Huard and K. S. Williams, eds., Centre de Recherches Mathématiques, Université de Montréal, 1999.
- [5] S. Chowla and A. Selberg, On Epstein's zeta function (I), Proc. Nat. Acad. Sci. USA 35 (1949), 371-374. Chowla's Collected Papers, Vol. II, pp. 719-722.
- [6] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, New York, 1996.
- [7] L. E. Dickson, Introduction to the Theory of Numbers, Dover, New York, 1957.
- [8] L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [9] J. G. Huard, P. Kaplan and K. S. Williams, The Chowla-Selberg formula for genera, Acta Arith. 73 (1995), 271-301.

- [10] M. Kaneko, A generalization of the Chowla-Selberg formula and the zeta functions of quadratic orders, Proc. Japan Acad. 66 (1990), 201-203.
- [11] P. Kaplan and K. S. Williams, The Chowla-Selberg formula for non-fundamental discriminants, 1992 (preprint).
- [12] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
- [13] Y. Nakkajima and Y. Taguchi, A generalization of the Chowla-Selberg formula, J. Reine Angew. Math. 419 (1991), 119-124.
- [14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
- [15] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, New York, 1991.
- [16] A. J. van der Poorten and K. S. Williams, Values of the Dedekind eta function at quadratic irrationalities, Canad. J. Math. 51 (1999), 176-224. Corrigendum, Canad. J. Math. 53 (2001), 434-448.
- [17] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110. Chowla's Collected Papers, Vol. III, pp. 1101-1125.
- [18] C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980.
- [19] B. K. Spearman and K. S. Williams, The cubic congruence $x^3 + Ax^2 + Bx + C \equiv 0 \pmod{p}$ and binary quadratic forms, J. London Math. Soc. (2) 46(3) (1992), 397-410.
- [20] H. Weber, Lehrbuch der Algebra, Vol. III, Chelsea Publishing Co., New York, 1961.