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Abstract

Let 1(z) denote the Dedekind eta function. Let ax? + bxy + cy® be a
positive-definite, primitive, integral, binary quadratic form of
discriminant d(= b2 — dac < 0). The value of [n((® + s/g)/2a)| is

determined for an arbitrary discriminant d. This result generalizes the
corresponding result when d is fundamental, which was obtained by van
der Poorten and Williams [Canad. J. Math. 51 (1999), 176-224.
Corrigendum, Canad. J. Math. 53 (2001), 434-448]. As a consequence of

our evaluation of |n(z)| for z = (b + Jd)/2a), formulae are obtained for

the moduli of Weber’s functions f(z), f,(z) and fy(z) [Lehrbuch der
Algebra, Vol. ITI, Chelsea Publishing Co., New York, 1961, p. 114]. From

2000 Mathematics Subject Classification: Primary 11F20; Secondary 11E16, 11E25.

Key words and phrases: Dedekind eta function, Weber’s functions, class invariants, binary
quadratic forms, Kronecker’s limit formula.

Research of the second author was supported by Natural Sciences and Engineering
Research Council of Canada grant A-7233.

Received November 15, 2003
© 2004 Pushpa Publishing House



210 HABIB MUZAFFAR and KENNETH S. WILLIAMS

these formulae the values of f(v-m), fi(¥-m) and fo(v—m) are

determined for an arbitrary positive integer m.
1. Introduction

The Dedekind eta function n(z) is defined for all z = x + 1y € C with
y > 0 by

n(z) = eniz/121—[(1 _ eZnimz)_ 1)

m=1
The fundamental transformation formulae of n(z) are [18, pp. 17-18], [20,
p- 113]

n@+1)=awmn@x1{—§j=J—wn@> @)
We also note that
nGy) € R*, e ™/ n(l%) e RY, 3)

for y > 0. Weber’s three functions f(z), fi(z) and fa(z) are defined in

terms of the Dedekind eta function as follows:

—nif24 (2 +1
‘ ”( 2 )

f(z) = n(z) ) (4)
13)
fl(z) = n(z) ’ (5)
and
_ /3 n22)
f2(z) = \/5 n(z) ) (6)
see [20, p. 114]. It is convenient to set
fo(2) = f(2)

so that f;(z) is defined for i =0,1, 2. Weber's functions satisfy the
relations [20, p. 114]
0@ = h@P + ol M
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and

h(@A@)f(2) = V2. ®)

For n a positive integer, Ramanujan’s class invariants G, and g, are

defined by

G, =274 (V=) ©)
and
g, =27 VA= n), (10)

see [2, p. 183]. From (3)-(6) we see that f;(v-n)e R for i =0, 1, 2 so
that G,, g, € R". The values of G, and g, have been determined for
many values of n. Traditionally G,, is determined for odd values of n and
g, for even values of n [2, p. 184]. Berndt gives a wealth of values of n for
which G, and g, have been determined by various authors using such

techniques as modular equations, Kronecker’s limit formula or class field
theory [2, Chapter 34]. In this paper we use Kronecker’s limit formula
together with some new results on binary quadratic forms to determine

(=)

where a, b, ¢, d are integers such that ax® + bxy +cy2 is a positive-

the value of

definite, primitive, integral, binary quadratic form of discriminant
d(= b® - 4ac < 0), see Theorem 1 in Section 9. The Chowla-Selberg

formula [5, 17] gives the value of

(4

2a
K=[a,b,cleH(d)

for a fundamental discriminant d, that is, a discriminant d for which
d/m? =0 or 1(mod4) = |m|=1. This formula was extended to an

arbitrary discriminant d by Kaneko [10], Nakkajima and Taguchi [13],
and Kaplan and Williams [11]. We show that this result is a simple
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consequence of Theorem 1, see Corollary 1 in Section 9. Theorem 1
extends a recent result of van der Poorten and Williams [16] giving the

value of | n((b + Jd)/2a) | in the case when d is fundamental, see Corollary
2 in Section 9. Appealing to (4)-(6) and Theorem 1, we obtain the values of
fi(b“ﬂj., =012,

2a

see Theorem 2 in Section 10. From Theorem 2 we deduce the values of
fi-m), i=0,1, 2,

for an arbitrary positive integer m, see Theorem 3 in Section 10. We
illustrate Theorem 3 by deducing from it the known result (Weber [20])

f(¥-19) =6, (11)

where 0 is the unique real root of the cubic equation x3-2x -2 =0, see
Theorem 4 in Section 11. In a future paper we plan to obtain further

explicit results of this type from our formulae.

Throughout this paper n denotes a positive integer, p denotes a prime
and d is an infeger satisfying

d<0,d =0 or1(mod4). (12)

m

We denote the Kronecker symbol, see for example [9, p. 278], by (dj or

v+l * ;

(d/m) as convenient. The unique integer v such that p“|n and p )

is denoted by v, (n). The largest positive integer f such that
f21d, d/f% = 0 or 1(mod 4) (13)

is called the conductor of d. The integer A = d/}’2 is called the

fundamental discriminant associated with d. If ax? +b3cy+cy2 is a

positive-definite, primitive, integral, binary quadratic form of
discriminant d, the class of this form under the action of the modular
group is denoted by [a, b, ¢]. We describe briefly how two classes A; and

Ay of forms of the same discriminant d can be multiplied (composed).

This method of composing two classes is due to Dirichlet. Representatives
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of the classes A; and Ay can be chosen so that
Ay = [a, B, ¢C] and Ay = [¢, B, aC].
Then the product (composition) of A; and Ay is given by
AjAy = lac, B, C].

For more details the reader should consult [7, Chapter IX]. With respect
to this multiplication, the classes of forms of discriminant d form a finite
abelian group H(d) called the form class group of discriminant d. The

order of H(d) is called the class number of discriminant d and is denoted

by A(d). The identity I of the group H(d) is the principal class

3 {[L 0, -d/4], if d = 0(mod 4),

: (14)
[1,1, @ -d)/4] if d =1(mod 4).

The inverse of the class K = [a, b, ¢] € H(d) is the class K™! = [a, - b, c].
The genus group G(d) is defined to be

G(d) = H(d)/H?(d). (15)
Its order is

|G(d)| = 219, (16)

where t(d) is a nonnegative integer. The reader will find the exact value
of t(d) in [9, p. 277]. An element of G(d) is called a genus. The reader

will find discussions of the theory of binary quadratic forms in [3], [7], [8]
and [15].

If x and y are integers such that
n=ax? +bxy+ cyz,
then (x, y) is called a representation of the positive integer n by the form
ax? + bxy + cy?. As ax? + bxy + cy2 is a positive-definite form the number
R(q,p,¢)(n, d) of representations of n by the form ax? + bxy + cy? is finite.
It is well-known that if Ax? + Bxy + Cy? is a form equivalent to the form

ax? + bxy + cy?, then R4, B,c)(n, d) = R(4,b,¢)(n, d). Hence we can define
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the number of representations of the positive integer n by the class
K e H(d) by

Rig(n, d) = R(a,b,¢c)(n, d) for any form ax? + bxy + cy? e K. an

If G € G(d) the number of representations of n by the classes in the
genus G is denoted by Rg(n, d) and is given by

R;(n, d) = ZRK(n, d). (18)
KeG
The total number of representations of n by the classes in H (d) is
N(n, d) = Z Ry (n, d) = Z% Rg(n, d). (19)
KeH(d) GeG(d)

The number w(d) of automorphs of a primitive, positive-definite, binary

quadratic form of discriminant d is given by (see for example [15,
pp. 172-176])

6, if d = -3,
w(d) = 14, if d = -4, (20)
2, if d < -4.

In Sections 2-8 we develop the results on binary quadratic forms that
we need in order to prove our main results, namely Theorems 1, 2, 3 in
Sections 9 and 10.

2. Three Lemmas

Our first lemma is well-known.

Lemma 2.1. Let n; and ng be relatively prime positive integers.

(1) Let B be an integer such that 0 < B < 2nyng, B? = d (mod 4niny).

Then there exist unique integers by and by such that
0 <b <2n, b2 =d(mod4n;), b, = B(mod 2n,),

0 < by < 21y, b2 =d(mod4ny), by = B(mod 2ny).
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(i) Let by and by be integers such that 0 < b, < 2ny, bZ = d(mod 4n,),
0 < by < 2ny, b3 = d (mod 4ny). Then there exists a unique integer B with
0 < B < 2mny, B? = d(mod 4n;ny),
B = bj(mod 2n;), B = by (mod 2ns).
Proof. This is essentially [7, Lemma 2, p. 134].

Lemma 2.2. Let p be a prime which does not divide d. Let h; be an

integer such that
0<h <2p, h =d(mod4p).
Then, for each positive integer n, there is a unique integer h, such that
0 < h, <2p", h, =hy (mod2p), hZ = d(mod4p").

Proof. We note that p|h; since p|d. We use induction on n. The

result is clearly true for n = 1. We assume that the result is true for

n = N. Thus there is a unique integer hpy with
0<hy <2pY, hy =h (mod2p), h} = d(mod4p™).

Note that p | hy. Hence there is a unique integer A, satisfying
(h% - d)
0<Ay <p, Ayhy = ——4—N(m0dp).
p

We set hy, = hy +2kArpN. Then we have 0 < hpy,; < ap™ 14
2(p -1)pN < 2p™V*! and hy,; = hy = hy(mod 2p). Also
Ky = by + Ay pY + 4 402N = by - (W} - d) = d (mod 4pN 1),

To show that hp,j is unique, let Al # hyx,; be another integer such
that

0 < Ay <20N*Y Riya =y (mod 2p), A,y = d (mod 4p™™1).
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We define nonzero integers u and v by
i | [
u = E(hNH -hyu), v ZE(hNH +hN+1)-

Then u = 0(mod p) and wv = 0(mod p™V*!). Let p® | and PP [v, so
that «>1, a+B=>N+1. If =1, then p|lu and p|v so that

plv—u = hy,;, acontradiction. Hence B = 0 and a > N +1. Thus

hivsr = hyar(mod 20, 0 < hyyy, hivyy < 2p™

This gives hj.; = hy,1, a contradiction. Hence hp,; is unique and the

induction is complete.

Lemma 2.3. Let a, b, ¢, n be integers with a >0, n >0, [a", b, c]

e H(d) and (a, b) = 1. Then
[a", b, c] = [a, b, a" L.

Proof. Note that [an_i, b, aic] € H(d) for 0<i<n We have

[a, b, a" e [a”'i, b, aic] = [a"_(i_l), b, ai'lc] for 1 < i < n. Thus
[", b, ] = [a, b, a*Lc][a™}, b, ac]
= [a, b, an—lc]Z[an—Z’ b, azc]

[a, b, an—lc]S[an—S, b, a3c]

Il

[a, b, an—lc]n—l[a, b, Cln—lc]

= [a, b, a1,
which is the asserted result.

3. The Integer k(n,d)

In Definition 3.1 we define the first of three integers that we shall
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need which count the number of solutions of the congruence h? =d

(mod 4n) having certain properties.

Definition 3.1. We define #(n, d) to be the number of integers h
satisfying

0<h<2n h%?=d(mod4n).

When (n, d) =1 the value of k(n, d) is well-known, see for example
[7, p. 78].

Lemma 3.1. If (n, d) = 1, then

k(n, d) = H(l + LQD
pln s

Next we generalize Lemma 3.1.

Lemma 8.2. If (n, f) = 1, then

if there exists a prime p with p2 n and p|d,

0,
k(n, d) = (1 N (QD iheru
H 2)) otherwise.

pln
Proof. We first assume that there exists a prime p with p2 |n and
p|d and that there exists an integer A with 0 < h < 2n, h? =d (mod 4n).

Then p|h and so p2|d. Since d = Af? and plf, we have p2|A. If
p > 2, then this is a contradiction since A is fundamental. If p = 2, then

we have

2
Ej = 0 or 1(mod 4),

which is again a contradiction as A is fundamental. Hence k(n, d) = 0.
Next, we assume that there is no prime p with p2 |n and p|d. Hence
if p is a prime with p|n, then p |n or p?|n, and pfd. Thus, if p > 2,

then the number of solutions of the congruence h? = d (mod pv”(”)) is
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1+ (%) If p = 2, then the number of solutions of the congruence h? =
d (mod 22712(")) is

2, if 2/n,

2(1 + (%D, if 2| n,

2(1 + (%D if 22|n, 2/d.

Hence the total number of solutions of the congruence h? = d (mod 4n) is
d
2 (1 + (_D
L1005
pln

The result follows as k(n, d) is half this number.
4. The Integer H(n, d)

In Definition 4.1 we define the second of the iree integers related to
the congruence h? = d (mod 4n). This integer is denoted by H(n, d). We

give a comprehensive treatment of the evaluation of H (p’, d), where p is

a prime and j is a nonnegative integer, even though not all of these

properties will be used in later sections.

Definition 4.1. We define H(n, d) to be the number of integers h
satisfying

n

2
0 <h < 2n, h? = d(mod4n), [n, h, i 4_ d] =1.

Clearly H(n, d) < k(n, d). We determine for use later H(p’, d) when

p|f and j > 1. In this case we have

. . _ 2
H(p’, d) = card{h :0<h<2p/ h? =d(mod4p’), p1h4 jd}
p
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Lemma 4.1. Let A = p’s, f = p“, pfst,u >1, p odd, so that v = 0
orl.If v =0, then
0, if j=2l+1,0<1<u,
p'-p', if j=2,1<l<u,

H(Pj, d)=4{p"* = (1 + [inp”_l, if j=2u,
P

[1 + (ﬁ)j(p” -p¥ Y, if > 2u

p
If v =1, then
0, if j=20+1,0<1<u,
H(p’, d) = Plu} . l:fJ:=2u+1,
p-p -, ifj=21<l<u,
0, if j>2u+1.

Proof. Since p|f and p is odd, we have

‘ ; ; 2 _
Hp’, d) = Card{h 10<h <2p/, h? = d(mod 4p), pI 2 jd}
p

for j > 1. Also
h* = d(mod4p’) & h = d(mod 2) and A% = d (mod p’).

2u+vs

Forl1<j<2u+v,asd=p t2 = 0(mod p’), we have

h% = d(mod4p’) < h = d(mod 2) and 2% = 0 (mod p’). (21)
(a)Let j =21 +1, 0 <[ < u. Then, by (21), we have
h? = d(mod 4p’) & h = d(mod 2) and & = 0 (mod p'*!)
& h=2p" and A = d (mod 2). (22)
For h satisfying (22), we have

h? -d

= = p7\.2 _ St2p2(u—l)+v—l = 0 (mod p).
p

Thus H(p’, d) = 0.
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(b) Next let j = 2u +1, v = 1. Then, by (21), we have
h? = d(mod4p’) < h = d(mod 2) and A = 0(mod p**!)

< h o= 2% and A = d (mod 2). (23)
For h satisfying (23), we have
0<h<2p) ©0<A<2p
and

2
L ;d = 32p - st? # 0(mod p).
p

Hence H(p’, d) = p*.
(c) Nextlet j = 2/, 1 <[ < u. Then, by (21), we have
h? = d(mod 4p’) & h = d(mod 2) and h = 0(mod p')
& h =Ap' and A = d (mod 2). (24)
For h satisfying (24), we have
Osh<2pj<30§k<2pl,
and -

2
h - d_,2_ p2u-Drugs?
p]

32 (mod p), ifl<l<uorl=uv=1,
)»z—stz(modp), if l=u,v=0.

Thus, for 1 <! <u or | = u, v =1, we have
H(p’, d)=card{L : 0 <A < 2p!, A = d (mod 2), A # 0(mod p)}

£
= gf = g,
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and for [ = u, v = 0, we have

H(p’, d) = card{A : 0 < & < 2p", A = d (mod 2), 32 # st? (mod p))

R

(d) Next let j > 2u +1, v = 1. Then the congruence
h? = d = p?**1st? (mod 4p’)
has no solutions so that H(p’, d) = 0.

(e) Finally let j > 2u, v = 0. Let h satisfy

: X 2 _
h? =d = p?“st®(mod 4p’), 0 < h < 2p’, p[h jd.
p
Then p"“ |h. Let h = p"hy so that
2 2 j—2 cu b st
h? = st? (mod 4p’~*"), 0 < by < 2p’ ,p]—j_Tu—,
D

as (h? - d)/p’ = (h{ - st2)/p/~2*. Thus
~ w2 _ 2 -2 hi - st
H(p’,d) = card{h; : 0 < hy <2p’™", hi = st”(mod 4p’™*), p| ———+.
p

If (3) = -1, then it is clear that
p

H(p’,d)=0 = (1 + (%D (p* - p*1).
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If (i) =1, then
p

hE = st? (mod 4p/2*) & h? = st = d(mod 4) and ¥ = st (mod p/~2t)

& hy = d(mod2) and h¥ = st? (mod p/~2%).

The congruence

hlz = st? (mod p/~2) (25)

has two solutions satisfying 0 < h; < pj “2¢ If x is one such solution, then

Jj—2u

the other is p — x. As these two solutions are of opposite parity, we

may assume that x = d (mod 2). Thus the solutions to (25) satisfying

0<h <2p’™% hy =d(mod2),
are
hy = x +2mpi™® and by = p/ 2 —x + (2m + 1)p/ =2,

j—2u

for 0 <m < p“ -1. For hy = x + 2mp’ ™", we have

2 _ 2 5 _ i
hl.Tsj = dmx + %(mod D),
p’ p’
so that
2 2 2 2
. _ — st
hl.—St = 0(mod p) & m = -(4x)' 23 (mod p).
pj—Zu pj—2u

Similarly we find for h; = p/72 —x + (2m +1)p/ "% that
2 2 2 2
hl—.s§— = 0(mod p) & m = (4x)™ et L (mod p).
J—2u j—2u
p p
Thus

Hp, &) = 2" - ) = (142 ]) 0" - "7,

completing the proof of Lemma 4.1.
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Lemma 4.2. Let n = 1(mod 8) and let [ and m be integers with 1 > 3
and m > 0. Then

2
card{x : x2 = n (mod 21), 0<x<2m = 7
2

L odd} = 2m.

Proof. The congruence x% = n (mod 21) has four solutions satisfying
0<x<2. Let xy be the least one of these. Then 0 < x; < gl
(otherwise 2! — xo would be a smaller solution). The other three solutions
are given by x; = - Xg, X3 = Xg + 2t X3 = gt o xg. Then we have

x12 -n
21

2 —
= 20~ (104 2)
2l

and

x-n _ x5 —n 1+

2! 2!

2 p—
Yo —n (mod 2).
21

The solutions to x2 = n (mod 21) satisfying 0 < x < 2'm are x; + 2'r for

0<r<m,0<1<3. Also

4+ 9lp? 2 _
(x; +2lr) no_ X : n (mod 2)
2 2

Thus the required number is 2m.

Lemma 4.3. Let A =2s, f = 2%, 2)st,u>1, sothat v =023,

and

_ [1(mod 4), if v=0,
- {3 (mod 4), if v=2.

If v = 2vy, where v; = 0 or 1, then
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0, if j=21+1,0<l<u+uv -2,

g1 if j=2,1<l<u+uv -1,

0, if j=2u+2u -1,s=1(mod4),

qu+t;—1 oo _af
H(Zj,d): UTT L'fj'=ZlL+2U1—1,8:3(1110(.’14),

0, if j=2u+2u;,s#5(mod8),

2 if j=2u+2v;,s=5(mod8),

0, if j>2u+2u;,s#1(mod8),

Ut if j>2u+2v;,s=1(mod8).

If v = 3, then
0, if j=20+1,0<! <u,

HE, ay< |2, HimmrlL
’ o-l  rj-21<l<u,

0, if J>2u+1.

Proof. For j > 1, we have

. . g2
H(2/,d) = card{h -0 <h <2/ h? = d(mod2/%?), b j+2d odd}.
2

If j+2 < 2u + v, then we have
h? = d(mod 2/*2) & h? = 0(mod 2/+2),

(@) Let j=21+1,0<l<u+(-3)/2 (so that 0 <l<u if v=3

and 0 <! < u+uv; -2 if v =2v; where v; = 0 or 1). Then
h? = d(mod 2/*2) & h? = 0(mod 22143y « b = 22*2 for some integer A.
For any such h, we have

0<h<2t =222 5 0<n <2,

and

he=d o2 _ gt292u-2l+v-3
2_]+2

0(mod2), ifv=3Il<uorv=2;uv =0o0rl
1(mod2), ifv=31=u
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Thus

0, ifv=3 j=2l+1,0<!<u,
H@’',d)=40, ifuv=2v,v1=00rl j=20+1,0<l<u+v -2
24 ifv =38, j=2u+1.

() Nextlet j=2[,1<l<u+v/2-1(sothat1<l<u ifv=3 and
1<l<u+v -1ifv=2v,v =0orl). Then
h2 = d(mod 2/*2) & h% = 0(mod 921+2) o h = 221! for some integer A.
For such h we have
0<h<2 =22 & 0<a <2,

and

2
h” -d -2 _ 22u—2l+v—2st2

2_]+2

_ [A(mod 2), ifv=3orv=2v,0 =0o0rll<u+y -1
" A+1(mod2), ifv=2v,vyy=00rlLl=u+v -1

Thus, in all cases under consideration, we have H (2j ,d) = o!-1.

(¢) Next let v=3 and j >2u+1. Then the congruence h2 =d=

92u+3 42 (mod 2/+2) has no solutions so that H2/, d)=0.

Ifv=2v,0v =0orland j+2>2u+v=2u+2v, it is easily shown

that

H(2j, d) = card{hl :0<h < gitl-u-u

h2 _ t2( d2j+2—2u—-2v1) h12 —Stz dd
[ & s ’ 2j+2—2u—2v1 0 :

@ Let j=2u+2v -1, v=20,0 = 0 or 1. Then

. 2 2
H(2/,d) = card{hl .0 < hy < 29", hE = st® (mod 2), hl—ziis Odd}.
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We have
hi = st? (mod 2) < hy is odd.

If hy is odd, then h? —st?> =1-s(mod 4). Thus, for the cases under

consideration, we have

' 0, if s = l(mod 4)
j B b
H{2', d)= {2u+u1—1, if s = 3(mod 4).

(e) Nextlet j = 2u + 2v;, v = 2vy, v; = 0 or 1. Then

. 2 -—
H(2/,d) = card{hl 10 < by < 24" R2 = 512 (mod 4), thStodd}.

If s = 3(mod 4), then the congruence h{ = st® = 3(mod 4) has no solutions
so that H(2/, d) = 0. If s = 1(mod 4), then h{ = st® (mod 4) < h; is odd.
If hy is odd, then h¥ — st =1 - s (mod 8). Thus

1 (mod 8),
5 (mod 8).

: 0, if s
H(zj’ d) = {2u+U1

It

if s
(f) Finally let j > 2u + 2v;, v = 2vy, vy = 0 or 1. Then the congruence
hf‘ = st? (mod 2j+2'2“_2ul)
has no solutions if s # 1(mod 8) so that H(2/, d) = 0. If s = 1(mod 8),
then H(2/, d) = 2(2“*1171) = 24*1 by Lemma 4.2.
From Lemmas 4.1 and 4.3 we deduce for p|f that

0 < H(p/, d) < 2p* < 2f. (26)
5. The Integer Hg(n)

We now define the third of our three integers connected to the

congruence h? = d (mod 4n).
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Definition 5.1. For K € H(d), we define Hg(n) to be the number of

integers h satisfying

2
0 <h <2n, h? =d(mod 4n), [n, h, 4 4’_Ld:l = K.

It is clear from Definitions 3.1, 4.1 and 5.1 that
0<Hg(n) < H(n,d) < kn, d) 27)

and

Hyg(n) = H(n, d). (28)
KEeH(d)

It is a classical result of elementary number theory [15, p. 174] that for
K e H(d),

Ri(n, d) = w(d) Y Hg(n/m?). (29)
m? |n
By (27) and Lemma 3.2, we have
Lemma 5.1. Let K € H(d). If (n, f) =1, then

Hg(n) = 0, if there is a prime p with p?|n, p|d,
and

0<Hg(n) < H(l + (%D otherwise.

pln

Lemma 5.2. Let K € H(d). Then

1, if K=1,
0, otherwise.

HK(1)={

Proof. We have

1
Hy(l) = Z 1.

h=0
h2=d (mod 4)

[L, h, (h2-d)/4]=K
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The only possibility for 4 in the sumis A = 0 if d = 0(mod 4) and h =1
if d = 1(mod 4). Hence

. [1, 0, - d/4], if d = 0(mod 4),

H(D_(l ﬁK¢{nLa—@ML if d =1(mod 4),
K "1 ,fK_{nQ-dML if d = 0(mod 4),
BT L -d)4], if d =1(mod 4),

and the result follows.
> : . d
If p is a prime with (—) =1, by Lemma 3.1 we have k(p, d) = 2. Let
D

h; and hs be the two solutions.of h? =d (mod 4p), 0 < h < 2p, chosen
so that h; < hy. Since p|d, wehave p|hy, plhg and hg = 2p — hy. We

have

2 _
|:p, h;, hl4pd} e Hd), 1 =1, 2.

Also

K2 -d| | op )% -d
[py h2) 2 } = Lp: 2p —h’l’ (_p——417)—:|

- : -1
W —d hf -d
= 7_h ] ! = 9h ) 1 .
Lp 1 4p } {P | 4p }

Motivated by these observations, we make the following definition.
a
Definition 5.2. If p is a prime with (—J =1, we let hy and hy be the
p
solutions of h% = d (mod 4p), 0 < h < 2p, with by < hy. We define K,
H(d) by

he —d
KP =l:p’ hlr 4p :|’

so that

h3 —d
-1 2
Kp = I:p, hz, 4p j‘
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If p is a prime with (é) =0, p/f, then we define K, € H(d) by
p

[p, 0, - d/4p], if p>2,d=0(mod4),
_|lp. p, (p* - d)/4p), if p>2 d=1(mod4),
P2, 0, - d/8], if p=2, d=8(mod16),

[2, 2, (4 - d)/8], if p=2,d=12(mod16).

Clearly K, = K;,l.

Lemma 5.3. Let p be a prime and let K € H(d).
d
(a) If o))" -1, then Hg(p) = 0.
(b) If (%) =1 and K, # K;l, then p is represented by exactly two

classes of H(d), namely K, and K;,l. If (%) =1and K, = K;l, then p
is represented by exactly one class of H(d) namely K. Moreover
if K+ K, K,

0)
Hg(p)={l, if K=K, #K,' or K=K, # K,
2, if K=K, =K,

(c) If (%) =0 and p|f, then Hg(p) = 0.

@ I1f (%) =0 and p|f, then p is represented by exactly one class in

H(d), namely K, and

0, if K #Kp,

Hilp) = {1, if K = K.

Proof. (a) This follows immediately from Lemma 5.1.
(b) Let L be a class of H(d) which represents p. Then there exist
integers r and s such that L = [p, r, s]. Note that r* -4ps=d and (p, 1, s)

=1. Let r = 2pt + h with 0 < h < 2p. We have h2 = r? = d (mod 4p).



230 HABIB MUZAFFAR and KENNETH S. WILLIAMS

Hence h = h; or hy. Thus

2
L = [p, 2pt+h,8]=|:p, hh—_—ﬂ

= Kp or K;l.

Also

Hg(p)= Y1 = Y1
0<h<2p h=hy, hg
h2sd(mod 4p) [p, A, *? -d)/4p]=K
[p. h, (h%-d)/4p]-K

The required result follows from this and the definition of K p (Definition
5.2).

(c) This follows from Lemma 4.1, Lemma 4.3 and (27).

(d) Let L be a class of H(d) that represents p. Then there exist
integers r, s with (p, r,s) =1, r?-4ps=d and L = [p, r, s]. Let
r=2pt+h, 0<h <2p. Then h? =r? = d(mod 4p). By Lemma 3.2 we
have k(p, d) = 1. The unique solution h of A% = d(mod 4p), 0 < h < 2p
is
0, if p> 2, d=0(mod4),

p, if p>2,d =1(mod4),

0, if p=2,d=8(modls6),
2, if p=2,d=12(mod16).

Hence L = [p, 2pt + h, s] = [p, h, (h? - d)/4p] = K. The result for H g (p)

follows at once.

Lemma 5.4. Let K € H(d) and let k be an integer with k > 2. Then

D Hy(p), if pld,
Hg(p*) = { =k
0, if pld, plf,

where the sum is taken over all L € H(d) with * =k
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Proof. First we consider the case p|d. We have
Hy(p*)= Z L
0sh<2pk
hzsd(mod 4pk )

(o*, b, (h2-d)sp* 1=K

For each h occurring in the sum we have p|h. Thus, by Lemma 2.3, we

have
k
h?-d h?-d
[pk, h’ k }z{p’ h, —_—_:1 .
4p 4p
Hence
Hg(p*) = !
Osh<2pk

hZ=d (mod 4p*)
[p. h, (h%-dyaplt=K

21

0<hy<2p 0$h<2pk
h=hj(mod 2p)

2 =d (mod 4pk)

(p. b, (W2-d)apl=K

>
0<hy<2p 05h<2pk
hi?Ed(mod 4p) h=h1 (mod 2p)
h2=d (mod 4p*)
[p. b, (h2-d)aplt=K

For h = hy(mod 2p), we have [p, h, (k% - d)/4p] = [p, hy, (h{ ~ d)/4p]. Thus

Hg(p*) = Z Zl-
k

0<hy <2p 0<h<2p
h125d(mod 4p) h=hj(mod 2p)

2 k
[p. by, (b -a)apl =K h7=d(mod4pT)

By Lemma 2.2, corresponding to each Ay, there is a unique h satisfying

the conditions of the inner sum. Thus
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Hg(p*) = Zl = z Zl

0<hy <2p LeH(d) 0<hy <2p
h12 =d (mod 4p) hi?' =d (mod 4p)
(p. by, (b2 -d)yaplt =K [p. by, (K2 -dyaplf=K

[p. 1. (h}-d)apl-L

21 = D HLp)
LeH(d) 0<hy <2p LeH(d)
I*-K  h%=d(mod4p) kK

[p, by, (hf-d)ap)=L

In the case p|d, p|f, the result follows from Lemma 5.1.

Lemma 5.5. Let n; and ngy be relatively prime positive integers. Let

K € H(d). Then

Hg(mng) = z HK]("'I)HKQ("'Z)J
K1K9=K

where K,, Ky run through all the classes in H(d) whose product is K.
Proof. We have

Hg(yng) = Z 1.
0<B<2njng
B%=d (mod 4n1ng)
[ning, B, (B2-d)/anng]=K

If B(0 < B < 2mny, B? = d(mod 4nyny)) is such that [nmng, B,
(B? - d)/Anyny] = K, then as (1, ng) = 1, we have

2 2 _
|:"'l’ B, B_—i] e H(d) and [nz, B = d} e H(d).
2

4ny

Hence
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Conversely, if B(0 < B < 2nny, B? = d (mod 4nyn,)) is such that

2 2
linl, B, b = d}, [”2, B, L _dJ e H(d)
4IL1

47L2
and
2 2
|:7L1,B, —d][lbz, B, B _d:|=K
n 4ng
then
2
{nlnz, B, d} =K
n1n,2
Thus
H g (mng) = 1
0<B<2nng

B?=d (mod 4ninsy)
[n1, B, (B®=d)/dn e H(d)
[ns, B, (B2—d)/4/12]eH(d)
[, B, (B*-d)/4ny][ng, B, (B%-d)/4ns]=K

= 2 D!
K1K2 =K OSB<2n1ng
B%=d (mod 4nyns)
[m. B, (B*-d)/dn =K,
[na, B, (B®=d)/4ns =Ko

Sy oy sy
K1Ko=K 0<b <2m 0<B<2njng
0<by<2ny  B%=d(mod 4nyng)
B=b; (mod 2ny)
B=by (mod 2ny)
[m, B, (B®=d)/4n =K,
[no, B, (B*-d)/4ns =K
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- > 2 2 2y

K1K9=K 0<bj<2m 0<by<2ng 0<B<2ning

bE=d (mod 4n;) bf=d(mod4ny) BZ=d(mod 4nyny)
B=b; (mod 2n7)
B=by (mod 2ng)

[Ill, B, (32 —d)/4ll1]:K1
[ng, B, (B> -d)/4ng)=Ky

- b3 2. 21

K1K2=K 0<by <2my 0<by<2ng 0<B<2njng
bi=d(mod4n;) =d(mod4ng)  BZ%=d(mod4njny)

2
[, by, (bF—-d)/Am =Ky [n3, by, (b3 -d)/Anz =Ko gzglzgggg;;;))

= Z 21 (by Lemma 2.1)
K1K9=K 0<by <2ng 0<bg<2ng
bf=d(mod 4n;) b%=d(mod4ny)
[, by, (b ~d)/dm =Ky [ng, by, (b3 -d)/nz =K

= Y Hy (m)Hg, ().
K1K3=K

as asserted.

6. The Quantities [K, L] and (K, L)

As H(d) is a finite abelian group, there exist positive integers hy, hg,
., hy and Ay, Ay, ..., A, € H(d) such that
h1h2 hv = h(d), 1< hll h2 || hv: ord(Ai) = hi (l = 1, vees V),

and, for each K € H(d), there exist unique integers &y, ..., ky with
K=al..aAb©<k<hj1<j<v)

We fix once and for all the generators A, ..., A,. With this notation we

make the following definition.

Definition 6.1. For j =1, ..., v we set

il’ldAj(K) = kj,
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and for K, L € H(d), we set

Y indAj. (K)lndAJ (L)

LEEDY hj

=1 j

The following is immediate.

Lemma 6.1. Let K, L, M € H(d). Then
[K, L] = [L, K], [K, I] = 0, [KL, M] = [K, M]+ [L, M](mod 1),

and

[K", L*] = rs[K, L](mod 1) for integers r, s.

Definition 6.2. For K, L € H(d), we set
X(K1 L) _ eZm'[K,L]‘

The next lemma follows immediately from Lemma 6.1 and Definition
6.2.

Lemma 6.2. Let K, L, M € H(d). Let r and s be integers. Then

XK, L) = x(L, K), (K, I) =1, (KL, M) = (K, M)x(L, M), |

and
wK", L7) = (K, L)".
Moreover
k)= P TR
UEH(d) ’ if K =1,
and

h(d), if K =L,

=1
XK, UL, U)™ = {0, if K= L.

UeH(d)

7. The Quantities Yg(n), j(K, d) and Z:_l YKE“)

n

It is convenient to make the following definition.
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Definition 7.1. Let K € H(d). We set

Ye() = > 1K DHL().
LeH(d)

If p is a prime such that p|f, we have by (26),
0 < H(p’, d) < 2f.
Thus for K € H(d), we have

[Ye(@)|=| D x(& DHL(P)

LeH(d)

< > H(p)=H(p’, d)<2f, 30)
LeH(d)

by (28). We next develop the properties of Y (n).
Lemma 7.1. Yx(1) = 1 for K € H(d).
Proof. We have

Ye) = D uK LHL0) =K, 1)=1
LeH(d)

by Lemmas 5.2 and 6.2.

Lemma 7.2. Let K € H(d) and let n; and ny be relatively prime

positive integers. Then
Yi(mng) = Yg () Yg (n2)-
Proof. We have

Yi(ung) = Y, K, L)H(unz)
LeH(d)

(K, L) Z Hyp, (m)Hp, (ng) (by Lemma 5.5)
LEA) Bzl

I

WK, LiLy)Hy, (m)H,, (n2)
Lefid) Lilg=L

= Y > K LUK, Ly)Hy, (m)Hy, (1)
LyeH(d) LycH(d)
(by Lemma 6.2)
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= > K L)HL(m) Y, w(K, Ly)Hp, ()

LieH(d) LycH(d)
=Yg () Yg(n9),
as asserted.

Lemma 7.3. Let K € H(d) and let p be a prime.

(a) If (%) = -1, then Yg(p“) =0 for a 2 1.

o) If (%) =1, then Yg(p*) = x(K, K,)* + x(K, K,)™* for o > 1.
©If pld, plf, then

YK(po() = {X.(K’ Kp)1 Lf a=1,

0, if o> 2.
(d) For all primes p and all integers o > 0, we have
| Yr(p®) | < 2f.

Proof. If p|d, we have by Lemma 5.4,

Ye(®) = . w(K LHL(pY) = Y (K. L)Y Hy). G
LeH(d) LeH(d) MY=L

(a) This follows from (31) and Lemma 5.3(a).

(b) Let (ﬂ) =1. If Kj # K., then we have, by (31) and Lemma
p

5.3(b),
Ye(®) = Y XK L)Y Hy(p)+uK K3) Y Hy)

= a
L#K3,Kp® M®=L M®=K}

UK, K*) Y, Hy(p)
M*=K;*

UK, Kg)HKp (p) + 2K, K;a)H[(;}l ()

Il

(K, K%)+ (K, K;*).



238 HABIB MUZAFFAR and KENNETH S. WILLIAMS

Similarly, if Kg = K;,u, we have

Yr(p®) = 1K, Kp) Z Hy(p)
M%=K%

_ MK KR Hg, (p) + Hya (), i K = K,
X(K7 Kg)HKp(p)’ if Kp = K;)ly

= 2x(K, K3p)
= (K, Kp)+ w(K, K,%).
Thus, in both cases, we have
Yr(p*) = x(K, Kp) + (K, K,*) = (K, K,)* +x(K, K,)™%,
by Lemma 6.2.
(c) Let p|d, ptf. By Lemma 5.4, we have

Yg(@®)= Y. uK L)HL(p*)=0if a>2.
LeH(d)

Also, by Lemma 5.3(d), we have

Ye(p) = Y, (K, L)HL(p) = 1K, Kp).
LeH(d)

(d) The asserted inequality follows from Lemma 7.1, (30), and parts
(a), (b), (c) of this lemma.
We next investigate the series Z YK—(”')

s
n=1 1

Lemma 7.4. Let p be a prime and let K € H(d). Then the series

i Yk (p’)

Js
j=0 P
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converges absolutely and uniformly for s > 1. Moreover, for s 21, we

have
: o(8)-
1
F 1-—
Js -1\’ ?
= op [1 K, Kp)){l XK K,) ] P
p’ p’

+M, if pld, plf.

| p’
Yg (p)

Proof. By Lemma 7.3(d) the series Zj‘o:o converges absolutely

P’
. o Yg(p') .
and uniformly for s > 1. The values of z}._o = for the cases given
D
in the statement of the lemma follow immediately on using Lemmas 7.1
and 7.3.

Lemma 7.5. Let K € H(d). Then for s > 1, we have

0

Yg(n) _ p>
Z:; n® (5{1 (I_X(K, Kp)j[l—X(K’ Kp)_lJ

x H(l MK Kp) K")} i YK(PJ).
pld '

plf

Proof. Let s > 1. For any prime p, Lemma 7.3(d) gives

>

=1

Y (p') )| <
p




240 HABIB MUZAFFAR and KENNETH S. WILLIAMS

Hence Z i

Y J
LI:L‘ converges so that

» =l p’
o0 Y j [= o] . jl
Op- £
p j=1 p j=01 P

The result now follows on using Lemma 7.4.
Lemma 7.6. Let K(# I) € H(d). Then

-1
P

s—1* 8 s

p p

exists and is a nonzero real number such that j(K, d) = j(K™!, d).

Proof. The existence of the above limit and the fact that it is nonzero
has been proved by Bernays [1, Teil I, Section 3, Section 4, pp. 36-68], The

fact that it is real follows easily since

H [1 _ X(K’ Kp)][l _ X.(K_l’ Kp)}
: p° p°

(g

is real for s > 1. The equality j(K, d) = j(K~', d) is clear.

Lemma 7.7. Let K(# I) € H(d). Set

n@) = J] [1 - —15] (33)
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[ee}

Y (p’)
A(K, d, p) = zKij (34)
j=0 P
UK, d) = H(1 + M]H A(K, d, p). (35)
pld # ol
plf
Then
‘4 = kg DA olt)
as s » 1%,

. 2 Y (p?
Proof. By the uniform convergence of Z % for s >1 (Lemma
Jj=0 P

7.4), we have

iM - A, d, p)(1+o(1)) (36)
= P"

as s > 1. Also

I1 (1 - iz] - 4(d) (@ + o), €0
D

K Ky) Ll N X<K_Kp_)j 1+ o)), (38)
s P

p

as s > 17. The required result follows from (36), (37), (38), Lemmas 7.5
and 7.6.

Lemma 7.8. Let s > 1. Then

4@y YIL(S”) = wz 52 B i)
n=1 1

n=1 n
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Proof. We have

n=1 " LeH(d)m=1""  n=1 T
=1

= D D 2 HLm
LeH@) =L V7
1 R; (I, d

-2 Lbd) gy (29)
w(d)  Gran = !
1 N(, d

completing the proof.

8. The Series ZRK(’:’ d)

n=1 n

. . < Rg(n,d)
We now turn our attention to the series Z ———s
n=1 N

Lemma 8.1. Let K € H(d). For s > 1, we have

o0 o0

Rx(n,d)  w(d) . o Y, (1) 1 N(n, d)
Y Ans :Z(d) > LK) 1[c(2s); ’;Ls ]+h(d)z 3

n=1 LeH(d) n=1 T

Proof. We have

XL, K)' Y w(L, M)Hy ()
LeH(d) MeH(d)

Hy () Y x(L M)y(L, K)”
MeH(d) LeH(d)
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= Hg (n)h(d),

by Lemma 6.2. Thus

1 o
Hy(n) = W)Le;d) w(L, K'Y, (n).

Hence, for s > 1, we have

ZRK(” ) d)z Z Hy (n/m?)

n=1 m~ Jn
- H

- w(d)ges)y Hx)
n=1 T

- “"‘f}f})’s S LS @ K

n=1""" LeH(d)

S ST SR [c@s)z YL—“)J
d) n=1 1

_w(d) Y; (n)
"), (L K) [C(z )Z L J

w(d) Y (n)
* @) " )Z .

The result follows on using Lemma 7.8.

We now consider the behavior of the series Z N(n, d) as s » 1%,

s
n=1 1

We denote Euler’s constant by y.

Lemma 8.2. As s » 17 we have

i N(n, d) _ 2nh(d) 1 + B(d) + O(s - 1),

n=1 n® V‘dl 8—1
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where
2nth(d) 4nyh(d)
B(d) = log(2n) + ————
(d) 74| g(2m) + Ja]
_ 2nh(d) A f)lo
\mrg;p(f)gp
nh(d)w(A)
J_%mxnimj GAJ 9
and

" ~1)(1 - (4/p))
a, (A f)=— .
! 27D o 1) (p - (a/p))

(40)

Proof. Let G e G(d). Recall from (16) that |G(d)|=2"@. By

[9, Theorem 10.2], we have as s — 1,

3 RG(” d)__mhd) 1 , p.(d)+0(-1), (41)
; U1 gy s -1 c(d)
where
Bo(@) = gy B@)- WTdZ@M%iG”m“” (42)
1(‘;=1>1
8(dy, d, G) = ~ w(d)yq, (G)f(d/d)h"(dy)h(A(d/dy))

w(A(d/d,))2! D

5], (40
~ 12 ?
X — 1- 1 =
"”/Zd/dl) ™ oifim . P

< [1 1-~22\, (43)
plm p
plfim

ng and h*(dy) are the fundamental unit and classnumber of the real
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quadratic field Q(y/d;), respectively, F(d) = {d; : d; is a fundamental
discriminant, dj |d and d/d; =0, 1(mod 4)}, and each vg is a group

character of G(d), see [9, pp. 277-279]. Hence, as s — 17, we have

o0

ZM:?‘L Z Rg(n, d) (by (19))

s
n=1 I n=1""" GeG(d)

@0

Ri(n, d
. 3§t

GeG(d)n=1 Tt

> [2“;;5‘1‘% Lt Bold) + Ofs - 1)] by (41)
GeG(d)

_2nh(d) 1

Bg(d) + O(s - 1).
\/m s_1+cezc;d) e

But

Bg(d) = B(d) - & 2% B(dy, d, G)log(ng, ) = B(d),
GezG;d) ¢ ‘/mGeGd) dlezF(d) . 4

d] >1

since

v4,(G) = 0 for dj > 1,
GeG(d)

see [9, p. 279]. This completes the proof of the lemma.

Lemma 8.3. Let K € H(d). Then

0

z Rg(n,d) _ 2n 1 + A(K, d) + o(1),
n® |d|s-1

n=1

as s > 17, where

. B(d) n*w(d) -1 4(d)
AK, d) = 3155+ gy L;(d)x(L, K) j(}L, d)l(L, d).  (44)

L=I
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Proof. The asserted result follows on using Lemmas 7.7, 8.1 and 8.2.

Lemma 8.4. Let K = [a, b, c] € H(d). Then

z RK(IL, d) _ 21 il 4 B(a, b, C) & O(l),

e~ = Jd| s

as s - 17, where

B(a b, C) _ 4m _ 27t 10g(| d l) _ 87[ log(a_]/;

ddl Jld]l - Jid]

Proof. This is Kronecker’s limit formula, see for example [18,
Theorem 1, p. 14] or [9, p. 300].

{59

9. Evaluation of | n((b + Jd)/2a) i

We are now in a position to prove our main result. It is convenient to

define for K € H(d),

ny| dw(d)

48h(d) (LK)

LeH(d)
L#I

E(K, d) = 4 (d) UL, @) (46)

j(L1 d

Theorem 1. Let K = [a, b, c| € H(d). Then

{258 e

pif

o~ V4

Proof. By Lemmas 8.3 and 8.4, we have
A(K, d) = B(a, b, ¢). 47

Using (44) and (45) in (47) and after simplifying and exponentiating the

resulting equality, we obtain the asserted result.
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We remark that the product H paP(A’f )4 in Theorem 1 can be
plf

replaced by Hpa"(A’/)M, as a,(A, f) =0 for p|f, see (40).
p

Next, we use Theorem 1 to deduce the following result of Kaneko [10],
Nakkajima and Taguchi [13], and Kaplan and Williams [11], which is the
extension of the Chowla-Selberg formula [5], [17] to arbitrary discriminants.

Corollary 1.

a4

h(d)/4
b++d)| _ ~h(d)/4 ap(A,f)
n[—za JI—(%IdI) Ilp"

la,b,cleH(d) p|f

w(A)h(d)

[A] (A/m)) 8h(aA)
m
: [H i)

m=1

Proof. The result follows on multiplying the result of Theorem 1 over
all the h(d) classes of H(d) and the observation that

oL, &) D g

KeH(d) LeH(d) J(L, d)
LzI1
t1(d)I(L, d _
-~ 1(()L( d) ) X(L l’ K)
LéA@ T\*™ KeTi(d)
L#I
= 0’

by Lemma 6.2.

Next we deduce the following result of van der Poorten and Williams
[16] from Theorem 1.

Corollary 2. Let d be a fundamental discriminant with d < 0. Let
K =[a, b, c] e H(d). Then
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w(d)
g V4 [ }‘ @nd|) 1/4[||d|| 1“[ )d/’n.)]gh(d)
nw(d)y| d | t1(d)
x exXPl ~ —enid) LEH(d)X(L, K) j(lL’ i UL, d)|.

L#1

Proof. Since d is fundamental, we have A = d and f = 1. From (35)

we obtain
(L, Kp)
l(L, d) = (1 + L__P_]
[T+
Thus
-1 -1
(L, d) = H[l " L(L__pr_)] ) H[l + E(L—K"—)] - UL, d)
pld # pld F

since (L™, K,) =L, Kl—,l) by Lemma 6.2 and K, = K;)l if p|d and
p | f, see Definition 5.2. Hence

1 ti(d)
x(L, K) AL, d) UL, d)

LeH(d)
L=1

(L7, K) jg,(,dc)z) UL, d)

Il

LeH(d)
L+l

tl(d) - d
x(L, K)———(L d)l(L )

LeH(d) J )
L=I1

t1(d)
XL, K) 5~y UL ),

LeH(d) (L, d)
L=l

since j(L, d) = j(L', d) by Lemma 7.6. The result now follows on using
Theorem 1.
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10. Evaluation of Weber’s Functions at Quadratic Irrationalities
We prove
Theorem 2. Let K = [a, b, c] € H(d). Set
go =a+b+c, q =¢, g9 =a,

1, if q¢; = 2(mod 4),
% 1, if q; = 0(mod 4), b = 1(mod 2),
" |12, if q; = 0(mod 4), b = 0(mod 2),
2, if q; =1(mod 2),
fori =01, 2,

M, = [Zaxo, Ao(2a + b), %O(a +b+ c):l e H(\%d),

M, = [2ax1, Ab, x—zlc} e H(\%d),
My = |22 0, a0, 200c| € HOZd
2 =[5 @ Agb, 2h5c| € H(A3d),
0, ifA =1,
my=2-2"2M) 21y e o g
—2, if A; =1/2,

for i =0,1, 2. Then

1-(A/2) ,-2-v
f,(b +4d J ’ _ ( 2 )1/ ! 2"li‘—z-EA§2§2 ’ meE(K, d)-E(M;,22d)
. 2a }"i

fori=0,1, 2.

Proof. We note that A(A%d) = A(d) = A and f(A3d) = rf(d) = Af.
Applying Theorem 1 to the classes K, M,, M; and M,, we obtain

expressions for

/g 1+b+w/3 = .-
5} | )| e [
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Using these expressions in (4), (5) and (6), we obtain

1/4 o .. T
\ ﬁ(QETJd_”:( % ] [H @2 -p(s /4 | E(K, Q)B4 55)
P

fori:=0,1, 2.
If p is odd, we have a,(A, A;f) = ap(4, f) as vy (A;f) = vp(f). Thus
. L(8/2)5-2-02(f)
H (p(8.2if)-ap(A M4 _ olaz(d2if)-a2(8 N4 _ o "2-(8/2)
p = ==
p
as required.

The following theorem follows easily from Theorem 2 as f;(v-n)e R*
for: =0, 1, 2.

Theorem 3. Let n be a positive integer and let d = —4n. Let K=
[1, 0, n] € H(d).

(@) n = 0(mod 4). Set

My =[4, 4, n +1] € H(4d),

n d
My =[1, 0, 4n] € H(4d).

Let n = 4%y, where o is a positive integer and p =1, 2 or 3 (mod 4).

(i) p =1 or 2(mod 4) (so that A is even and va(f) = o). We have

1
fo=n) = 920+3 LE(K,d)-E(Mo, 4d)

2a+1_1
fi(=n)=2 20+2 E(K,d)-E(My,d/4)

1
fo(N=m) = 92%+3 LE(K,d)-E(M3,4d)
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(i) p = 8(mod 4) (so that A = —pu(mod 8) and vy(f) = a +1). If B=
3 (mod 8), we have

1
fo(d=n) = 9320+2 JE(K, d)—E(M0,4d)’

3:2%-1
AT = 23257 B, d)-BMdJ8)

1
f2( I IL) " 23.2a+2 eE(K,d)—E(MzAd)'

If u = 7(mod 8), then we have
fo(‘/——n) _ eE(K,d)~E(M0,4d)’
fl(‘/__”/) — &eE(K,d)—E(MI,d/4)’

fod=n) = oE(K,d)-E(M3,4d)

(b) n = 1(mod 4) (so that A is even and f is odd). Set

M, - [2, 2, ”;1] e H(d),

M, =[4,0, n] e H(4d),

M, =1, 0, 4n] € H(4d).
Then
fo (S = 2V E(K.d)-E(Mo,d).

fi(=n) = 28 E(K.d)-E(My,4d)
fo(N=n) = 2Y8EK d)-E(Mp,4d)

(c) n = 2(mod 4) (so that A is even and f is odd). Set
My =[4, 4, n+1] € H(4d),
M, = [2, 0, %] e H(d),

M, =1, 0, 4n] € H(4d).
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Then
fo(W= 1) = 2V/8E(K,d)-E(Mo,4d)
fi(=n) = 24 EE.d)-E(M.d)
fo (V=) = 2V/8E(K, d)-E(Mp,4d),

(d) n = 3(mod 4) (so that n = -A(mod 8) and f = 2(mod 4)). Set

_ n+1 d
Mo =112 (%),

M; =[4, 0, n] e H(4d),
My =1, 0, 4n] € H(4d).

Then, for n = 3 (mod 8), we have
fo(N=m) = 2Y/3E(K.d)-E(Mo.d/4)
fid=n) = 9l/12 ,E(K,d)-E(My,4d)
fo (V=) = 2112 (K, d)-E(M3, 4d)

and, for n = 7(mod 8), we have
fo(N=n) = V2B K d-EMo,d/4)
f(=7) = eEEA-EMy,4d)
B(=R) = BB, 2d)

11. Evaluation of f(~v-19)

We illustrate Theorem 3(d) by using it to determine the &nown)
value of f(+—19), see for example [2], [20]. In another paper we plan to

use our results to determine other values of Weber’s functions.
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We take n =19 so that d =-76, A=-19, f=2 K =10, 19]
=1 e H(-76) and M, = [1, 1, 5] € H(~19). By Theorem 3(d) we have

f(m) _ 21/3eE(K,—76)—E(M0,—19), (48)

where E(K,d) is defined in (46). Since h(-19)=1, we have E(M,,-19)
=0, so that (48) becomes

F(V=19) = 21/3E(K.~76), (49)

Also H(-76) ={I, A, A_l}, where A = [4, 2, 5]. We have v = 1, hy =38,
x(A, A) = e2mi/f3 w4, A1) = e 2m/3 and (A1, A = e2mif3, By (46)
‘we have

719  t(-76)
36 (A, -176)

E(K, -76) = (A, -76)+ (AL, - 76)),

since j(A, —-76) = j(A™!, —=76) by Lemma 7.6.
For L = A and A7}, we have by (35),

I(L, -76) = (1 + X(L’TK“’—))A(L, -176, 2) = % A(L, -76, 2).

Next, by (34), we have

@ j
A(L, -76,2) =1+ Z YL(}.Z )
2

j=1
By Lemma 4.3 we have
H(2/,-76) =0 for j=1 and j > 2.
For any class M € H(-76) we have by (27),
0 < Hy(2/) < H', -76)
so that

Hp(2/)=0for j=1 and j > 2.
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Thus, by Definition 7.1, we obtain

Y. (2) = Z 2(L, M)H;(2/) =0 for j =1 and j > 2.
MecH(-76)

Hence

A(L, -76,2) =1+

From Definition 5.1 we deduce that

HI(4) =0, HA(4) =1, HA—I (4) =1,
so that, for L = A and A'l, we have

Y (4) = Z W(L, M)Hp(4) = 213 7203 = _

AL, -76,2) =1~

(L, -76) = 15/19 for L = A and A}

MecH(-176)
Hence
Thus
so that
E(K, -176) =
By (32) we have
j(A, -76) = lim (

s—>1t /-
(L):l

(50)
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1 2 1 1
im ] (1-—5) T [1__2]
T P () PP
p p )
Kp=K Kp+K
Applying a result of Spearman and Williams [19] to the irreducible
polynomial x3 - 2x - 2, we deduce that if [%) =1, then

x% — 2x — 2 = 0(mod p) is solvable < p is represented by K = [1, 0, 19]

<:>Kp=K.

Hence

2
j(A, -76) = lim H (1 = —Lj

s—>1+ -76 1 p
[
x%-2x-2=0 (mod p)
solvable
11 ]
X 1+—+ ; (B1)
I1 ( p* p*

76

(Fh
%% -2x-2=0(mod p)

insolvable
As disc(x® - 2x - 2) = -76 < 0, x3 —2x -2 has one real root and two
non-real roots. Let 6 be the unique real root of c(x) = x% — 2x — 2. As
c1)=-3<0 and ¢(2) =2 >0 we have 1 < 0 < 2, so that 6 is positive.
We set F = Q(8). Next we link E(K, —76) to the Dedekind zeta function
¢ (s) of the cubic field F. By a theorem of Llorente and Nart [12], we find

that rational primes decompose into prime ideals in the field F as follows:

2=P3 NP)=2,

19 = PQ?, N(P) = N(@) = 19.
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If (%} =1 and x% - 2x — 2 = 0(mod p) is solvable, then

p = PQR, N(P)= N(@Q) = N(R) = p.
If (:;—6) =1 and x3 - 2x — 2 = 0(mod p) is insolvable, then

p=P, NPP)=p

If (ﬂ) o i hei
D

p=PQ, N(PP)=p, N@ =p

Thus

tr(s) = [Ja-@v@y=y?
P

=@-2zoyta-w? [T a-7

(ﬂ) 1

p

x%-2x-2=0(mod p)
solvable

~ ]  a-27 [ a-pta-p)"

(-_72)=1 (ﬂ):_l
p p
x3-2x-2=0(mod p)

insolvable

=¢a-19" [ -

(ﬁ)ﬂ

p

x® -2x-2=0(mod p)
solvable

5z I—[ a +p—s + p—Zs)—l H i - p—23)—1

(ﬂj=1 (ﬁ)z_l
p p
x3-2x-2=0(mod p)

insolvable
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= £(s)c(28) (1 - 272) (1 - 197%) ' (1 -197%)

-2 ]I @-p=)?

(ﬂ)zl (ﬁjzl
P P
%3 -2x-2=0(mod p)
solvable

= = -1
1+p°+p =)

X

11
(h
x3-2x-2=0(mod p)

insolvable

Hence

. _n? 1 1) #(-76) _ 3=
sl:r;x)f(s—l)CF(s)—?(I—Z)(l+ﬁj Tk = e B, ~T6). (5)

by (50), (51) and (33). It is well-known that [14, p. 326]

28+t T[tRFhF

lim (s - D) = -4

s—1 Wg | dr ‘

where
s = number of real embeddings of F,
9t = number of imaginary embeddings of F,

hp = class number of F,

Wp = number of roots of unity in F,
dp = discriminant of F,

Rp = regulator of F.

Here we have

S=1,t=1,hF =1,WF =2,dF =—76,RF =1og(1+6),

as 1+ 0 is the fundamental unit of F, see [6, p. 519]. Hence
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lim (s - 1)¢p(s) = 7’1‘_51og(1 +0). (53)

so1*

By (52) and (53), we obtain

E(K, -76) = %bg(l +0) = log[zTe/:;)

since 03 = 20 + 2. Thus, by (49), we have
f( [_ 19) - 21/3eE(K, —76) -, e.

We have reproved the following result of Weber [20].

Theorem 4. Let 0 be the unique real root of
x% - 2x-2=0.
Then
f(-19) = ®.
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