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Abstract

Simple conditions are given which ensure that the cubic equation
B rux-1=0 (t,uez)

has a unique real root 6 >1 which is the unique fundamental unit

(> 1) of the cubic field K = Q(0).

1. Introduction

Let t and u be integers. Set

D = 4t3 + u?? ~18ut - (4u® + 27). (1.1)
We suppose that
t+u <0, (1.2)
t—u # 2, (1.3)
D < 0. (1.4)
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Conditions (1.2) and (1.3) ensure that the cubic polynomial

flx) = x3 +tx% +ux -1 (1.5)
satisfies

f@) <0, f(-1)=0. (1.6)

Thus f(x) does not have + 1 as roots and thus is irreducible in Z[x]. The
integer D is the discriminant of f(x) [4, p. 83]. In view of (1.4), f(x) has

exactly one real root 8. Moreover, by the first inequality in (1.6) we have
6> 1. (1.7)

Let r +is and 7 —is (r € R, s € R\{0}) be the two nonreal roots of f(x).
Then

X3+ tx? +ux—-1=(x-0)(x—(r+is))(x - (r—is))
=3 —@+2r)x® + 200+ (2 + s2))x - 0(r? + s%).
Thus
t=—(0+2r) w=20+(@2+s%), 1=60%+s%).

By (1.7) we have

so that | r| < 1. Hence
t=-0-2r<-1-2r<-1+2r|<-1+2=1
As t € Z we deduce that
t <0. (1.8)
Further we have

t2 —2u =(0+ 2r)? — 2(2r0 + (r? +s?)) = 02 + 2r2 — 252

>1-2(0r2+s?)>1-2=-1
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so that as t2 — 2u € Z we deduce

t2 > 2u. (1.9)

Set K = Q(6). The field K is a real cubic field whose two conjugate fields
are nonreal. Thus, by Dirichlet’s unit theorem [2, Theorem 3.6, p. 101],

the ring Ok of integers of K has a unique fundamental unit n > 1 such

that every unit of Oy is of the form + n* for some k € Z. As 8 € K and

0 is a root of a monic integral polynomial (namely f(x)), we have
0 € Og. As 6(6% + 10 + u) = 1, we see that 0|1 in Ok . Thus 0 is a unit of
Ok . Hence 6 = +n* for some k € Z. As 6 > 1 and n > 1 we must have

0=n* keN. (1.10)

In this note we give a simple criterion on ¢ and u which ensures that

2. Criterion for Fundamental Unit n of O to be 6

With the notation of Section 1, we prove the following theorem.

Theorem. Let M = M(t, u) be the largest positive integer such that

M2|D, % = 0 or 1 (mod 4), |M£2| > 93 @.1)

Let m = m(t, u) be a real number such that

2
f(m)>0, m=> (%)3(= 1.31 approx). (2.2)
If
I D |1/2
(27 + 4m3/2)12
then

0 =n. (2.4)
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Proof. We denote the discriminant of K by d(K) and the index of 6
by ind 6 so that

D = (ind 0)%d(K). (2.5)

Thus (ind 0)? | D. By Stickelberger’s theorem [2, Theorem 2.6, p. 59] we
have d(K) = 0 or 1 (mod 4) so that

D
(ind 6)?

=0 or 1 (mod 4). (2.6)

As K is a real cubic field with two nonreal conjugate fields, we have
| d(K)| = 23 so that

DLy .
(ind 0)

[3, Table 3.2, p. 437]. By the maximality of M we deduce that

ind® < M. (2.8)
Hence by (2.3) we have
|d(K)| = (-‘f'—)z > IMAZI > 27 + 4m3/2. 2.9)
ind 6
2
Thus, as m > (§j3, we have
|d(K)|227+4%=33. (2.10)

Then, by [1, Question 35, pp. 152-153], we deduce that

8 > |d(K)|-27

i (2.11)

From (2.9) and (2.11), we obtain

n3 > m?/2 (2.12)
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and so

n2 > m. (2.13)

Since f has a unique real root 6 > 1 and f(m) > 0, we must have

m > 6. (2.149)

From (1.7), (2.13) and (2.14), we deduce that

1<6<n (2.15)

Then, from (1.10) and (2.15), we obtain 6 = 1.

We emphasize that it is not necessary to know the discriminant d(K)

of the cubic field K in order to apply the theorem.

3. Polynomials having Fundamental Unit n as a Root

Running through those integers ¢ between —39 and 0 (recall (1.8)) and
those integers u between —39 and 39, which satisfy (1.2), (1.3) and
-1000 < D <0, we obtain the following table of polynomials

f(x) = x3 + tx% + ux — 1 of discriminant D having the fundamental unit n

as a root.

It should be noted that the theorem does not always find the
fundamental unit of a real cubic field with two nonreal embeddings
although it does so in a great many cases. For example if K = Q(6),

where 0 € R satisfies 0% - 02 -1 = 0, then it can be deduced from [3,
Table 3.2, p. 437] that the fundamental unit (> 1) of Ok is 6. However in

this case

1
|D*

D =-31, M =1, m = 1.466 (approx), = 0.953 (approx) < 1.

D[

3
(27 + 4m?2)
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1
f(x) D M m ngl
(27 + 4m2)2

03 —1x? —1x -1 _44 1 1.840 1.091
23 —2x2 +0x -1 -59 1 2.206 1.213
23 —3x2 +1x -1 -76 1 2.770 1.293
€3 =922 _ 9% _1 83 1 2.832 1.342
3922 _1x-1 _87 1 2.547 1.418
03— dx? 4 % — 1 107 | 1 3.512 1.417
23322 4 0x -1 “135 | 1 3.104 1.662
2 _6a2 4 dx -1 ~139 | 1 5.279 1.357
X3 —3x2 _2x -1 175 |1 3.628 1.790
3 dx? 4 1x -1 —199 | 1 3.807 1.873
23 —10x2 + 6x -1 -211 1 9.372 1.220
o me® e 1 231 | 1 5.729 1.680
x3 —4x2 - 3x -1 —2417 1 4.686 1.912
3 —8x2 +5x -1 255 | 1 7.338 1.547
x3 —4x2 +0x -1 -283 1 4.061 2.177
3 _ax? _2x 1 331 | 1 4.495 2.255
23 _dx? _1x -1 335 | 1 4.288 2.315
B 72 1 dx -1 367 | 1 6.400 2.000
3 x4 lx-1 416 | 2 4.836 2.446
xS _5x2 _3x -1 —464 2 5.571 2.414
X3 —6x2 —dx —1 491 | 1 6.627 2.271
3 522 4 0x -1 527 | 1 5.040 2.701
3 —6x2 +2x -1 -563 1 5.679 2.634
3 5 —1x -1 588 | 2 5.228 2.803
23 —9x2 +5x -1 —608 2 . 8.421 2.208
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23 —10x2 - 6x -1 —643 1 10.577 1.977
2 —11x% +6x -1 —671 1 10.435 2.036
x3 —8x2 —Bx -1 —695 1 8.596 2.332
x3 —8x2 +4x -1 731 1 7.484 2.591
23 —6x2 +1x -1 =751 1 5.859 2.995
23 —7x2 _4x -1 -863 1 7.548 2.802
%3 —6x2 +0x -1 -891 3 6.028 3.215
x3 —6x2 —2x -1 -931 1 6.341 3.201
xS —6x2 —1x -1 -959 1 6.188 3.290
xS —7x% +9x -1 -983 1 6.725 3.187
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