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Abstract

Let K be an algebraic number field of degree n. The ring of integers of K
is denoted by Og. Let P be a prime ideal of O, let p be a rational

prime, and let a(z 0) € K. If vp(a) > 0, then « is called a P-integral
element of K, where vp(a) denotes the exponent of P in the prime ideal
decomposition of aOg. If a is P-integral for each prime ideal P of K
such that P|pOg, then a is called a p-integral element of K. Let
{01, 02, ..., ®,} be a basis of K over @, where each o;(i € {1, 2, ..., n}) is

a p-integral element of K. If every p-integral element o of K is given as

a = Q0] + agwg + -+ + ap0,, where a; are p-integral elements of @,
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then {0, 09, ..., ®,} is called a p-integral basis of K. In this paper for

each prime p we determine a system of polynomial congruences modulo
certain powers of p, which is such that a p-integral basis of K can be
given very simply in terms of a simultaneous solution ¢ of the
congruences. These congruences are then put together to give a system
of congruences in terms of whose solution an integral basis for K can be
given.

1. Introduction

Let K = Q(0) be an algebraic number field of degree n, and let Og

denote the ring of integral elements of K. Every algebraic number field K
possesses an integral basis, that is K contains n elements AT O S

such that Og = 01 Z + 09Z + -+ + 0, Z.

Let P be a prime ideal of Og, let p be a rational prime, and let
a(#0) e K. If vp(a) >0, then a is called a P-integral element of K,
where vp(a) denotes the exponent of P in the prime ideal decomposition
of aOg. If o is P-integral for each prime ideal P of Og such that
P|pOg, then a is called a p-integral element of K.

Let {0, @y, .., ®,} be a basis of K over @, where each
o;(i €{l, 2, .., n}) is a p-integral element of K. If every p-integral
element o of K is given as a = aj0; + ag0s + - + a@,0,, where a; are
p-integral elements of @, then {0, @y, ..., ®,} is called a p-integral basis

of K.

Let K be the quartic field @(8), where 0 is a root of the irreducible
quartic trinomial

fx)=x*+ax+b, a,be Z. 1.1)

In [2] Alaca and Williams determined a p-integral basis for K for each
prime p, as well as the discriminant d(K) of K. Making use of these

results, we determine for each prime p a system of polynomial
congruences modulo certain powers of p such that a p-integral basis for K
can be given very simply in terms of a simultaneous solution of the
congruences.
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It can be assumed without loss of generality that for every prime p,
either v, (a) < 3 or v,(b) < 4. The discriminant of 8 is

A=280%-3%* and A =i(0)%d(K), (1.2)
where d(K) denotes the discriminant of K and i(6) denotes the index of 0.
For each prime p, we set s, = v,(A) and A, = A/p°P.
The following two theorems are the special cases for n =4 of
Theorem 2.1 and Theorem 3.1, respectively in [1].
Theorem 1.1. Let K = Q(0) be a quartic field, where 0 is a root of the

irreducible trinomial (1.1). Let p be a rational prime, and let

2 3
x + y0 + z0° + wo
a = Y - , Where x, y,z, w,meZ,m > 0.

b

Set
X = 4x - 3aw,
Y = 6x2 - 9axw + 3ayz + 4byw + 2622 + 3a2w2,

Z = 4x3 - 9ax®w + 4bxz? + 8bxyw + 6axyz + 6a’xw? - ay3

3.3

229 5abyw2 + abz?w + 4b%zw? - aw?,

— 4by’z - 3a%yzw + a
W = x* + 3ax2yz + 2bx22? - axy3 - 4bxy?z - 3ax®w + by*
+ b2z + bPw? + 3a2x%w? - 3a2xyzw +a2x23 - 5abxyw2
+ abxz?w + 4b%xzw? - alxw® + 4bx2yw + 3aby22w
+ 2b2y2w2 - abyz3 - 4b2yzzw + (12byw3 — ab%zwd.
Then o is a p-integral element of K if and only if

X = 0(mod p™), Y = 0(mod p?™),

Z = 0(mod p*™), W = 0(mod p*™). (1.3)

Theorem 1.2. Let K = Q(8) be a quartic field, where 8 is a root of the
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irreducible trinomial (1.1). Let p be a rational prime, and let

h+0

- (he2),
p
o 2
u+L6v+6 (u,ve Z) and
pJ
2 3
x+y6+ie +0 (x, 9,2 € Z)
p

be p-integral elements of K having the integers i, j and k as large as

posstible. Then

{1 h+0 u+ud+02 x+ye+z€)2+63}
P r’ p*
is a p-integral basis of K, and
vp(d(K)) =5p - 200 + j + k).

The p-integral elements

h+0 u+u0+062 x+y9+292+93
pi ’ Pj ’ pk
in Theorem 1.2 are known as minimal p-integral elements of degrees 1, 2,
3, respectively. It is known that [2],
1 =0, for all p,
je{0,1,2), if p=2
jefo, 1}, if p=3.
The following theorem is given by Alaca and Williams [2, Theorem
3.1].
Theorem 1.3. Let K = Q(0) be a quartic field, where 8 is a root of the
irreducible trinomial (1.1). Then the discriminant of K is
dg)=sem@e* [T [[2* 1]#"
p>3 p>3 p>3

p+ab pl a, p21b pla,p|lb
spodd o 1214 p2| b orp3la,p3| b

or p @ P 1b
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where
0 if va(a) =0,
2 if vo(a) = land b = 1(4)
orvy(a) = Land vo(b) = 2
orve(a) = 2and vy(b) = 3
orvy(a) > 3and b = 7(8),
3 ifve(a) = 2, b =3(16), Ay = 3(4)and sy odd
orvy(a) = 2, b =11(16) and Ay = 1(4),
4  if vg(a) =1landb = 3(4)
orve(a) = tand ve(b) = 1
orvy(a) = 2and ve(b) = 2
orvy(a) > 3and b = 3(8)
ora =16A, b =4+16Band A + B = 0(2),
a =15 ifve(a) =2 b=11(16)and Ay = 3(4)
orvy(a) = 2, b = 3(16), Ay = 1(4) and sy odd,
6 if vo(a) = 3and vg(b) = 2, 3
orvye(a) > 4and b = 12(16)
orvo(a) = 2and b = 7(8)
orvo(a) = 2, b = 3(16) and sy even
ora =16A4,b=4+16Band A + B = 1(2),
8 ifve(a) =2andvy(b) =1
orvy(a) > 3and b = 1(4),
9  ifvy(a) = 2and b = 1(4),
10  if vo(a) = 4and vy(b) = 3,
11 if ve(a) 2 3and vy(b) = 1
L orvy(a) = 5and ve(b) = 3,
and
0 Lf Vs(b) =0
orvs(a) =0, b = 3(9), a* = 4b +1(27) and s3 even,
1 ifvs(a) =0, a? = 1(9)and v3(b) = 2
orvs(a) = 0, b = 6(9) and a* = 4b +1(9)
orvs(a) =0, b = 3(9), a* = 4b +1(27) and s3 odd,
2 Lf V3(a) > 2and V3(b) = 2,
3 ifvs(a)>1landvs(d) =1
= 1 orvs(a) =0, a? #1(9) and v5(b) > 2

orvs(a) = 2and v3(b) = 3

orvs(a) = 0, b = 6(9) and a* # 4b +1(9)

orvs(a) = 0, b = 3(9), at = 4b +1(9) and a* # 4b +1(27),
4 if vs(a) = land v3(b) = 2

orvg(a) = 0, b = 3(9), a* # 4b+1(9),
5 ifvs(a)=1landvs(b) =3
| orvs(a) =1, 2and v3(b) = 4.

481
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2. A Simple Method for Finding a p-integral Basis of a Quartic

Field defined by a Trinomial x* + ax + b

Let p be a rational prime. A p-integral basis of K comprises 1, 6, a

minimal p-integral element of degree 2 in 6. and a minimal p-integral

element of degree 3 in 6. A minimal p-integral element of degree 2 in 0 is
of the form (u + v + 62)/p’/, where j € {0,1,2} if p=2 and j e {0, 1} if
p > 2. Theorem 2.1 below gives a simple method for finding a minimal

p-integral element of degree 2 in 6 and a minimal p-integral element of
degree 3 in 6. Hence a p-integral basis of K is given very simply in terms
of a simultaneous solution ¢ of a system of polynomial congruences. We
begin with a simple result concerning this system of polynomial
congruences.

Lemma 2.1. Let p be a prime. Then there does not exist an integer t
such that the congruences

t* +at +b = 0(mod p*),
4t3 + a = 0 (mod p3),

6t = 0 (mod p?)
are simultaneously solvable.

Proof. Suppose that the congruences above have a simultaneous
solution ¢. From the third congruence we deduce that p|t. Then from the

second one we obtain p3 |a. Next from the first one we deduce that
p* |b. This contradicts our assumption that v pl@) <3 or v,(b) < 4.

Theorem 2.1. Let K = Q(0) be a quartic field, where 8 is a root of the
irreducible trinomial (1.1).

(a) Suppose that p > 2 or p =2 and vy(a) 23, vg(b) =2 does not

hold. Let j be the largest integer such that p4j |A, and the system of

congruences
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t* + at + b = 0(mod p%+M))
4t% + a = 0 (mod p*)

6t2 = 0 (mod pj) (2.1)

is solvable for t, where

0 if vp(a)22and vp(b) =2,
) = or va(a) = 2 and vy(b) = 0, (2.2)
J  otherwise.

Let k be the largest integer such that p4j 2k |A, and both the system

of congruences (2.1) and the system of congruences
t* +at +b = 0(mod p/*2*)
4t% + a = 0 (mod p’**)
6t2 = 0 (mod p’) (2.3)
are simultaneously solvable for t.

Then a p-integral basts of K is given by

2 2 (3 2 2, a3
{1,6, 3t +2t9+9 (t° +a)+t“0+t0° + 6 } @.4)

pj pj+k

where t is a simultaneous solution of (2.1) and (2.3), and the p-part of the
discriminant of K is given by

vp(d(K)) = s, — 2(2j + k).
(We remark that if k > j a solution t of (2.3) is also a solution of (2.1) and
if k =0 asolution t of (2.1) is also a solution of (2.3).)

(b) Suppose that p = 2 and vg(a) = 3, ve(b) = 2 holds. If vy(a) = 3,
then a 2-integral basis of K is given by

2 3
1,99 20+6°|
2 22
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If a=16A,b=4+16B and A+ B =1(mod 2), then a 2-integral
basis of K is given by

2 3
1,9’2+29+0 ,29+6 .
22 92

If a =16A,b=4+16B and A+ B = 0(mod 2), then a 2-integral
basis of K is given by

e 2+20+02 (2+4B)0+20%+03
¢ | b 22 ) 23 "

If vo(a) = 4 and b = 12(mod 16), then a 2-integral basis of K is given

by
2 3
{1,9, 2+2e ’29+29 ‘
2 2

The 2-part of the discriminant of K is

vo(d(K)) = 4 ifa=16A,b=4+16B and A + B = 0(mod 2),
2 " |6 otherwise.

Proof. This theorem follows from Theorems 1.1, 1.2 and 1.3 by a case
by case examination. Part (b) is a special case of Alaca and Williams [2,
Theorem 2.1]. We give the details of the proof of part (a) in six
representative cases. By Lemma 2.1 we have j = 0 or 1.

(@) Let p =2 and vy(a) = va(b) = 2. Let a = 4a’, b = 4b', where o
and b’ are odd integers. In this case s; = 8 and vy(d(K)) = 4. By (2.2)
A(j)=0. For j=1, (2.1) has the solution ¢ =0, so ;j=1. Since

garsaK |A, k < 2. As the system of congruences
t* +at +b = 0(mod 23),
4t% + @ = 0(mod 22),
6t2 = 0(mod 2),

has no solution we have k = 0.
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2 2 3 2 2, 3
We now show that e Zzte 8 and (" +a)+t 29 +10” +6 are
2-integral elements of K, where ¢ is a solution of (2.1). The general

solution of (2.1) is ¢ = 0 (mod 2). Set t = 2u. Then

2 2 2
el 1l +22te+(%) =6u2+2u8+%

and

3 2 2 3
(t ”‘)”29”9 07 _ 443 4 20’ + 2u20 + ub? + 0%/2,

and it suffices to show that 02 /2 and 0 /2 are 2-integral. This is clear as
02/2 is a root of xt +2b'x? — 2a%x + 0% € Z[x].

Since vo(d(K)) = 4, by Theorem 1.2,

32 + 200+ 02 (2 +a)+ 120 + 02 + 03
1’ e’ 2 b 2

is a 2-integral basis of K, where ¢ is a simultaneous solution of (2.1) and
(2.3).

It

(ii) Let p = 2, a = 4(mod 8), b = 3(mod 8) and sy = 0 (mod 2). Here
s9 > 12. It is easily seen from (2.1) and (2.2) that j =1 and A(j) = 0.

First we show that (2.3) has a solution for k=

-10 .
52 5 that is, we show

that the congruences
t* + at + b = 0(mod 95279),
4t3 + a = 0 (mod 9(s2-8)/2y,
6t2 = 0 (mod 2) (2.5)

are simultaneously solvable for ¢. Note that the third congruence in (2.5)
is always true. As a/4 is odd and sy > 2, we can define an integer t by

3 %t = —b(mod 2% ~2) so that 3at ~22p (mod 2°2). Then
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3tat(t* +at +b) = (3at)? + 33a*(3at) + 3%a’b
= 28p* — 22334 + 3*a*b (mod 2°2)

28b% - 33a%b (mod 2°2)

= Ab(mod 2°2)
= 0 (mod 2°2).
As 2% | a we deduce that t* + at + b = 0 (mod 25278 Also

33a3(4e3 + a) = 4(3at)® + 3%a*

1l

-283 + 33a* (mod 2%2)

—A (mod 2°2)
= 0 (mod 2°2).
As 22 | @ we have 4¢3 + @ = 0(mod 2°27%). Thus ¢ is the required solution

of (2.5). So k& > #.

Next we show that (2.3) does not have a solution for k = By G , that
is we show that the congruences
t* +at +b = 0(mod 2%277),
4t3 + a = 0 (mod 26279)/2) (2.6)

are not simultaneously solvable for ¢.

Suppose that ¢ is a solution of (2.6). Set R=¢*+at+b and
S = 4¢3 + a. Then

4R - 4b _ 4t +4at _

- L.
3a+8 443 4 4a
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Hence

3
S=4(4R_4b) e

Ba+S
Expanding the cube and simplifying, we obtain

A = 28(R3 - 3bR? + 3b2R) - 180252 — 8aS3 — 5%,
As t is a solution of (2.6) we have

$9—6
227" |R and 2 2 |S

so as sg > 12,

A = -18a%82% - §* (mod 2%2*1).

52—4
If2 2 |S, then

A = 0 (mod 2%2%1),

59 -6
a contradiction. If 2 2 || S, then

A = 2271 (mod 2%2),
a contradiction. Hence the congruences (2.6) are insolvable. This

completes the proof that k& = #

3t2 + 20 + 62 and (2 +a) + t20 + 102 + 03

We now show that both 5 26292
are 2-integral elements of K, where ¢ is a solution of (2.5). Clearly t is odd.

3t2 +2t0+02 3t2-1 1+62
2 == +10 +

2 2
is 2-integral. This is clear as L

To show that 1s a 2-integral element

s

of K, it suffices to show that. 1+

a root of

(b+3) 2 (4+4b+a®)  (L+b)®+d?)
2 = 8 X 16

xt —2x% 4

e Z[x].
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(t® +a) +t20 + t0% + 03

To show that 5 CEYE

is a 2-integral element of K, we

substitute x = ¢3 +a, y= t2, z=t and w =1 into Theorem 1.1. We
obtain X = 4t3 + @, Y = 6t2(t* + at +b), Z = 4t(t* + at + b)®, W = (t* +

at + b)3. As sy > 12, it follows from (2.5) that
X = 0(mod 2™), Y = 0(mod 2%™),
Z = 0(mod 2%), W = 0(mod 24™),

Sg — 8 (t® +a) +t20 + 6% + 03

where m = . Thus 2(32—8) 72

is a 2-integral element

of K. Since vo(d(K)) = 6,

" B 3t2 + 260+ 02 (3 +a)+ 120 +10% + 03
3 b 2 I 2(82—8)/2

is a 2-integral basis of K, where ¢ is a solution of (2.5). This is of the
required form (2.4).

(iii) Let p =2, a=4(mod8), b=3(mod16), sy =1(mod2) and
Ay = 3(mod 4). Then sy >13. From (2.1) and (2.2) we see that j =1
and A(j) = 0, respectively. First we show that (2.3) has a solution for

82—7

k= , that is we show that the congruences

t* + at +b = 0 (mod 232"6),
4t% + a = 0(mod 2(82_5)/2),
6t2 = 0 (mod 2) 2.7)

are simultaneously solvable for ¢. The third congruence in (2.7) is always

true.

As 22 | @ sy oddand s, > 13, we can define an integer ¢ by

321 = _b + 20279/2 (mod 2277/2),

£
4
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Thus
3at = —22b + 2(82_5)/2 (mOd 2(82—3)/2).
Hence

3at = -22b + A2(%275)/2
for some odd integer A. Then

3tat(t? + at + b)
= (3at)* + 3%a*(3at) + 3%a’b
= (- 22b + A20279)/2)t | g3,4(_ 92p | A0(s2-5)/2) 34,4y
= 28p% — 2(2+1/243 4 , 3. 9525242 _ 9Be-T)/2p43

+ 222710 44 _ 339244p 4 332(2-5)/2544 1 340 %
= Ab - 202792 4 1 3. 9%2p242 _ 932-T)/2p 43 | 9252710 44
=2% 1 0+3-2% 40+ 0 (mod 2%2*2)

0 (mod 2%2+2),

as Ab = 2%2Anb = 2% (mod 2%2*2), A% = b% = 1(mod 4), and s, > 13. As

22| a we deduce that t* + at + b = 0 (mod 227°). Also
33a3(4t3 + a) = 4(3at)® + 3%a*

4(-22b + A2(52_5)/2)3 + 8%t

= —2803 1 3b242(2* T2 _3pa29%271 4 2320852-11)/2 , 3344
= —A(mod 2¢277/2) (a5 s, > 13)
= 0 (mod 262%7)/2),

As 22 | @ we see that 4t% + a = 0 (mod 2(32'5)/2). Hence ¢ is a solution of

(2.7, and k > ﬂ.
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Next we show that (2.3) does not have a solution for %k = 53 =5 , le.,
we show that the congruences
t* +at + b = 0(mod 2%27%),
413 + a = 0 (mod 20°279)/2) 2.8)

are not simultaneously solvable for ¢. Suppose that ¢ is a solution of the
pair of congruences (2.8). As in (ii) we have

A = 28(R3 - 3bR? + 3b2R) - 18a2S? - 8aS3 - S%,
where R =t* +at+b and S = 43 + a. Now
282—4] R, 2(82—3)/2 |S,
S0, as sy > 13, we have

A = 0(mod 2%271),

32—7

a contradiction. We have shown that k& = 2

Finally if ¢ is a solution of (2.3), as in case (ii), it follows from Theorem
3t2 + 210 + 62 ¢ +a)+t20 +t0% + 03
—— —  —  and -

9J 2]+k
elements of K, where j =1 and k = (sg — 7)/2. Since vo(d(K)) = 3,

1.1 that are both 2-integral

18 3t2 +2t0+0% (3 +a)+t20+0%+03
e 2 : G2 -5)2

is a 2-integral basis of K, in agreement with (2.4).

(iv) Let p =3, v3(a) 22 and v3(b) =2. In this case s3 =6 and
v3(d(K)) = 2. Since 3%|A, j<1. For j=14()=0, and (2.1) has a
solution if and only if ¢ = 0(mod 3). So j = 1. Since 34+2k A B <1 If
k =1, then (2.3) gives a contradiction. So k = 0. Note that if ¢ is a

simultaneous solution of (2.1) and (2.3), then by Theorem 1.1,

3t2 + 2t0 + 62 and ¢ + a) + t20 + 162 +63
3 3

are both 3-integral elements.
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Since vq(d(K)) = 2,

{1 o 3t2 + 20 + 62 (t3+a)+t26+t62+63}
) b 3 b 3

is a 3-integral basis of K, in agreement with (2.4).

(v) Let p >3, vp(a)22 and v,(b) =2. In this case s, =6 and
vp(d(K)) = 2. Since p* A, j<1. For j=1,A()=0, and (2.1) has a
solution if and only if ¢ = 0 (mod p). So j = 1. Since p4j+2k A, B<1.If
k =1, then (2.3) gives a contradiction. So k = 0. As 92/ p is a root of

4 20 5 a* b 2 3
X"+ % ——3x+—4eZ[x] we see that 0°/p € Og and 6°/p € Og.
p p p

Let ¢ be a simultaneous solution of (2.1) and (2.3). Then ¢ = 0 (mod p), say

2 2 2
t = pu, where u € Z. Thus Ll Ll i 3pu2 + 2ub + % e Og and

3 2 2 3 3
(¢ +a)+t;)+t6 ¢ =(p2u3+%)+pu29+u92+%601{.

Since v ,(d(K)) = 2,

Lo 3t2 + 2t0 + 62 (t3+a)+t26+t62+63
b | b p
is a p-integral basis of K, in agreement with (2.4).

(vi) Let p > 3 and v,(ab) = 0. In this case v,(d(K)) = s, — 2[sp/2]
It is easily seen that j =0. We show that (2.3) has a solution for
k = [s,/2], that is, we show that the congruences

t*+at+b= O(modek),

4t3 + a = 0 (mod ") 2.9

are simultaneously solvable for t. As p > 3 and p + a there is an integer
t such that



492 SABAN ALACA and KENNETH S. WILLIAMS
3at = —4b (mod p2k),
where & = [s,/2]. We note that 2k < sp- Then
3tat(t? +at + b) = (3at)* + 33a4(3at) +3%a%b
= (- 4b)* +3%04(- 4b) + 3*a*b (mod %)
= Ab(mod p%*)

0 (mod p2*)

sothat t* +at +b =0 (mod pzk). Also
33a3(4t3 + a) = 4(3at)® + 33a*
= 4(- 4b)® + 3%4* (mod p?*)

~A (mod p2 )

0 (mod p%*)

so that 4t2 + @ = 0 (mod p* )- Thus ¢ is a solution of (2.9).

We now show that (2.3) does not have a solution for % = [sp/2] +1.

We note that 2k >s,. Suppose that ¢ is a solution of the pair of

congruences (2.9) with k = [s,/2] + 1. As in (i) we have
A = 28(R® - 3bR? + 3b2R) - 184252 - 8483 - §%,
where R =t* +at +b and S = 4¢% + a. Now
p*|R, p*s,
0

A = 0 (mod pZ*),

contradicting p°” | A. We have proved that k = [s p/2]. Note that if ¢ is
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a solution of (2.3), then it follows from Theorem 1.1 that

2 +a)+ 120 + 02 + 63

k
p

sp — 2[sp/2],

is a p-integral element of K. Since v,(d(K)) =

k

{1 0. 02 (t3+a)+t26+t92+93}
p

is a p-integral basis of K, in agreement with (2.4).

We show next that in the case vo(a) > 3, vo(b) = 2, a 2-integral basis

of K cannot be given in the form (2.4) for any integer ¢. First we treat the
case vo(a) = 3. Suppose that there exists a 2-integral basis of the form

(2.4) with j =k =1 for some integer ¢. (Theorem 2.1(b) ensures that
j = k =1.) Then there exist integers C, D and E such that

3 2 2 a3 3 2
(t +a)+t2+te +0 =26+29 ,+C9 . Do+ E.
2 2

Equating coefficients of 6 we obtain t2 = 2 + 4D, so that t2 = 2(mod 4),
a contradiction. Next we treat the case vg(a) > 4. Suppose that there

exists a 2-integral basis of the form (2.4) with j =2 and

b _{1, if @ =16A, b =4+16B, A+ B = 0(mod 2),

0, otherwise,

in accordance with Theorem 2.1(b), for some integer ¢. Then there exist
integers R and S such that

2 2 2
3t° +2t0+6 =2+p.62+9 +RO+S,
22 2

where

_f2, ifbs= 4 (mod 16),
H=10, if b =12(mod16).

Equating constant terms, we obtain 3t2 = 2 + 48, so that ¢? = 2(mod 4),

a contradiction.
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3. A Simple Method for finding an Integral Basis of a Quartic

Field defined by a Trinomial xt+ax+b

In this section we give a system of polynomial congruences, which is
such that an integral basis of K is given very simply in terms of a
simultaneous solution ¢ of the congruences. We use Theorem 2.1 and the
following two lemmas in order to give an integral basis of K in Theorem
3.1. We treat a special case in Theorem 3.2. The following lemma is an

immediate consequence of Theorem 2.1.

Lemma 3.1. Suppose that ve(a) > 3, vo(b) = 2 does not hold. For
each prime p, let j, and kp denote the maximum j and k itn Theorem

2.1(a), respectively. Then

(@) The largest positive integer m such that m* |A and the system of

congruernces

4

t4 +at +b = 0(mod m?m"),

4t% + a = 0 (mod mz),
6t2 = 0 (mod m) (3.1)

is solvable for t,is m = H pjp, where

m' = LI (3.2)

J
p p
vp(a)22 and vp(b)=2, or
va(a)22 and va(b)=0

(b) Let m = H pjp be as in part (a). The largest positive integer n

such that n? IA/m4 and both the system of congruences (3.1) and the

system of congruences

t* + at + b = 0(mod mn?),

4t% + a = 0 (mod mn),
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6t2 = 0 (mod m) (3.3)
are simultaneously solvable for t, is n = H pkp.

By Lemma 2.1 we have j, <1 for each p. If kj, 2 Jj, for each p, then
m|n and a solution ¢ of (3.3) is also a solution of (8.1). If n =1, then a

solution ¢ of (3.1) is also a solution of (3.3). If n # 1 and there is a prime

such that j, =1 and k, =0, then a solution t of (3.3) may not be a

solution of (3.1), or vice versa. For this reason, when we refer to a solution
t of (3.1) or (3.3), we always mean a simultaneous solution ¢ of (3.1) and
(3.3).

In the proof of Theorem 3.1, we make use of the simple properties
given in the following lemma. We use the same notation as in Lemma 3.1.

Lemma 3.2. Suppose that vo(a) 23, va(b) =2 does not hold. Let
m, m' and n be given by (3.1), (3.2) and (3.3), respectively. Then

(a) I1 »* |2
vp(a)=2 and vp(b)=2, or
vo(a)=2 and vo(b)=0

(b) m|2tn,
© m?|2t(t* + at +b),

where t is a simultaneous solution of (3.1) and (3.3).

Proof. (2) Note that if vy(a)>2 and vy(b) = 0, 2, then it follows
from (2.1) that Jjg € {0, 1}. If v, (b) = 2 and vp(a) 2 2 for p # 2, then it
follows from (3.1) (or (2.1)) that j, =1 and p|t. This completes the proof
of part (a).

(b) Let p be a prime which does not satisfy

vpla) 2 2, vp(b) =2 or vo(a) = 2, vo(b) = 0.

Then, by (3.2), we have pj P | m'. From (3.1) the system of congruences



496 SABAN ALACA and KENNETH S. WILLIAMS
t* +at+b= O(modijp),
4t3 + a = 0 (mod p2jp),

6t2 = 0 (mod pjp)

is solvable for ¢. From (3.3) the largest integer % such that the system of
congruences

tt +at+b = O(modpj"+2k)

)

4t3 + @ = 0 (mod pjp+k),
6t2 = 0 (mod pj")

is solvable for ¢, is k = kp. Hence j, < k,, and so m'|n. By part (a)

’—n,|2t. So m|2tm'. Thus m|2tn.
m

(c) From (3.1), we have m'm? |t4 + at + b. Since by part (a) we have
m|2tm', m®|2t(t* + at + b).

We now use Lemmas 3.1 and 3.2 to give a simple method for finding
an integral basis for K in Theorem 3.1 when vy(a) > 3, vy(b) = 2 does

not hold. We treat the case vy(a) > 3, vo(b) = 2 in Theorem 3.2.

Theorem 3.1. Suppose that vy(a) 2 3, vo(b) = 2 does not hold.

Let m* be the largest fourth power dividing A for which the system of
congruences (3.1) ts solvable for t.

Let n? be the largest square dividing A/ m? for which the systems of

congruences (3.1) and (3.3) are simultaneously solvable for t.

Then an integral basis for K is given by

Lo 3t2 + 20+ 02 (t3 + a)+t20 + 102 + 03
) b m ) m’L )



A SIMPLE METHOD FOR FINDING AN INTEGRAL BASIS 497
and the discriminant of K ts

A

’
ln4n2

d(K) =
where t is a simultaneous solution of the systems of congruences (3.1) and
(3.3).

Proof. Let ¢ be a simultaneous solution of the systems of the

3 +a)+ 20 + 6% + 63

congruences (3.1) and (3.3). It can be verified that

mn
is a root of
3 2,4
By (4t +a)x3 + 6t°(t +at+b)x2
mn mZnZ
4ttt +at +b)? (' +at +b)°
- 3.3 X+ Y
min mn
2 2
and that w is a root of
m
. 1262 5 54t* y6at+2b o 108t% — 4bt? + 28at® + a®
q(x) = x* - x° + x° - x
m m2 m3

. 8118 + 30at® —14bt* + b2 + 3a%t? — 2abt

m4

We first show that the coefficients of p(x) are integers. Since mn|4t3

4t3 +a
mn

+a, is an integer. Since m|6t2 and mnzlt4+at+b,

6t2(t* + at + b)

ln21L2

is an integer. Since mn?|t* +at +b and m|2n (by

4t + at + b)?
m3n3
(t* +at + b)3

m4n4

Lemma 3.2(b)), is an integer. Since m2n? |t + at + b)?

and m? |t4 +at +b, is an integer. Hence all the coefficients
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@ +a)+ %0 + 0% 4+ @°
min

of p(x) are integers. Thus is an integral element

of K.

To show that the coefficients of g(x) are integers, we rewrite g(x) as

1252 kN 4¢(4t3 + a) + 2(t* + at + b) + (6t2)? 2
m m2

ax) = x* -

4t(6t?) (4t + a) + (4t + a)® - 43! +at + b) .
3

m

.= 4t(t* + at + b) (4% + a) + 6t2(4t + @) + (t* + at + b)®

ITL4

2

21t* +at + b and

12t° . . .
As m|6t2, is an integer. Since m? [4t3 +a, m

m|6t2,

4t(4t® + a) + 20t + at + b) + (6%)?

In2

is an integer. By Lemma 3.2(c), m?3 |2t(t4 +at +b). Since m|61£2 and
m? |4z:3 +a,

44(6t2) (4¢3 + a) + (4% + a)® - 42t + at + b)

1713

is an integer. Since m? |4t3 +a and m?|t* + at + b,

—4t(t* + at + b) (4% + o) + 62(4t% + a)® + (t* + at + b)?

ITL4

is an integer. Hence all the coefficients of ¢(x) are integers. Thus,

3t2 + 2t0 + 02
m

is an integral element of K. Next we have
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d(K) = sgn(d(K))| d(K)|

- san(ai@) [ ] 27" oy .2
p

= sgn(A)H psp—z(zjfk”) (by Theorem 2.1)
p

1"
) 1)

= _sg_n(é)_le’\ (by Lemma 3.1)
m-°n

= sgn(A)

so that

A

rn4n2

d(K) =

as asserted. Since

die 32 + 2t0 + 67 (t3+a)+t29+t€)2+93
» m ’ mn

_d(, 6, 02,6%) _ A

ITL47L2 mn

= d(K),

we deduce that

18 52 + 260+ 02 (3 +a)+120+10” +0°
T m ’ mn

is an integral basis for K. This completes the proof of the theorem.

In the following theorem we give a simple method for finding an
integral basis for K when vo(a) = 3, vo(b) = 2. The proof can be given

similarly to the proof of Theorem 3.1.

Note that when vg(a) > 3, vo(b) = 2, an integral basis for K cannot
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be given using Theorem 3.1. See the explanation at the end of Section 2.

Theorem 3.2. Suppose that vy(a) > 3, vo(b) = 2, and let

)

16u2+v29+92 x2+y29+2292+93
’ b 2j 2j+k

be a 2-integral basis of K as given in Theorem 2.1(b).

Let m* be the largest fourth power dividing . for which the

system of congruences (3.1) is solvable for t.
Let n? be the largest square dividing L or which the systems
4j+2k 4
ISRy

of congruences (3.1) and (3.3) are simultaneously solvable for t.

Then an integral basis for K is given by

{1 0 u+v0 + 0% x+ye+z92+93}

2/ om 277k mn
where
u = up(mod2’), u=3t2(modm),
v = vy (mod 2k), v = 2t(mod m),
and

x = x9(mod 2/*%), x =3 + a (mod mn),

= y, (mod 2/*%), y = ¢2 (mod mn),

<
1

z = zo (mod 2/*%), 2z = t (mod mn),

where t is a simultaneous solution of (3.1) and (3.3), and the discriminant
of Kis

A

d(K) = .
) m4n2
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4. Examples

Example 4.1. Let K = Q(6), where 0 +a0+b =0, with a =72 =
93.32 and b =27 =33 Thus A =-28.39.11.13. Since vy(a)= 3,
vo(b) = 2 does not hold, we can use Theorem 3.1 to give an integral basis
for K. The system of congruences (3.1) is solvable when m =6 and
m' =3, and a solution is ¢t = 3. Note that 64 |A, and m =6 is the
largest integer such that m* |A and the system of congruences (3.1) is
solvable for ¢. The system of congruences (3.3) is solvable when m =6
and n = 3, and a solution is ¢ = 3. Note that 32 |A/64, and n = 3 is the
largest integer such that n? lA/m4 and the system of congruences (3.3) is

solvable for ¢. Hence by Theorem 3.1 an integral basis for K is given by

163+e2 9+90 +30% +0°
T g 6.3

and
d(K) = Ajm*n? = -28 .3% .11.13/6* - 3% = -2* . 3% .11-13.

Example 4.2. Let K ='Q(6), where 0% +ad +b =0, with a = 4 = 22
and b =4 = 22, Thus A = 28 .37. Since vy(a) >3, vy(b) =2 does not
hold, we can use Theorem 3.1 to give an integral basis for K. The system
of congruences (3.1) is solvable when m =2, m' =1, and a solution is
t = 0. Note that 2* |A, and m = 2 is the largest integer such that m* |A

and the system of congruences (3.1) is solvable for ¢t. The system of
congruences (3.3) is solvable when m = 2 and n =1, and a solution is

t = 0. Note that the largest integer n such that n? IA/m4 and the system
of congruences (3.3) is solvable for ¢ is n = 1. Hence by Theorem 3.1 an

integral basis for K is given by

o> o
{11 e) 7, —é_}
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and
d(K) = Ajm*n® = 28 .37/2% = 2% .37,

Example 4.3. Let K = Q(0), where 6* + a0 +b = 0, with a =100 =
22.52 and b=2375=3-5% Thus A =219.3%.5% Since vo(a)>3,
vy(b) = 2 does not hold, we can use Theorem 3.1 to give an integral basis

for K. The system of congruences (3.1) is solvable when m =10, m' = 5,
and a solution is ¢ = 5. Note that 10* |A, and m =10 is the largest

integer such that m* |A and the system of congruences (3.1) is solvable
for ¢t. The system of congruences (3.3) is solvable when m =10 and
n =5, and a solution is ¢t = 5. Note that 52|A/10%, and n =5 is the
largest integer such that n? [A/m4 and the system of congruences (3.3) is

solvable for ¢. Hence by Theorem 3.1 an integral basis for K is given by

15 5+02 25+250+502 +03
R T 10-5

and
d(K) = Afjm*n? = 210 .33 .58/10% .52 = 26 .33 .52

Example 4.4. Let K = Q(0), where 6% +ad + b = 0, with a = 225 =
32.52 and b=10125 =3%.5% Thus A =3'1.5%.11.349. Since
vg(a) = 3, va(b) = 2 does not hold, we can use Theorem 3.1 to give an
integral basis for K. The system of congruences (3.1) is solvable when

m =15, m' = 15, and a solution is ¢ = 0. Note that 154 |A, and m =15

is the largest integer such that m* |A and the system of congruences
(3.1) is solvable for ¢. The system of congruences (3.3) is solvable when

m =15 and n =15, and a solution is ¢ = 0. Note that 152 |A/154, and

n =15 is the largest integer such that n2lA/m4 and the system of

congruences (3.3) is solvable for ¢. Hence by Theorem 3.1 an integral basis
for K is given by
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2 o3
{1’ & 15’ 15 - 15}

d(K) = Afm*n? = 31 .58 .11.349/15% . 152 = 35 . 5% .11 . 349.

and

Example 4.5. Let K = Q(8), where 0* +a0+b =0, with a =56 =
23.7 and b =196 = 2272 Thus A =2'2.7%.13% Since vy(a)>3
and vy(b) = 2, we cannot use Theorem 3.1. We make use of Theorem 3.2.
Since vy(a) = 3, by Theorem 2.1(b), a 2-integral basis of K is

2 3
1,9’6_’26+9 '
2 92

So j = k =1. Then with the notation of Theorem 3.2 and Lemma 3.1,
m=m'=1n=91 and t =56. Hence, by Theorem 3.2, an integral
basis for K is given by

18 8 224+429+5692+63}
b ’ 2 I 22.91

and

A

24j+2k ,n4n2

d(K) = =212.7% 13228 . 012 = 26 . 72,

Note that
224 = 0(mod 2%), 224 =3 + a (mod mn),
42 = 2(mod 22), 42 = 2 (mod mn),
56 = 0 (mod 2%), 56 = t (mod mn).

Example 4.6. Let K = Q(6), where 0* + a0 +b =0, with a =80 =
94 .5 and b =20 = 22.5. Thus A = -2 .5% .72 .11. Since vy(a) >3
and vy(b) = 2, we cannot use Theorem 3.1. We make use of Theorem 3.2.

Since @ =16A,b=4+16B and A+ B =0(mod2) with A=5 and
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B =1, by Theorem 2.1(b), a 2-integral basis of K is

Lo 2+20+6% 60+20° + 0P

tl : ] 22 b 23 .
So j =2 and k = 1. Then with the notation of Theorem 3.2 and Lemma
3.1, m = m'=1,n="7 and ¢ = 2. Hence, by Theorem 3.2, an integral

basis for K is given by

{1 . 2+20+62 32+466+262+93}
¢ b 22 b 23.7

and

d(K) = L= oM. 587211010 12 = pt 5311,

o4i+2k 4,
Note that

32 = 0(mod 23), 32=t3+qa (mod mn),
46 = 6 (mod 2%), 46 = t2 (mod mn),

2 = 2(mod 2%), 2 =t (modmn).

Remark 4.1. The formulation of an integral basis of a quartic field
given in [4] is incorrect. Counterexamples can be produced easily. For

example, for @ = 4 and b = 4, the results in [4] assert that {1, 0, 02, 03}

is an integral basis. However, in Example 4.2 we showed that an integral

02 ¢°
oo 2)

Note that 62/2 and 63/2 are integral elements since 62/2 is a root of the

basis is

monic polynomial
plx) = x* +2x% - 2x + 1.

Indeed it is easily seen that for vy(a) = vo(b) = 2, the formulation of an

integral basis of a quartic field given in [4] is always incorrect.
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