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1 Introduction

Let σm(n) denote the sum of the m th powers of the positive divisors of
the positive integer n. We set τ(n) = σ0(n) and σ(n) = σ1(n). If l is not
a positive integer we set σm(l) = 0. In Section 2 we prove an elementary
arithmetic identity (Theorem 1), which generalizes a classical formula of
Liouville given in [21]. In Section 3 we use this identity to evaluate in an el-
ementary manner thirty-seven convolution sums involving the function σm
treated by Lahiri in [14] using more advanced techniques. Some of these
convolution sums had been considered earlier by Glaisher [9], [10], [11],
MacMahon [24], [25, pp. 303–341] and Ramanujan [30], [31, pp. 136–162
and commentary pp. 365–368]. MacMahon used his formulae to deduce
theorems about partitions. In Sections 4 and 5 we prove in an elementary
manner some extensions of convolution formulae proved by Melfi in [26] us-
ing the theory of modular forms. In Section 6 we use Theorem 1 to derive
in an elementary manner some formulae for the number of representations
of positive integers as sums of triangular numbers proved by Ono, Robins
and Wahl in [27] using more sophisticated methods. In Section 7 we give
one illustrative example of how Theorem 1 can be used to determine the
number of representations of a positive integer by a quaternary form. Fi-
nally in Section 8 we consider some further convolution sums of the type
considered in Section 4.

1Research supported by a Canisius College Faculty Fellowship.
2Research supported by the China Scholarship Council.
3Research supported by a Natural Sciences and Engineering Research Council of

Canada grant.
4Research supported by Natural Sciences and Engineering Research Council of

Canada grant A-7233.

1



2 J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams

2 Generalization of Liouville’s Formula

We prove

Theorem 1. Let f : Z4 → C be such that

f(a, b, x, y)− f(x, y, a, b) = f(−a,−b, x, y)− f(x, y,−a,−b) (2.1)

for all integers a, b, x and y. Then∑
ax+by=n

(f(a, b, x,−y)− f(a,−b, x, y) + f(a, a− b, x+ y, y)

−f(a, a+ b, y − x, y) + f(b− a, b, x, x+ y)− f(a+ b, b, x, x− y))

=
∑
d |n

∑
x<d

(f(0, n/d, x, d) + f(n/d, 0, d, x) + f(n/d, n/d, d− x,−x)

−f(x, x− d, n/d, n/d)− f(x, d, 0, n/d)− f(d, x, n/d, 0)), (2.2)

where the sum on the left hand side of (2.2) is over all positive integers
a, b, x, y satisfying ax + by = n, the inner sum on the right hand side is
over all positive integers x satisfying x < d, and the outer sum on the right
hand side is over all positive integers d dividing n.

Proof. We set

g(a, b, x, y) = f(a, b, x, y)− f(x, y, a, b)

so that
g(a,−b, x, y) = g(−a, b, x, y)

and
g(a, b, x, y) = −g(x, y, a, b).

Then∑
ax+by=n

(f(a, b, x,−y)− f(a,−b, x, y) + f(a, a− b, x+ y, y)

−f(a, a+ b, y − x, y) + f(b− a, b, x, x+ y)− f(a+ b, b, x, x− y))

=
∑

ax+by=n

(f(a, b, x,−y)− f(x,−y, a, b) + f(a, a− b, x+ y, y)

−f(y, x+ y, a− b, a) + f(a− b, a, y, x+ y)− f(x+ y, y, a, a− b))
=

∑
ax+by=n

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y) + g(a, b, x,−y))
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and∑
d |n

∑
x<d

(f(0, n/d, x, d) + f(n/d, 0, d, x) + f(n/d, n/d, d− x,−x)

−f(x, x− d, n/d, n/d)− f(x, d, 0, n/d)− f(d, x, n/d, 0))

=
∑
d |n

∑
t<d

(f(0, n/d, t, d) + f(n/d, 0, d, t) + f(n/d, n/d, d− t,−t)

−f(d− t,−t, n/d, n/d)− f(t, d, 0, n/d)− f(d, t, n/d, 0))

=
∑
d |n

∑
t<d

(g(n/d, 0, d, t) + g(0, n/d, t, d) + g(n/d, n/d, d− t,−t))

so we must prove that∑
ax+by=n

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y) + g(a, b, x,−y))

=
∑
d |n

∑
t<d

(g(n/d, 0, d, t) + g(0, n/d, t, d) + g(n/d, n/d, d− t,−t)).

First we consider the terms with a = b in the left hand sum. We have∑
ax+by=n
a=b

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y) + g(a, b, x,−y))

=
∑

a(x+y)=n

(g(a, 0, x+ y, y) + g(0, a, y, x+ y) + g(a, a, x,−y))

=
∑
d |n

∑
t<d

(g(n/d, 0, d, t) + g(0, n/d, t, d) + g(n/d, n/d, d− t,−t)).

Secondly we consider the terms with a < b. We have∑
ax+by=n
a<b

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y) + g(a, b, x,−y))

=
∑

a(x+y)+(b−a)y=n
a<b

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y))

+
∑

ax+by=n
a<b

g(a, b, x,−y)

=
∑

ax+by=n
x>y

(g(a,−b, x, y) + g(−b, a, y, x)) +
∑

ax+by=n
x<y

g(x, y, a,−b)
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=
∑

ax+by=n
x>y

g(a,−b, x, y) +
∑

ax+by=n
x>y

g(b,−a, y, x)

−
∑

ax+by=n
x<y

g(a,−b, x, y)

= −
∑

ax+by=n
x>y

g(x, y, a,−b) +
∑

ax+by=n
x<y

g(a,−b, x, y)

−
∑

ax+by=n
x<y

g(a,−b, x, y)

= −
∑

ax+by=n
x>y

g(x, y, a,−b).

Thirdly we consider the terms with a > b. We have∑
ax+by=n
a>b

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y) + g(a, b, x,−y))

= S1 + S2,

where

S1 =
∑

ax+by=n
a>b

(g(a, a− b, x+ y, y) + g(a− b, a, y, x+ y))

=
∑

ax+b(x+y)=n

(g(a+ b, a, x+ y, y) + g(a, a+ b, y, x+ y))

=
∑

ax+by=n
y>x

(g(a+ b, a, y, y − x) + g(a, a+ b, y − x, y))

=
∑

ax+by=n
a>b

(g(x+ y, y, a, a− b) + g(y, x+ y, a− b, a))

= −S1,

so that S1 = 0, and

S2 =
∑

ax+by=n
a>b

g(a, b, x,−y)

=
∑

ax+by=n
x>y

g(x, y, a,−b).
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This completes the proof of the theorem.

We remark that if f satisfies

f(a,−b, x, y) = f(−a, b, x, y), f(a, b, x,−y) = f(a, b,−x, y), (2.3)

for all integers a, b, x and y then f satisfies (2.1).
Finally we observe that if we choose f(a, b, x, y) = F (a− b, x− y) with

F (x, y) = F (−x, y) = F (x,−y) then (2.2) becomes Liouville’s identity [21,
p. 284] (see also [8, p. 331])∑
ax+by=n

(F (a− b, x+ y)− F (a+ b, x− y))

=
∑
d |n

(d− 1)(F (0, d)− F (d, 0)) + 2
∑
d |n

∑
e<n/d

(F (d, e)− F (e, d)). (2.4)

We also note that the choice f(a, b, x, y) = h(a, b)+h(−a,−b) with h(b, b−
a) = h(a, b) gives Skoruppa’s combinatorial identity [33, p. 69]

∑
ax+by=n

(h(a, b)− h(a,−b)) =
∑
d|n

n
d
h(d, 0)−

d−1∑
j=0

h(d, j)

 .

Thus our identity is an extension of those of Liouville and Skoruppa. Con-
versely if one starts with f(a, b) satisfying f(a, b) = f(−a,−b) and defines

h(a, b) = f(a, b) + f(b, b− a) + f(b− a,−a)

so that h(b, b− a) = h(a, b) then Skoruppa’s identity is the special case of
Theorem 1 with f(a, b, x, y) = f(a, b).

For convenience in the rest of the paper, we set

E = E(a, b, x, y)
= f(a, b, x,−y)− f(a,−b, x, y) + f(a, a− b, x+ y, y)
−f(a, a+ b, y − x, y) + f(b− a, b, x, x+ y)− f(a+ b, b, x, x− y),

(2.5)

and, for k a positive integer and a an integer, we set

Fk(a) =

 1, if k | a,

0, if k - a.
(2.6)
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3 Application of Theorem 1 to Lahiri’s Identities

Let e, f, g, h be integers such that

e ≥ 0, f ≥ 0, g ≥ 1, h ≥ 1, g ≡ h ≡ 1 (mod 2), (3.1)

and define the sum S(e f g h) by

S(e f g h) :=
n−1∑
m=1

me(n−m)fσg(m)σh(n−m). (3.2)

The change of variable m −→ n−m shows that

S(e f g h) = S(f e h g). (3.3)

Thus we may suppose further that

g < h or g = h, e ≥ f. (3.4)

For nonnegative integers r, s, t, u we set

[r s t u] :=
∑

ax+by=n

arbsxtyu. (3.5)

As the eight permutations (in cycle notation)

(a b x y)i(a x)j (i = 0, 1, 2, 3; j = 0, 1)

leave ax+ by invariant, we have

[r s t u] = [r u t s] = [s r u t] = [s t u r]

= [t u r s] = [t s r u] = [u r s t] = [u t s r].
(3.6)

Moreover

S(e f g h) =
n−1∑
m=1

me(n−m)f
∑
ax=m

xg
∑

by=n−m

yh =
∑

ax+by=n

aebfxe+gyf+h

so that
S(e f g h) = [e f e+ g f + h] (3.7)

and
[e f g h] = S(e f g − e h− f), if g ≥ e, h ≥ f. (3.8)
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w e f g h w e f g h w e f g h

2 0 0 1 1 10 0 1 1 7 12 0 2 3 5
4 0 0 1 3 10 0 1 3 5 12 0 3 1 5
4 1 0 1 1 10 0 2 1 5 12 0 4 1 3
6 0 0 1 5 10 0 3 1 3 12 1 0 1 9
6 0 0 3 3 10 1 0 1 7 12 1 0 3 7
6 0 1 1 3 10 1 0 3 5 12 1 0 5 5
6 1 0 1 3 10 1 1 1 5 12 1 1 1 7
6 1 1 1 1 10 1 1 3 3 12 1 1 3 5
6 2 0 1 1 10 1 2 1 3 12 1 2 1 5
8 0 0 1 7 10 2 0 1 5 12 1 3 1 3
8 0 0 3 5 10 2 0 3 3 12 2 0 1 7
8 0 1 1 5 10 2 1 1 3 12 2 0 3 5
8 0 2 1 3 10 2 2 1 1 12 2 1 1 5
8 1 0 1 5 10 3 0 1 3 12 2 1 3 3
8 1 0 3 3 10 3 1 1 1 12 2 2 1 3
8 1 1 1 3 10 4 0 1 1 12 3 0 1 5
8 2 0 1 3 12 0 0 1 11 12 3 0 3 3
8 2 1 1 1 12 0 0 3 9 12 3 1 1 3
8 3 0 1 1 12 0 0 5 7 12 3 2 1 1
10 0 0 1 9 12 0 1 1 9 12 4 0 1 3
10 0 0 3 7 12 0 1 3 7 12 4 1 1 1
10 0 0 5 5 12 0 2 1 7 12 5 0 1 1

Table 1. Values of e, f , g, h, corresponding to weights w ≤ 12

We define the weight of the sum S(e f g h) to be the positive even integer

w = w(S) = 2e+ 2f + g + h. (3.9)

The integers e, f , g, h satisfying (3.1) and (3.4) for which the sum S(e f g h)
has weight less than or equal to 12 are given in Table 1. Lahiri [14], making
use of ideas of Ramanujan [30], [31, pp. 136–162], has evaluated the single
sum of weight 2, the two sums of weight 4, the six sums of weight 6, the ten
sums of weight 8, and the first three of the twenty-eight sums of weight 12.
We show that the values of these twenty-two sums follow from Theorem 1.
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Weight = 2. We take f(a, b, x, y) = xy in Theorem 1. Then E = 2xy
and the left hand side of (2.2) is∑

ax+by=n

2xy = 2[0 0 1 1] = 2S(0 0 1 1).

The right hand side of (2.2) is

∑
d |n

∑
x<d

(
x2 + dx− n2

d2

)
=

5
6
σ3(n) +

(
1
6
− n

)
σ(n).

Then Theorem 1 gives

n−1∑
m=1

σ(m)σ(n−m) =
1
12

(5σ3(n) + (1− 6n)σ(n)) . (3.10)

Formula (3.10) is equivalent to formula (3.1) in Lahiri [14] and originally
appeared in a letter from Besge to Liouville [4]. Dickson erroneously at-
tributed (3.10) to Lebesgue in [8, p. 338]. Rankin attributed it to Besgue in
[32, p. 115]. Lützen [23, p. 81] asserts that Besge/Besgue is a pseudonym
for Liouville. The formula (3.10) also appears in the work of Glaisher [9],
[10], [11], Lehmer [17, p. 106], [18, p. 678], Ramanujan [30, Table IV], [31,
p. 146] and Skoruppa [33].

Weight = 4. We begin by noting that

n−1∑
m=1

mσ(m)σ(n−m) =
n−1∑
m=1

(n−m)σ(n−m)σ(m)

so that
n−1∑
m=1

mσ(m)σ(n−m) =
n

2

n−1∑
m=1

σ(m)σ(n−m).

Hence, by (3.10), we have

n−1∑
m=1

mσ(m)σ(n−m) =
n

24
(5σ3(n) + (1− 6n)σ(n)) , (3.11)

which is formula (3.2) of Lahiri [14]. This formula is due to Glaisher [11].
(Note that the multiplier 12 on the left hand side of Glaisher’s formula
should be replaced by 24.)
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Taking f(a, b, x, y) = xy3 + x3y, we find that

E = 8xy3 + 8x3y

so that the left hand side of (2.2) is∑
ax+by=n

(8xy3 + 8x3y) = 8[0 0 1 3] + 8[0 0 3 1] = 16[0 0 1 3] = 16S(0 0 1 3).

Evaluating the right hand side of (2.2), we obtain

n−1∑
m=1

σ(m)σ3(n−m) =
1

240
(21σ5(n) + (10− 30n)σ3(n)− σ(n)), (3.12)

which is a result attributed to Glaisher by MacMahon [24, p. 101], [25, p.
329]. It also appears in Ramanujan [30, Table IV], [31, p. 146] and is also
formula (5.1) of Lahiri [14].

Weight = 6. We begin with the sums S(1 0 1 3) and S(0 1 1 3). Clearly

S(1 0 1 3) + S(0 1 1 3) =
n−1∑
m=1

mσ(m)σ3(n−m)

+
n−1∑
m=1

(n−m)σ(m)σ3(n−m)

= n
n−1∑
m=1

σ(m)σ3(n−m)

=
n

240
(21σ5(n) + (10− 30n)σ3(n)− σ(n)),

by (3.12). Taking

f(a, b, x, y) = 3b2xy3 + 5abx3y − 3abx2y2 − 2b2x3y,

we find that

E = 12b2x3y − 6b2xy3 − 4abx4 + 12a2xy3 − 8aby4 + 6a2x3y

so that the left hand side of (2.2) is

12[0 2 3 1]− 6[0 2 1 3]− 4[1 1 4 0] + 12[2 0 1 3]− 8[1 1 0 4] + 6[2 0 3 1]

= 24[1 0 2 3]− 12[0 1 1 4] = 24S(1 0 1 3)− 12S(0 1 1 3).
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The right hand side of (2.2) is found to be after some calculation

1
10

((6n2 − 5n)σ3(n)− nσ(n)).

Solving for S(1 0 1 3) and S(0 1 1 3) = S(1 0 3 1) we obtain

n−1∑
m=1

mσ(m)σ3(n−m) =
1

240
(7nσ5(n)− 6n2σ3(n)− nσ(n)) (3.13)

and

n−1∑
m=1

mσ3(m)σ(n−m) =
1

120
(7nσ5(n) + (5n− 12n2)σ3(n)). (3.14)

Equations (3.13) and (3.14) are given in MacMahon [24, p. 103], [25, p. 331].
They are also formulae (5.4) and (5.3) of Lahiri [14].

To evaluate the remaining four sums of weight 6, namely S(1 1 1 1),
S(2 0 1 1), S(0 0 3 3) and S(0 0 1 5), we choose respectively

f(a, b, x, y) = abx3y − b2xy3,

f(a, b, x, y) = b2y4 − b2xy3,

f(a, b, x, y) = xy5 + x5y − 2x3y3,

f(a, b, x, y) = xy5 + x5y − 20x3y3.

The corresponding values of E are

E = −4b2x3y − 2b2xy3 − 2abx4 + 4a2xy3 + 2aby4 − 6abx2y2 + 2a2x3y,

E = 2b2x3y + 6b2xy3 − 2a2xy3,

E = 36x3y3,

E = −108x5y − 108xy5.

The left hand sides of (2.2) are respectively

−4[0 2 3 1]− 2[0 2 1 3]− 2[1 1 4 0] + 4[2 0 1 3]
+ 2[1 1 0 4]− 6[1 1 2 2] + 2[2 0 3 1]

= −6[1 1 2 2] = −6S(1 1 1 1),

2[0 2 3 1] + 6[0 2 1 3]− 2[2 0 1 3] = 6[2 0 3 1] = 6S(2 0 1 1),

36[0 0 3 3] = 36S(0 0 3 3),

−108[0 0 5 1]− 108[0 0 1 5] = −216[0 0 1 5] = −216S(0 0 1 5).
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Evaluating the right hand side of (2.2) for these choices of f , by Theorem
1 we obtain respectively

n−1∑
m=1

m(n−m)σ(m)σ(n−m) =
1
12

(n2σ3(n)− n3σ(n)), (3.15)

n−1∑
m=1

m2σ(m)σ(n−m) =
1
24

(3n2σ3(n) + (n2 − 4n3)σ(n)), (3.16)

n−1∑
m=1

σ3(m)σ3(n−m) =
1

120
(σ7(n)− σ3(n)), (3.17)

n−1∑
m=1

σ(m)σ5(n−m) =
1

504
(20σ7(n) + (21− 42n)σ5(n) + σ(n)).

(3.18)

Equations (3.15), (3.16), (3.17) and (3.18) are formulae (3.3), (3.4), (7.1)
and (7.2) of Lahiri [14] respectively. We remark that formula (3.15) is due
to Glaisher [11, p. 35]. Formula (3.16) follows from (3.11) and (3.15), and
so is implicit in the work of Glaisher. Formula (3.17) is due to Glaisher
[11, p. 35]. It also appears in the work of Ramanujan [30, Table IV], [31,
p. 146]. Formula (3.18) is due to Ramanujan [30, Table IV], [31, p. 146].
It is also given in the work of MacMahon [24, p. 103], [25, p. 331]. The
recurrence relations of van der Pol [28, eqns. (63), (65)] for σ(n) and σ3(n)
are simple consequences of (3.15) and (3.16).

Weight = 8. We begin with the sum S(1 0 3 3). We have

S(1 0 3 3) =
n−1∑
m=1

mσ3(m)σ3(n−m) =
n−1∑
m=1

(n−m)σ3(n−m)σ3(m)

= nS(0 0 3 3)− S(1 0 3 3)

so that
S(1 0 3 3) =

n

2
S(0 0 3 3).

Appealing to (3.17) we obtain

n−1∑
m=1

mσ3(m)σ3(n−m) =
n

240
(σ7(n)− σ3(n)). (3.19)

Equation (3.19) is formula (7.5) of Lahiri [14].
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Next we evaluate S(2 1 1 1) = S(1 2 1 1) and S(3 0 1 1). We have

S(1 2 1 1)− S(3 0 1 1) =
n−1∑
m=1

(m(n−m)2 −m3)σ(m)σ(n−m)

= n2
n−1∑
m=1

mσ(m)σ(n−m)

−2n
n−1∑
m=1

m2σ(m)σ(n−m)

= n2S(1 0 1 1)− 2nS(2 0 1 1).

Appealing to (3.11) and (3.16), we obtain

S(3 0 1 1)− S(1 2 1 1) =
n3

24
(σ3(n) + (1− 2n)σ(n)).

Now we choose f(a, b, x, y) = b4xy3 so that

E = 2b4xy3 + 12a2b2xy3 − 8ab3y4 − 8a3by4 + 2a4xy3 + 6b4x3y.

In this case the left hand side of (2.2) is

2[0 4 1 3] + 12[2 2 1 3] − 8[1 3 0 4] − 8[3 1 0 4] + 2[4 0 1 3]
+ 6[0 4 1 3]

= −6[3 0 4 1] + 12[1 2 2 3]
= 12S(1 2 1 1) − 6S(3 0 1 1).

Evaluating the right hand side of (2.2), we find by Theorem 1 that

12S(1 2 1 1)− 6S(3 0 1 1) =
n3

4
(n− 1)σ(n).

Solving these two linear equations for S(1 2 1 1) and S(3 0 1 1), we obtain

n−1∑
m=1

m(n−m)2σ(m)σ(n−m) =
n3

24
(σ3(n)− nσ(n)), (3.20)

n−1∑
m=1

m3σ(m)σ(n−m) =
n3

24
(2σ3(n) + (1− 3n)σ(n)). (3.21)

Formula (3.20) is due to Glaisher [11, p. 36]. Formulae (3.20) and (3.21)
are formulae (3.5) and (3.6) in Lahiri [14].
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Next we treat S(0 2 1 3) = S(2 0 3 1) and S(2 0 1 3). First we note
that

S(2 0 3 1)− S(2 0 1 3)
= S(0 2 1 3)− S(2 0 1 3)

=
n−1∑
m=1

((n−m)2 −m2)σ(m)σ3(n−m)

= n2
n−1∑
m=1

σ(m)σ3(n−m)− 2n
n−1∑
m=1

mσ(m)σ3(n−m)

= n2S(0 0 1 3)− 2nS(1 0 1 3)

=
1

240
(7n2σ5(n) + (10n2 − 18n3)σ3(n) + n2σ(n)),

by (3.12) and (3.13). Secondly taking

f(a, b, x, y) = aby6 − 5a2x3y3 + 4a2x5y,

we find that

E = 70a2x3y3 − 2aby6 − 22a2x5y − 10b2x5y + 30abx4y2

−30abx2y4 + 10a2xy5 + 30b2x3y3 + 12b2xy5 + 2abx6

so that the left hand side of (2.2) is

70[2 0 3 3]− 2[1 1 0 6]− 22[2 0 5 1]− 10[0 2 5 1] + 30[1 1 4 2]

−30[1 1 2 4] + 10[2 0 1 5] + 30[0 2 3 3] + 12[0 2 1 5] + 2[1 1 6 0]

= 100[2 0 3 3]− 10[2 0 5 1] = 100S(2 0 1 3)− 10S(2 0 3 1).

Evaluating the right hand side of (2.2), Theorem 1 gives

100S(2 0 1 3)− 10S(2 0 3 1) =
5
12

(2n2σ5(n)− n2σ3(n)− n2σ(n)).

Solving the two linear equations for S(2 0 1 3) and S(2 0 3 1) we obtain

n−1∑
m=1

m2σ3(m)σ(n−m) =
1
24

(n2σ5(n) + (n2 − 2n3)σ3(n)) (3.22)

n−1∑
m=1

m2σ(m)σ3(n−m) =
1

240
(3n2σ5(n)− 2n3σ3(n)− n2σ(n)). (3.23)
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These are formulae (5.7) and (5.8) of Lahiri [14]. Now we turn to the
determination of S(0 1 1 5) = S(1 0 5 1) and S(1 0 1 5). First we observe
that

S(1 0 1 5) + S(1 0 5 1) = S(1 0 1 5) + S(0 1 1 5)
= nS(0 0 1 5)

=
1

504
(20nσ7(n) + (21n− 42n2)σ5(n) + nσ(n)),

by (3.18). The choice

f(a, b, x, y) = −11aby6 + 30abx2y4 + 20a2x3y3 + 6a2x5y

in Theorem 1 yields

540S(1 0 1 5)− 180S(1 0 5 1) =
15
14

((6n2 − 7n)σ5(n) + nσ(n)).

Solving for S(1 0 1 5) and S(1 0 5 1) we obtain

n−1∑
m=1

mσ(m)σ5(n−m) =
1

504
(5nσ7(n)− 6n2σ5(n) + nσ(n)),(3.24)

n−1∑
m=1

mσ5(m)σ(n−m) =
1

168
(5nσ7(n) + (7n− 12n2)σ5(n)). (3.25)

Formulae (3.24) and (3.25) are formulae (7.7) and (7.6) of Lahiri [14].
Finally we treat S(1 1 1 3), S(0 0 3 5) and S(0 0 1 7). We choose

f(a, b, x, y) = −aby6 − 3abx2y4 + a2x3y3 + 3a2x5y,

f(a, b, x, y) = xy7 + x7y − x3y5 − x5y3,

f(a, b, x, y) = 11xy7 + 11x7y − 56x3y5 − 56x5y3,

so that

E = 12a2x5y + 36abx2y4 + 62a2x3y3 + 8aby6 + 24a2xy5

−24b2x5y − 62b2x3y3 − 12b2xy5 − 8abx6 + 54abx4y2,

E = 90x3y5 + 90x5y3,

E = −720xy7 − 720x7y,

respectively. The left hand sides of (2.2) are

12[2 0 5 1] + 36[1 1 2 4] + 62[2 0 3 3] + 8[1 1 0 6] + 24[2 0 1 5]
−24[0 2 5 1]− 62[0 2 3 3]− 12[0 2 1 5]− 8[1 1 6 0] + 54[1 1 4 2]

= 90[1 1 2 4] = 90S(1 1 1 3),
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90[0 0 3 5] + 90[0 0 5 3] = 180[0 0 3 5] = 180S(0 0 3 5),

−720[0 0 1 7]− 720[0 0 7 1] = −1440[0 0 1 7] = −1440S(0 0 1 7),

respectively. The right hand sides are

3
2

(n2σ5(n)− n3σ3(n)),

1
28

(11σ9(n)− 21σ5(n) + 10σ3(n)),

−3(11σ9(n) + (20− 30n)σ7(n)− σ(n)),

respectively. Hence, by Theorem 1, we have

n−1∑
m=1

m(n−m)σ(m)σ3(n−m) =
1
60

(n2σ5(n)− n3σ3(n)), (3.26)

n−1∑
m=1

σ3(m)σ5(n−m) =
1

5040
(11σ9(n)− 21σ5(n) + 10σ3(n)),

(3.27)
n−1∑
m=1

σ(m)σ7(n−m) =
1

480
(11σ9(n) + (20− 30n)σ7(n)− σ(n)).

(3.28)

These are formulae (5.6), (9.1) and (9.2) of Lahiri [14]. Formula (3.27) is
due to Glaisher [11, p. 35]. It also appears in the work of Ramanujan [30,
Table IV], [31, p. 146]. Formula (3.28) is due to Ramanujan [30, Table IV],
[31, p. 146].

Weight = 12. Of the twenty-eight sums S(e f g h) of weight 12, we
know of only three which can be evaluated using Theorem 1, these are
S(0 0 5 7), S(0 0 3 9) and S(0 0 1 11). Choosing

f(a, b, x, y) = 8xy11 + 8x11y − 35x3y9 − 35x9y3 + 27x5y7 + 27x7y5,

f(a, b, x, y) = 2xy11 + 2x11y − 11x3y9 − 11x9y3 + 9x5y7 + 9x7y5,

f(a, b, x, y) = 271xy11 + 271x11y − 1540x3y9 − 1540x9y3 + 1584x5y7

+1584x7y5,

we find that

E = 2520x5y7 + 2520x7y5,

E = −180x3y9 − 180x9y3,

E = 7560xy11 + 7560x11y,
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respectively. The left hand sides of (2) are 5040S(0 0 5 7), −360S(0 0 3 9)
and 15120S(0 0 1 11) respectively. Evaluating the right hand sides of (2.2)
and applying Theorem 1, we obtain

n−1∑
m=1

σ5(m)σ7(n−m) =
1

10080
(σ13(n) + 20σ7(n)− 21σ5(n)),

(3.29)
n−1∑
m=1

σ3(m)σ9(n−m) =
1

2640
(σ13(n)− 11σ9(n) + 10σ3(n)), (3.30)

n−1∑
m=1

σ(m)σ11(n−m) =
1

65520
(691σ13(n) + 2730(1− n)σ11(n)

−691σ(n)). (3.31)

These are formulae (13.1), (13.2), (13.4) of Lahiri [14]. Formulae (3.29)
and (3.30) are due to Glaisher [11, p. 35]. They also appear in Ramanujan
[30, Table IV], [31, p. 146]. Formula (3.31) is due to Ramanujan [30, Table
IV], [31, p. 146].

Weight = 10. Formulae (3.1)–(3.3), (5.1)–(5.4), (7.1)–(7.5), (9.1)–(9.4),
(11.1), (11.3), (11.4) of Lahiri [15] show that the nineteen sums S(e f g h)
of weight 10 require the Ramanujan tau function τ(n) in their evaluation.
Thus it is likely that, in order to be able to deduce their evaluations from
Theorem 1, representations of Ramanujan’s tau function in terms of divisor
functions would be needed. We have not explored this.

In addition to the twenty-two identities (3.10)–(3.31) that we have just
considered, Lahiri [14] gave fifteen additional identities which give the value
of the sum ∑

m1+···+mr=n

m1
a1 · · ·mr

arσb1(m1) · · ·σbr (mr) (r ≥ 3)

where the sum is over all positive integers m1,..., mr satisfying m1 + · · ·+
mr = n, for the values of a1,..., ar,b1,..., br given in Table 2 below. The
authors have checked that all of these sums can be evaluated using the
sums (3.10)–(3.31) and so can be evaluated in an elementary manner. All
of our evaluations agreed with those of Lahiri [14] except for that of∑

m1+m2+m3+m4=n

m1σ(m1)σ(m2)σ(m3)σ(m4),

where a typo had crept into Lahiri’s evaluation. In Lahiri’s equation (7.10)
the term −2332(2, 5) and one of the two terms 3 · 5(1,4) should be deleted.
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a1 a2 a3 b1 b2 b3 Lahiri’s eqn
0 0 0 1 1 1 (5.2)
1 0 0 1 1 1 (5.5)
1 1 0 1 1 1 (5.9)
2 0 0 1 1 1 (5.10)
0 0 0 1 1 3 (7.3)
1 0 0 3 1 1 (7.8)
1 0 0 1 1 3 (7.9)
0 0 0 1 3 3 (9.3)
0 0 0 1 1 5 (9.4)
0 0 0 3 3 5 (13.3)

a1 a2 a3 a4 b1 b2 b3 b4 Lahiri’s eqn
0 0 0 0 1 1 1 1 (7.4)
1 0 0 0 1 1 1 1 (7.10)
0 0 0 0 1 1 1 3 (9.5)

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 Lahiri’s eqn
0 0 0 0 0 1 1 1 1 1 (9.6)
1 0 0 0 0 1 1 1 1 1 (9.7)

Table 2. Lahiri’s identities for r = 3, 4, 5

The correct evaluation of the above sum is then

1
13824

(5nσ7(n) + (21n− 42n2)σ5(n) + (15n− 90n2 + 108n3)σ3(n)

+(n− 18n2 + 72n3 − 72n4)σ(n)).

We illustrate the derivation of these fifteen identities with just one example.
The rest can be treated similarly. We evaluate the sum∑

m1+m2+m3=n

m1m2σ(m1)σ(m2)σ(m3).

We have appealing to (3.15), (3.21) and (3.22)

288
∑

m1+m2+m3=n

m1m2σ(m1)σ(m2)σ(m3)
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= 288
n−2∑
m3=1

σ(m3)
∑

m1+m2=n−m3

m1m2σ(m1)σ(m2)

= 24
n−2∑
m3=1

σ(m3)((n−m3)2σ3(n−m3)− (n−m3)3σ(n−m3))

= 24
n−2∑
m=1

(n−m)2σ(m)σ3(n−m)− 24
n−2∑
m=1

(n−m)3σ(m)σ(n−m)

= 24
n−1∑
m=2

m2σ3(m)σ(n−m)− 24
n−1∑
m=2

m3σ(m)σ(n−m)

= 24
n−1∑
m=1

m2σ3(m)σ(n−m)− 24
n−1∑
m=1

m3σ(m)σ(n−m)

= (n2σ5(n) + (n2 − 2n3)σ3(n))− (2n3σ3(n) + (n3 − 3n4)σ(n))
= n2σ5(n) + (n2 − 4n3)σ3(n)− (n3 − 3n4)σ(n)).

We remark that Lahiri’s equations (5.2), (7.4) and (9.6) are implicit in
Glaisher [11, p. 33]. Lahiri’s identity (5.2) is proved in Bambah and Chowla
[1, eqn. (28)], see also Chowla [5], [6, p. 669].

This concludes our proof that all thirty-seven convolution formulae of
Lahiri [14] are consequences of Theorem 1.

For further work on convolution sums, see Grosjean [12], [13] and Levitt
[19].

4 Application of Theorem 1 to Melfi’s Identities

In this section we consider sums of the type∑
m<n/k

σ(m)σ(n− km), (4.1)

where k is a given positive integer. Recently Melfi [26] has treated these
sums for k= 2, 3, 4, 5, 9 under the restriction that gcd(n, k) = 1 using the
theory of modular forms. We evaluate these sums using Theorem 1 for k=
2, 3, 4 and all positive integers n thereby extending Melfi’s results in these
cases. We begin by expressing the sum (4.1) in terms of the quantity∑

ax+by=n
x≡−y (mod k)

ab +
∑

ax+by=n
x≡y (mod k)

ab, (4.2)

which can be evaluated explicitly for k = 1, 2, 3, 4.
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Lemma 1. Let k be a positive integer. Then∑
m<n/k

σ(m)σ(n− km) = − 1
24
σ3(n) +

1
24
σ(n) +

1
4
σ3(n/k)− n

4
σ(n/k)

+
1
4

∑
ax+by=n

x≡−y (mod k)

ab+
1
4

∑
ax+by=n
x≡y (mod k)

ab. (4.3)

Proof. The identity (4.3) follows from Theorem 1 by taking f(a, b, x, y) =
(2a2−b2)Fk(x). With this choice, after a long calculation, we find that the
left hand side of (2.2) is

2
∑

ax+by=n
x≡−y (mod k)

ab+ 2
∑

ax+by=n
x≡y (mod k)

ab− 8
∑

m<n/k

σ(m)σ(n− km)

and the right hand side is

1
3
σ3(n)− 1

3
σ(n)− 2σ3(n/k) + 2nσ(n/k).

Lemma 1 now follows by Theorem 1.

When k = 1 the sum (4.2) is 2
∑n−1
m=1 σ(m)σ(n−m) and Lemma 1 gives

the identity (3.10).
When k = 2 the sum (4.2) is

2
∑

ax+by=n
x≡y (mod 2)

ab = 4
∑

ax+by=n
2 | x,2 | y

ab + 2
∑

ax+by=n

ab − 2
∑

ax+by=n
2 | x

ab

− 2
∑

ax+by=n
2 | y

ab

= 4
∑

m<n/2

σ(m)σ(n/2−m) + 2
n−1∑
m=1

σ(m)σ(n−m)

− 4
∑

m<n/2

σ(m)σ(n− 2m).

Then, from Lemma 1 and (3.10), we obtain

Theorem 2 (see Melfi [26], (8)).∑
m<n/2

σ(m)σ(n− 2m) =
1
24

(2σ3(n) + (1− 3n)σ(n)

+ 8σ3(n/2) + (1− 6n)σ(n/2)). (4.4)
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Replacing n by n+1 in (4.4), we obtain the following companion formula

∑
m≤n/2

σ(m)σ(n− (2m− 1)) =
1
24

(2σ3(n+ 1)− (2 + 3n)σ(n+ 1)

+ 8σ3((n+ 1)/2)− (5 + 6n)σ((n+ 1)/2)). (4.5)

When k = 3 the sum (4.2) is

3
∑

ax+by=n
3 | x, 3 | y

ab +
∑

ax+ by=n

ab −
∑

ax+by=n
3 | x

ab −
∑

ax+by=n
3 | y

ab

= 3
∑

ax+ by=n/3

ab +
∑

ax+ by=n

ab − 2
∑

3ax+ by=n

ab

= 3
∑

m<n/3

σ(m)σ(n/3−m) +
n−1∑
m=1

σ(m)σ(n−m)

−2
∑

m<n/3

σ(m)σ(n− 3m).

Appealing to Lemma 1 (with k = 3) and (3.10), we obtain

Theorem 3 (see Melfi [26], (12)).∑
m<n/3

σ(m)σ(n− 3m) =
1
24

(σ3(n) + (1− 2n)σ(n)

+ 9σ3(n/3) + (1− 6n)σ(n/3)).

When k = 4 the sum (4.2) is

2
∑

ax+by=n
4 | x, 4 | y

ab + 2
∑

ax+by=n
2 ‖ x, 2 ‖ y

ab +
∑

ax+by=n
2-x, 2-y

ab.

Next we set

F (n) :=
∑

ax+by=n

ab, G(n) :=
∑

2ax+by=n

ab,

so that the above sum is

2F (n/4) + 2(F (n/2)− 2G(n/2) + F (n/4)) + (F (n)− 2G(n) + F (n/2))

= F (n) + 3F (n/2) + 4F (n/4)− 2G(n)− 4G(n/2).



Elementary Evaluation of Certain Convolution Sums 21

Since

F (n) =
n−1∑
m=1

σ(m)σ(n−m), G(n) =
∑

m<n/2

σ(m)σ(n− 2m),

appealing to (3.10), Theorem 2 and Lemma 1 (with k = 4), we obtain

Theorem 4 (see Melfi [26], (11)).∑
m<n/4

σ(m)σ(n− 4m) =
1
48

(σ3(n) + (2− 3n)σ(n) + 3σ3(n/2)

+ 16σ3(n/4) + (2− 12n)σ(n/4)).

The authors have not been able to use Theorem 1 to evaluate the sum
(4.1) for k ≥ 5.

As a consequence of Theorems 2 and 4 we obtain the following new
evaluation.

Theorem 5.∑
m<n/2

σ(2m)σ(n− 2m) =
1
24

(5σ3(n) + 21σ3(n/2)− 16σ3(n/4)

+(1− 6n)(σ(n) + 3σ(n/2)− 2σ(n/4))).

Proof. As σ(2m) = 3σ(m)− 2σ(m/2) we have∑
m<n/2

σ(2m)σ(n− 2m)

= 3
∑

m<n/2

σ(m)σ(n− 2m)− 2
∑

m<n/2
2 |m

σ(m/2)σ(n− 2m)

= 3
∑

m<n/2

σ(m)σ(n− 2m)− 2
∑

m<n/4

σ(m)σ(n− 4m).

The theorem now follows from Theorems 2 and 4.

As a corollary of Theorem 5 we have the companion result where, in-
stead of running through even integers 2m (m < n/2), we run through odd
integers 2m− 1 (m ≤ n/2).

Corollary 1. ∑
m≤n/2

σ(2m− 1)σ(n− (2m− 1))

=
1
24

(5σ3(n)− 21σ3(n/2) + 16σ3(n/4)

+(1− 6n)(σ(n)− 3σ(n/2) + 2σ(n/4))).
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Proof. Corollary 1 follows from Theorem 5 and (3.10).

Taking n = 2M with M odd in Corollary 1, we obtain

M∑
m=1

σ(2m− 1)σ(2M − 2m+ 1) =
1
24

(5σ3(2M)− 21σ3(M)

+(1− 12M)(σ(2M)− 3σ(M)),

that is
M∑
m=1

σ(2m− 1)σ(2M − 2m+ 1) = σ3(M), (4.6)

which is a result of Liouville [20, p. 146], see also [7, p. 287], [8, p. 329].
Our next application of Theorem 1 extends two more of Melfi’s identities

[26, eqns. (9), (10)] to all positive integers n.

Theorem 6.∑
m<n/2

σ3(m)σ(n− 2m) =
1

240
(σ5(n)− σ(n) + 20σ5(n/2)

+(10− 30n)σ3(n/2)),∑
m<n/2

σ(m)σ3(n− 2m) =
1

240
(5σ5(n) + (10− 15n)σ3(n)

+16σ5(n/2)− σ(n/2)).

Proof. We set

X :=
∑

m<n/2

σ3(m)σ(n− 2m), Y :=
∑

m<n/2

σ(m)σ3(n− 2m).

Choosing f(a, b, x, y) = a4F2(x) in Theorem 1, the left hand side of (2.2)
is ∑
ax+by=n

((b− a)4 − (b+ a)4)F2(x) =
∑

2ax+by=n

(−8a3b− 8ab3) = −8X − 8Y

and the right hand side of (2.2) is (after some calculation)

− 1
5
σ5(n) +

(
n

2
− 1

3

)
σ3(n) +

1
30
σ(n)− 6

5
σ5(n/2)

+
(
n− 1

3

)
σ3(n/2) +

1
30
σ(n/2).
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Next setting f(a, b, x, y) = b4F2(a) in Theorem 1, the left hand side of (2.2)
is ∑
ax+by=n

((a−b)4−(a+b)4)F2(a) =
∑

2ax+by=n

(−64a3b−16ab3) = −64X−16Y

and the right hand side is (after some calculation)

− 3
5
σ5(n) +

(
n− 2

3

)
σ3(n) +

4
15
σ(n)− 32

5
σ5(n/2)

+
(

8n− 8
3

)
σ3(n/2) +

1
15
σ(n/2).

Solving the two linear equations for X and Y resulting from Theorem 1,
we obtain the assertions of Theorem 6.

As a consequence of Theorem 6 we have the following identity.

Corollary 2.

n−1∑
k=0

σ(2k + 1)σ3(n− k) =
1

240
(σ5(2n+ 1)− σ(2n+ 1)). (4.7)

Proof. We have

n−1∑
k=0

σ(2k + 1)σ3(n− k) =
n∑

m=1

σ(2n− 2m+ 1)σ3(m)

=
∑

m<(2n+1)/2

σ((2n+ 1)− 2m)σ3(m)

=
1

240
(σ5(2n+ 1)− σ(2n+ 1)),

by Theorem 6. This completes the proof of Corollary 2.

Corollary 2 was explicitly stated but never proved by Ramanujan [30],
[31, p. 146]. A result equivalent to (4.7) was first proved by Masser, see
Berndt [2, p. 329] and Berndt and Evans [3, p. 136], with later proofs by
Atkin (see Berndt [2, p. 329]) and Ramamani [29]. None of these proofs is
elementary. The above proof is the first elementary proof of (4.7). Berndt
[2, p. 329] has indicated that it would be interesting to have such a proof.
As a further consequence of Theorem 6, we obtain the following identity of
Liouville [20, p. 147].
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Corollary 3. Let M be an odd positive integer. Then

M−1∑
m=0

σ(2m+ 1)σ3(2M − 2m− 1) = σ5(M).

Proof. As

σ(2k) = 3σ(k)− 2σ(k/2), σ3(2k) = 9σ3(k)− 8σ3(k/2),

we have

M−1∑
m=1

σ(2m)σ3(2M − 2m) =
M−1∑
m=1

(3σ(m)− 2σ(m/2))(9σ3(M −m)

−8σ3((M −m)/2))
= 27S1 − 18S2 − 24S3 + 16S4,

where

S1 =
M−1∑
m=1

σ(m)σ3(M −m),

S2 =
M−1∑
m=1
2 |m

σ(m/2)σ3(M −m),

S3 =
M−1∑
m=1

2|M−m

σ(m)σ3((M −m)/2),

S4 =
M−1∑
m=1
2 |m

2 |M−m

σ(m/2)σ3((M −m)/2).

By (3.12) we have

S1 =
21
240

σ5(M) +
(1− 3M)

24
σ3(M)− 1

240
σ(M).

By Theorem 6, we obtain

S2 =
∑

m<M/2

σ(m)σ3(M − 2m) =
1
48
σ5(M) +

(2− 3M)
48

σ3(M).
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Further, by Corollary 2, we have

S3 =
M−1∑
m=1

2 |M−m

σ(m)σ3((M −m)/2)

=
(M−3)/2∑
k=0

σ(2k + 1)σ3

(
M − 1

2
− k
)

=
1

240
σ5(M)− 1

240
σ(M).

Finally, as m and N −m are of opposite parity, we have S4 = 0. Putting
these evaluations together, we obtain

M−1∑
m=1

σ(2m)σ3(2M − 2m) =
151
80

σ5(M) +
(3− 18M)

8
σ3(M)− 1

80
σ(M).

Then, appealing to (3.12), we obtain

M−1∑
m=0

σ(2m+ 1)σ3(2M − 2m− 1)

=
2M−1∑
m=1

σ(m)σ3(2M −m)−
M−1∑
m=1

σ(2m)σ3(2M − 2m)

=
(

7
80
σ5(2M) +

(1− 6M)
24

σ3(2M)− 1
240

σ(2M)
)

−
(

151
80

σ5(M) +
(3− 18M)

8
σ3(M)− 1

80
σ(M)

)
= σ5(M).

This completes the proof of Corollary 3.

We conclude this section with the following result, which is analogous
to Theorem 5. We make use of Theorem 3 and a result of Melfi [26, eqn.
(14)].

Theorem 7. If n ≡ 0 (mod 3) then

∑
m<n/3

σ(3m)σ(n− 3m) =
1
36

(7σ3(n) + (3− 18n)σ(n) + 8σ3(n/3)).



26 J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams

If n ≡ 1 (mod 3) and there exists a prime p ≡ 2 (mod 3) with p ‖n, or if
n ≡ 2 (mod 3), then

∑
m<n/3

σ(3m)σ(n− 3m) =
1
72

(11σ3(n) + (3− 18n)σ(n)).

Proof. As σ(3m) = 4σ(m)− 3σ(m/3) we have

∑
m<n/3

σ(3m)σ(n− 3m)

= 4
∑

m<n/3

σ(m)σ(n− 3m)− 3
∑

m<n/3
3 |m

σ(m/3)σ(n− 3m)

= 4
∑

m<n/3

σ(m)σ(n− 3m)− 3
∑

m<n/9

σ(m)σ(n− 9m)

=
1
6

(σ3(n) + (1− 2n)σ(n) + 9σ3(n/3) + (1− 6n)σ(n/3))

−3
∑

m<n/9

σ(m)σ(n− 9m),

by Theorem 3. We first consider the case n ≡ 0 (mod 3), say n = 3N . In
this case we have

∑
m<n/9

σ(m)σ(n− 9m)

=
∑

m<N/3

σ(m)σ(3N − 9m)

= 4
∑

m<N/3

σ(m)σ(N − 3m)− 3
∑

m<N/3

σ(m)σ(N/3−m)

=
1
6

(σ3(N) + (1− 2N)σ(N) + 9σ3(N/3) + (1− 6N)σ(N/3))

−1
4

(5σ3(N/3) + (1− 2N)σ(N/3))

=
1
12

(2σ3(N) + (2− 4N)σ(N) + 3σ3(N/3)− (1 + 6N)σ(N/3))

=
1
36

(6σ3(n/3) + (6− 4n)σ(n/3) + 9σ3(n/9)− (3 + 6n)σ(n/9)),
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by (3.10) and Theorem 3. Hence∑
m<n/3

σ(3m)σ(n− 3m)

=
1
12

(2σ3(n) + 12σ3(n/3)− 9σ3(n/9) + (2− 4n)σ(n)

−(4 + 8n)σ(n/3) + (3 + 6n)σ(n/9)).

Since

σ3(n) = 28σ3(n/3)− 27σ3(n/9), σ(n) = 4σ(n/3)− 3σ(n/9),

for n ≡ 0 (mod 3), we have∑
m<n/3

σ(3m)σ(n− 3m) =
1
36

(7σ3(n) + 8σ3(n/3) + (3− 18n)σ(n)).

Finally, if n ≡ 1 (mod 3) and there exists a prime p ≡ 2 (mod 3) such that
p ‖ n, or if n ≡ 2 (mod 3), then, by Melfi [26, eqn. (14)], we have∑

m<n/9

σ(m)σ(n− 9m) =
1

216
(σ3(n) + (9− 6n)σ(n))

so that ∑
m<n/3

σ(3m)σ(n− 3m) =
1
72

(11σ3(n) + (3− 18n)σ(n)).

This completes the proof of Theorem 7.

We are unable to give the value of
∑
m<n/3 σ(3m)σ(n− 3m) for those

n ≡ 1 (mod 3) such that p2 | n for every prime p ≡ 2 (mod 3) with p | n
since the value of

∑
m<n/9 σ(m)σ(n− 9m) is not known for such n.

5 Sums
∑n−1
m=1,m≡a ( mod b) σ(m)σ(n−m)

Let a and b be integers satisfying b ≥ 1 and 0 ≤ a ≤ b− 1. We set

S(a, b) =
n−1∑
m=1

m≡a (mod b)

σ(m)σ(n−m). (5.1)
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Clearly, by (3.10), Theorem 5 and Corollary 1, we have

S(0, 1) =
1
12

(5σ3(n) + (1− 6n)σ(n)), (5.2)

S(0, 2) =
1
24

(5σ3(n) + 21σ3(n/2)− 16σ3(n/4) + (1− 6n)(σ(n)

+3σ(n/2)− 2σ(n/4))), (5.3)

S(1, 2) =
1
24

(5σ3(n)− 21σ3(n/2) + 16σ3(n/4) + (1− 6n)(σ(n)

−3σ(n/2) + 2σ(n/4))). (5.4)

Melfi [26, eqn. (7)] has shown that

S(1, 3) =
1
9
σ3(n), if n ≡ 2 (mod 3). (5.5)

Appealing to Theorem 7, we obtain the following partial evaluation of
S(i, 3) (i = 0, 1, 2).

Theorem 8. If n ≡ 0 (mod 3) then

S(0, 3) =
1
36

(7σ3(n) + (3− 18n)σ(n) + 8σ3(n/3)),

S(1, 3) =
1
9

(σ3(n)− σ3(n/3)),

S(2, 3) =
1
9

(σ3(n)− σ3(n/3));

if n ≡ 1 (mod 3) and there exists a prime p ≡ 2 (mod 3) such that p ‖ n
then

S(0, 3) =
1
72

(11σ3(n) + (3− 18n)σ(n)),

S(1, 3) =
1
72

(11σ3(n) + (3− 18n)σ(n)),

S(2, 3) =
1
9
σ3(n);

and if n ≡ 2 (mod 3) then

S(0, 3) =
1
72

(11σ3(n) + (3− 18n)σ(n)),

S(1, 3) =
1
9
σ3(n),

S(2, 3) =
1
72

(11σ3(n) + (3− 18n)σ(n)).
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Proof. First we note that

S(0, 3) + S(1, 3) + S(2, 3) = S(0, 1),

so that by (5.2) we have

S(0, 3) + S(1, 3) + S(2, 3) =
1
12

(5σ3(n) + (1− 6n)σ(n)). (5.6)

Secondly we note that the change of variable m −→ n−m yields S(i, 3) =
S(n− i, 3) so that

S(1, 3) = S(2, 3), if n ≡ 0 (mod 3),

S(0, 3) = S(1, 3), if n ≡ 1 (mod 3),

S(0, 3) = S(2, 3), if n ≡ 2 (mod 3).

(5.7)

Then

S(0, 3) =
n−1∑
m=1

m≡0 (mod 3)

σ(m)σ(n−m) =
∑

m<n/3

σ(3m)σ(n− 3m),

and the evaluation of S(0, 3) follows from Theorem 7. The values of S(1, 3)
and S(2, 3) then follow from (5.6) and (5.7). This completes the proof of
Theorem 8.

It would be interesting to determine S(i, 3) (i = 0, 1, 2) for all n ≡ 1
(mod 3).

We conclude this section by giving some partial results for the sums
S(i, 4) (i = 0, 1, 2, 3). We do not know of any evaluations of S(a, b) for
b ≥ 5.

Theorem 9. If n ≡ 0 (mod 4) then

S(1, 4) = S(3, 4) =
1
16

(σ3(n)− σ3(n/2))

and

S(0, 4) + S(2, 4) =
1
24

(7σ3(n) + (2− 12n)σ(n) + 3σ3(n/2)).

If n ≡ 1 (mod 4) then

S(0, 4) = S(1, 4), S(2, 4) = S(3, 4)
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and
S(0, 4) + S(2, 4) =

1
24

(5σ3(n) + (1− 6n)σ(n)).

If n ≡ 2 (mod 4) then

S(0, 4) = S(2, 4) =
1
72

(11σ3(n) + (3− 18n)σ(n))

and
S(1, 4) + S(3, 4) =

1
9
σ3(n).

If n ≡ 3 (mod 4) then

S(0, 4) = S(3, 4), S(1, 4) = S(2, 4)

and
S(0, 4) + S(1, 4) =

1
24

(5σ3(n) + (1− 6n)σ(n)).

Proof. First we note that by (5.1) and (5.2) we have

S(0, 4) + S(1, 4) + S(2, 4) + S(3, 4) =
1
12

(5σ3(n) + (1− 6n)σ(n)). (5.8)

Secondly the change of variable m −→ n−m yields S(i, 4) = S(n− i, 4) so
that

S(1, 4) = S(3, 4), if n ≡ 0 (mod 4),

S(0, 4) = S(1, 4), S(2, 4) = S(3, 4), if n ≡ 1 (mod 4),

S(0, 4) = S(2, 4), if n ≡ 2 (mod 4),

S(0, 4) = S(3, 4), S(1, 4) = S(2, 4), if n ≡ 3 (mod 4).

(5.9)

The asserted results for n ≡ 1 (mod 4) and n ≡ 3 (mod 4) now follow from
(5.8) and (5.9).

For n ≡ 2 (mod 4) we have by (5.9) and (5.3)

S(0, 4) = S(2, 4) =
1
2

(S(0, 4) + S(2, 4))

=
1
2
S(0, 2)

=
1
48

(5σ3(n) + 21σ3(n/2) + (1− 6n)(σ(n) + 3σ(n/2)))

=
1
72

(11σ3(n) + (3− 18n)σ(n)).
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The value of S(1, 4) + S(3, 4) then follows from (5.8).
For n ≡ 0 (mod 4) we have by (5.9) and (5.4)

S(1, 4) = S(3, 4) =
1
2

(S(1, 4) + S(3, 4))

=
1
2
S(1, 2)

=
1
48

(5σ3(n)− 21σ3(n/2) + 16σ3(n/4)

+(1− 6n)(σ(n)− 3σ(n/2) + 2σ(n/4)))

=
1
16

(σ3(n)− σ3(n/2)).

The value of S(0, 4) + S(2, 4) now follows from (5.8). This completes the
proof of Theorem 9.

6 Application of Theorem 1 to Triangular Numbers

The triangular numbers are the nonnegative integers

1
2
m(m+ 1), m = 0, 1, 2, ... .

For k a positive integer, we let δk(n) denote the number of representations
of n as the sum of k triangular numbers. It is an easily proved classical
result that

δ2(n) =
∑

a | 4n+1

(
−4
a

)
, n = 0, 1, 2, ... . (6.1)

We derive the corresponding formulae for δ4(n), δ6(n) and δ8(n) from (6.1)
using Theorem 1.

Theorem 10 ([27], Theorem 3).

δ4(n) = σ(2n+ 1).

Proof. First we choose f(a, b, x, y) = F4(b) in Theorem 1 with n replaced
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by 4n+ 2. We obtain∑
ax+by=4n+2

(F4(a− b)− F4(a+ b))

=
∑

d | 4n+2

∑
x<d

(
F4

(
4n+ 2
d

)
+ F4(0) + F4

(
4n+ 2
d

)
− F4(x− d)

−F4(d)− F4(x))

=
∑

d | 4n+2

∑
x<d

(1− F4(x− d)− F4(x))

=
∑

d | 4n+2

{
d− 1− 2

[
d

4

]}

= σ(4n+ 2)− τ(4n+ 2)− 2
∑

d | 4n+2

[
d

4

]

= 3σ(2n+ 1)− 2τ(2n+ 1)− 2
∑

d | 2n+1

[
d

4

]
− 2

∑
d | 2n+1

[
d

2

]

= 2σ(2n+ 1)− τ(2n+ 1)− 2
∑

d | 2n+1

[
d

4

]
.

Secondly we choose f(a, b, x, y) = F4(a)F2(x) in Theorem 1 with n replaced
by 4n+ 2. We obtain∑
2ax+by=4n+2

(F4(a− b)− F4(a+ b))

=
∑

d | 4n+2

∑
x<d

(
F4(0)F2(x) + F4

(
4n+ 2
d

)
F2(d)− F4(x)F2

(
4n+ 2
d

)

+F4

(
4n+ 2
d

)
F2(d− x)− F4(x)F2(0)− F4(d)F2

(
4n+ 2
d

))
=

∑
d | 4n+2

∑
x<d

(
F2(x)− F4(x)F2

(
4n+ 2
d

)
− F4(x)

)
=

∑
d | 4n+2

∑
x<d/2

1−
∑

d | 2n+1

∑
x<d/4

1−
∑

d | 4n+2

∑
x<d/4

1

=
∑

d | 2n+1

(d− 1) +
∑

d | 2n+1

(d− 1)
2

−
∑

d | 2n+1

[
d

4

]
−

∑
d | 2n+1

(d− 1)
2

−
∑

d | 2n+1

[
d

4

]
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= σ(2n+ 1)− τ(2n+ 1)− 2
∑

d | 2n+1

[
d

4

]
.

Subtracting these two results, we deduce that∑
ax+by=4n+2

(F4(a− b)− F4(a+ b))−
∑

2ax+by=4n+2

(F4(a− b)− F4(a+ b))

= σ(2n+ 1),

that is ∑
ax+by=4n+2
x≡1 (mod 2)

(F4(a− b)− F4(a+ b)) = σ(2n+ 1).

A simple consideration of the residues of a and b modulo 4 shows that

F4(a− b)− F4(a+ b) =
(
−4
ab

)
so that ∑

ax+by=4n+2
x≡1 (mod 2)

(
−4
ab

)
= σ(2n+ 1).

As
(
−4
ab

)
= 0, for a ≡ 0 (mod 2), we have

∑
ax+by=4n+2
ax≡1 (mod 2)

(
−4
ab

)
= σ(2n+ 1).

Now ∑
ax+by=4n+2
ax≡3 (mod 4)

(
−4
ab

)
=

∑
ax+by=4n+2
ax≡3 (mod 4)

(
−4
xb

)
= −

∑
ax+by=4n+2
ax≡3 (mod 4)

(
−4
ab

)
,

as
(
−4
x

)
= −

(
−4
a

)
, so that

∑
ax+by=4n+2
ax≡3 (mod 4)

(
−4
ab

)
= 0.
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Thus ∑
ax+by=4n+2
ax≡1 (mod 4)

(
−4
ab

)
= σ(2n+ 1).

Finally we have

δ4(n) =
n∑

m=0

δ2(m)δ2(n−m)

=
n∑

m=0

∑
a | 4m+1

(
−4
a

) ∑
b | 4(n−m)+1

(
−4
b

)

=
∑

ax+by=4n+2
ax≡1 (mod 4)

(
−4
ab

)

= σ(2n+ 1).

This is the asserted formula for δ4(n).

Theorem 10 was known to Legendre [16].

Theorem 11 ([27], Theorem 4).

δ6(n) = −1
8

∑
d | 4n+3

(
−4
d

)
d2.

Proof. We have by (6.1) and Theorem 10

δ6(n) =
n∑

m=0

δ2(m)δ4(n−m)

=
n∑

m=0

∑
a | 4m+1

(
−4
a

) ∑
b | 2(n−m)+1

b

=
∑

ax+2by=4n+3

(
−4
a

)
b,

as ∑
ax+2by=4n+3
b≡ 0(mod 2)

(
−4
a

)
b = 2

∑
ax+4by=4n+3

(
−4
a

)
b

=
∑

ax+4by=4n+3

{(
−4
a

)
+
(
−4
x

)}
b

= 0
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and similarly ∑
ax+2by=4n+3
y≡0 (mod 2)
b≡1 (mod 2)

(
−4
a

)
b = 0.

Next, as (
−4

a+ 2b

)
=
(
−4
a

)
, if b ≡ 0 (mod 2),

and (
−4

a+ 2b

)
=
(
−4
a+ 2

)
= −

(
−4
a

)
, if b ≡ 1 (mod 2),

we have

∑
ax+2by=4n+3

{(
−4
a

)
b+

(
−4

a+ 2b

)
b

}

= 2
∑

ax+2by=4n+3
b≡0 (mod 2)

(
−4
a

)
b

= 0,

so that

δ6(n) = −
∑

ax+2by=4n+3

(
−4

a+ 2b

)
b.

Now choose

f(a, b, x, y) =
(
−4
a

)
b

in Theorem 1. Then

E =
(
−4
a

)
b−

(
−4
a

)
(−b) +

(
−4
a

)
(a− b)−

(
−4
a

)
(a+ b)

+
(
−4
b− a

)
b−

(
−4
a+ b

)
b

=
{(

−4
b− a

)
−
(
−4
a+ b

)}
b
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and

∑
ax+by=4n+3

{(
−4
b− a

)
−
(
−4
a+ b

)}
b

=
∑

ax+by=4n+3
a+1≡b≡0 (mod 2)

{(
−4
b− a

)
−
(
−4
a+ b

)}
b

+
∑

ax+by=4n+3
a≡b+1≡0 (mod 2)

{(
−4
b− a

)
−
(
−4
a+ b

)}
b

= 2
∑

ax+2by=4n+3

{(
−4

2b− a

)
−
(
−4

2b+ a

)}
b

+
∑

2ax+by=4n+3

{(
−4

b− 2a

)
−
(
−4

b+ 2a

)}
b

= −4
∑

ax+2by=4n+3

(
−4

a+ 2b

)
b,

as (
−4

2b− a

)(
−4

2b+ a

)
=
(

−4
4b2 − a2

)
=
(
−4
−a2

)
=
(
−4
3

)
= −1,

for a odd, and(
−4

b− 2a

)(
−4

b+ 2a

)
=
(

−4
b2 − 4a2

)
=
(
−4
b2

)
= 1,

for b odd. We have shown that∑
ax+by=4n+3

E = 4δ6(n).

Then, by Theorem 1, we have

4δ6(n) =
∑

d | 4n+3

∑
x<d

{(
−4

(4n+ 3)/d

)
4n+ 3
d

−
(
−4
x

)
x−

(
−4
d

)
x

}
= A1 −A2 −A3,
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where

A1 =
∑

d | 4n+3

∑
x<(4n+3)/d

(
−4
d

)
d

=
∑

d | 4n+3

(
−4
d

)
d

{
4n+ 3
d

− 1
}

= (4n+ 3)
∑

d | 4n+3

(
−4
d

)
−

∑
d | 4n+3

(
−4
d

)
d

= −
∑

d | 4n+3

(
−4
d

)
d;

A2 =
∑

d | 4n+3

∑
x<d

(
−4
x

)
x

= −
∑

d | 4n+3

(
−4
d

)
d− 1

2

= −1
2

∑
d | 4n+3

(
−4
d

)
d;

A3 =
∑

d | 4n+3

(
−4
d

)∑
x<d

x

=
∑

d | 4n+3

(
−4
d

)
(d− 1)d

2

=
1
2

∑
d | 4n+3

(
−4
d

)
d2 − 1

2

∑
d | 4n+3

(
−4
d

)
d,

so that

4δ6(n) = −1
2

∑
d | 4n+3

(
−4
d

)
d2,

which gives the asserted formula.

Theorem 12 ([27], Theorem 5).

δ8(n) = σ3(n+ 1)− σ3((n+ 1)/2).
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Proof. We have appealing to Theorem 10 and Corollary 1

δ8(n) =
n∑

m=0

δ4(m)δ4(n−m)

=
n∑

m=0

σ(2m+ 1)σ(2n− 2m+ 1)

=
n+1∑
m=1

σ(2m− 1)σ((2n+ 2)− (2m− 1))

=
1
24

(5σ3(2n+ 2)− 21σ3(n+ 1) + 16σ3((n+ 1)/2)

−(11 + 12n)(σ(2n+ 2)− 3σ(n+ 1) + 2σ((n+ 1)/2)))
= σ3(n+ 1)− σ3((n+ 1)/2),

as
σ3(2n+ 2) = 9σ3(n+ 1)− 8σ3((n+ 1)/2)

and
σ(2n+ 2) = 3σ(n+ 1)− 2σ((n+ 1)/2).

This completes the proof of Theorem 12.

7 Application of Theorem 1 to the Representations of
a Positive Integer by Certain Quaternary Forms

Theorem 1 can be used to determine in an elementary manner the classical
formulae for the number of representations of a positive integer n by certain
quaternary forms such as x2 + xy + y2 + u2 + uv + v2, x2 + y2 + u2 + v2,
x2 + 2y2 + u2 + 2v2, etc. We just give one example to illustrate the ideas.

Theorem 13. The number of representations of a positive integer n by the
quaternary form x2 + xy + y2 + u2 + uv + v2 is 12σ(n)− 36σ(n/3).

Proof. Let k be a nonnegative integer. We set

r(k) = card{(x, y) ∈ Z2 | k = x2 + xy + y2}

and

R(k) = card{(x, y, u, v) ∈ Z4 | k = x2 + xy + y2 + u2 + uv + v2}.

Let n be a positive integer. Clearly

R(n) =
n∑
k=0

r(k)r(n− k)



Elementary Evaluation of Certain Convolution Sums 39

so that as r(0) = 1 we have

R(n)− 2r(n) =
n−1∑
k=1

r(k)r(n− k). (7.1)

It is a classical result that

r(n) = 6
∑
d|n

(
−3
d

)
= 6τ1,3(n)− 6τ2,3(n), (7.2)

where
τi,3(n) =

∑
d|n

d≡i (mod 3)

1, i = 0, 1, 2.

Since τ0,3(n) = τ(n/3) and τ0,3(n) + τ1,3(n) + τ2,3(n) = τ(n) we have

τ0,3(n) = τ(n/3),

τ1,3(n) =
1
2
τ(n)− 1

2
τ(n/3) +

1
12
r(n), (7.3)

τ2,3(n) =
1
2
τ(n)− 1

2
τ(n/3)− 1

12
r(n).

From (7.1) and (7.2) we obtain

R(n)− 2r(n) = 36
n−1∑
k=1

∑
a|k

(
−3
a

) ∑
b|n−k

(
−3
b

)
= 36

∑
ax+by=n

(
−3
ab

)

so that ∑
ax+by=n

(
−3
ab

)
=

1
36
R(n)− 1

18
r(n). (7.4)

We now choose

f(a, b, x, y) =
(
−3
ab

)
.

Clearly this choice of f satisfies (2.1) so we may apply Theorem 1. We
obtain after a little simplification∑

ax+by=n

{
2
(
−3
ab

)
+ 2

(
−3

a(a− b)

)
− 2

(
−3

a(a+ b)

)}

=
∑
d |n

∑
x<d

{(
−3

(n/d)2

)
−
(

−3
x(x− d)

)
− 2

(
−3
dx

)}
. (7.5)
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A simple examination of the possible residues of a and b modulo 3 shows
that (

−3
a(a− b)

)
−
(
−3

a(a+ b)

)
=
(
−3
ab

)
so that the left hand side of (7.5) is

4
∑

ax+by=n

(
−3
ab

)
=

1
9
R(n)− 2

9
r(n)

by (7.4). Next we determine the sums on the right hand side of (7.5). First

∑
d |n

∑
x<d

(
−3

(n/d)2

)
=

∑
d |n

∑
x<n/d

(
−3
d2

)
=

∑
d |n, 3-d

∑
x<n/d

1

=
∑

d |n, 3-d

(n
d
− 1
)

= (σ(n)− τ(n))− (σ(n/3)− τ(n/3)).

Secondly

−
∑
d |n

∑
x<d

(
−3

x(x− d)

)

=
∑
d |n

∑
x<d
3-x

(
−3

x(d− x)

)

=
∑
d |n

∑
x<d
3-x

(
−3

xd− 1

)

=
∑
d |n

(
−3
d− 1

) ∑
x<d

x≡1 (mod 3)

1 +
∑
d |n

(
−3

2d− 1

) ∑
x<d

x≡2 (mod 3)

1

=
∑
d |n

(
−3
d− 1

)[
d+ 1

3

]
+
∑
d |n

(
−3

2d− 1

)[
d

3

]
=

1
3
σ(n)− 3σ(n/3)− 1

18
r(n),
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by (7.2). Thirdly

−2
∑
d |n

∑
x<d

(
−3
dx

)
= −2

∑
d |n

(
−3
d

)([
d+ 1

3

]
−
[
d

3

])
= 2τ2,3(n)

= τ(n)− τ(n/3)− 1
6
r(n),

by (7.3). Thus the right hand side of (7.5) is

4
3
σ(n)− 4σ(n/3)− 2

9
r(n).

Hence
1
9
R(n)− 2

9
r(n) =

4
3
σ(n)− 4σ(n/3)− 2

9
r(n)

so that
R(n) = 12σ(n)− 36σ(n/3)

as asserted.

Theorem 13 can be found for example in [22].

8 Further Convolution Sums

We conclude this paper by considering the sums

R =
∑

m<n/3

σ(n− 3m)σ3(m),

S =
∑

m<n/3

σ(m)σ3(n− 3m),

A =
∑

m<n/2

σ(m)σ5(n− 2m),

B =
∑

m<n/2

σ3(m)σ3(n− 2m),

C =
∑

m<n/2

σ5(m)σ(n− 2m).

Although we cannot evaluate any of R, S, A, B, C individually, Theorem
1 enables us to determine certain linear combinations of them.
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Theorem 14.

3R+ S =
1

240
(3σ5(n) + (10− 10n)σ3(n)− 3σ(n)

+81σ5(n/3) + (30− 90n)σ3(n/3)− σ(n/3)).

Proof. We set

G(x, y) =


12, if x ≡ y ≡ 0 (mod 3),

9, if x ≡ y 6≡ 0 (mod 3),

1, if x 6≡ y (mod 3),

and choose
f(a, b, x, y) = a3bG(x, y).

Clearly (2.3) is satisfied and a straightforward calculation shows that

E =



−24a3b − 72a3b, if x ≡ y ≡ 0 (mod 3),

−18a3b − 6ab3, if x ≡ 0 (mod 3), y 6≡ 0 (mod 3),

−18a3b − 54ab3, if x 6≡ 0 (mod 3), y ≡ 0 (mod 3),

6a3b − 6ab3, if x 6≡ 0 (mod 3), y 6≡ 0 (mod 3).

Firstly we have∑
ax+by=n

x≡y≡0 (mod 3)

(−24a3b− 72ab3) =
∑

ax+by=n/3

(−24a3b− 72ab3)

= −96
∑

ax+by=n/3

ab3

= −96
∑

m<n/3

σ(m)σ3(n/3−m).

Secondly ∑
ax+by=n
x≡0 (mod 3)
y 6≡0 (mod 3)

(−18a3b− 6ab3)

=
∑

3ax+by=n

(−18a3b− 6ab3)−
∑

ax+by=n/3

(−18a3b− 6ab3)

= −18R− 6S + 24
∑

m<n/3

σ(m)σ3(n/3−m).
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Thirdly ∑
ax+by=n
x6≡0 (mod 3)
y≡0 (mod 3)

(−18a3b− 54ab3)

=
∑

ax+by=n
x≡0 (mod 3)
y 6≡0 (mod 3)

(−18ab3 − 54a3b)

= −54R− 18S + 72
∑

m<n/3

σ(m)σ3(n/3−m)

as above. Fourthly the change of variables (a, b, x, y) −→ (b, a, y, x) shows
that ∑

ax+by=n
x,y 6≡0 (mod 3)

(6a3b− 6ab3) =
∑

ax+by=n
x,y 6≡0 (mod 3)

(6ab3 − 6a3b)

so that ∑
ax+by=n

x,y 6≡0 (mod 3)

(6a3b− 6ab3) = 0.

Set
T :=

∑
m<n/3

σ(m)σ3(n/3−m).

Hence the left hand side of (2.2) is

(−96T − 18R− 6S) + (24T − 54R− 18S) + 72T = −72R− 24S.

The right hand side of (2.2) is (after a long straightforward calculation)

− 1
10

(3σ5(n) + (10− 10n)σ3(n)− 3σ(n) + 81σ5(n/3)

+(30− 90n)σ3(n/3)− σ(n/3)).

Theorem 14 follows by equating both sides of (2.2).

Theorem 15.

3A+ 8B =
1

840
(28σ7(n) + (105− 105n)σ5(n)− 28σ3(n) + 128σ7(n/2)

−28σ3(n/2) + 5σ(n/2)),

2B + 3C =
1

840
(2σ7(n)− 7σ3(n) + 5σ(n) + 112σ7(n/2)

+(105− 210n)σ5(n/2)− 7σ3(n/2)).
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Proof. The choice

f(a, b, x, y) = (−ab5 + 10a3b3 − 12a4b2)F2(x)

in Theorem 1 yields 36A+ 96B and the choice

f(a, b, x, y) = (ab5 − 10a3b3 + 12a4b2 − 36a6)F2(x)

yields 24B + 36C. The details are left to the reader.

9 Conclusion

It is very likely that there are other choices of f(a, b, x, y) for which Theorem
1 will yield new arithmetic identities. Moreover Theorem 1 itself may be
capable of being generalized. It would also be interesting to know if the
sums R, S, A, B, C of Section 8 can be determined individually, perhaps
in terms of Ramanujan’s tau function, and also whether δ16(n) can be
evaluated using Theorem 1.

The authors would like to thank Elizabeth S. Morcos who did some
numerical calculations for them in connection with this research. They
would also like to thank an unknown referee who drew their attention to
the work of MacMahon [24], [25].
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