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ON THE RELATIVE SIZES OF A AND B IN
p = A% + B2, WHERE p IS A PRIME = 1 (MOD 4)
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Abstract

Let p be a prime =1 (mod4) such that the norm of the fundamental

unit of Q(y2p) is —1. A necessary and sufficient condition is given for A

to be larger than B in the representation p = A2 + B2, A =1 (mod 2),
B=0(mod2), A>0,B>0.

Let p be a prime with p =1 (mod 4). It is a classical result that there

exist unique positive integers A and B such that
p=A%2+B% A=1(mod2), B=0 (mod?2). (1)

We consider the problem of giving a necessary and sufficient condition for
A to be larger than B. By making use of results of Kaplan and Williams
[2], we are able to solve this problem when the norm of the fundamental

unit 7' + Uy/2p (> 1) of the real quadratic field Q(y/2p) is -1, so that

T% - 9112 =-1. )
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By a result of Dirichlet [1], this is always the case when p = 5 (mod 8).
From (2), we see that

T =U =1 (mod 2). 3)
We let L denote the length of the period of the continued Jfraction

expansion of y/2p. By a theorem of Lagrange (see for example [3, Satz
3.18, p. 93]), we have

L =1 (mod 2) 4)
in view of (2). We prove

Theorem. A > B ifand only if L = T (mod 4).

Proof. In view of (4), by [2, Lemma 2], there exists exactly one pair of
positive integers (a, b) with

2p = a® + b2, ged(a, 2b) =1, (5)

such that the binary quadratic form ax? + 2bxy - ay? lies in the principal

class of the group under composition of equivalence classes of primitive
integral binary quadratic forms of discriminant 8p. Then, by [2, Lemma 3,
eqns. (2.6), (2.8)] there exist integers k and / such that

U=k +12 (6)
and
1)L V2 g 4 T = 2p(k2 - 12). 0
From (3) and (6), we deduce that
k # [ (mod 2). (8)
From (1), we have
2p = (A+ B2 + (A - B 9)

As there are exactly eight representations of 2p as a sum of two squares,
these representations must be by (9)

(+*(A+B),+(A-B)), (x(A-B), +(A+B)). (10)
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Hence, from (5) and (10), we have
(@, )=(A+B,|A-B|) or (|(A-B|, A+ B),

that is
(A+eB, A-¢B), if A> B,
(a, b) = (11)
(eA+ B,-eA + B), if A < B,
for some & = +1. Set
6=¢=1 if A > B,
(12)
06=-¢9p=¢ if A< B.
From (12), we see that
1, if A> B,
09 = (13)
-1, if A < B.
From (11) and (12), we have
(a, b) = (6(A + €B), §(A —eB)). (14)
From (7) and (14), we deduce that
(- )\EV20(4 + eB) + To(A - €B) = 2p(k? — 12). (15)
Appealing to (1), (4) and (8), we see that
t eB = B (mod 4), (- 1)(1"_1)/2 = L (mod4), k%-1%2 =1 (mod2).
Then, taking (15) modulo 4, we obtain
(6L + ¢T)(A + B) = 2 (mod 4). (16)

Further, as 6L + ¢7 = 0 (mod 2) (by (3), (4) and (12)) and A+ B =
1 (mod 2) (by (1)), we deduce from (16) that
0L + ¢T = 2 (mod 4). aam
Multiplying (17) by 6, we have
L+ 69T =20 = 2 (mod 4). 18)
The assertion of the theorem now follows from (3), (4), (13) and (18).
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It seems unlikely that there is such a simple criterion in the case
when the norm of Q(4/2p) is +1. To see this consider the primes p = 89

and p = 233. In the former case, we have
L=6=6(modl16), T =1601=1 (mod 64), U =120 = 56 (mod 64),

and in the latter case, we have

L =22=6 (mod16), T = 938319425 =1 (mod 64),
U = 43466808 = 56 (mod 64),

so that L (mod16), T (mod 64) and U (mod 64) are the same for both
primes. However, A < B in the first case (A =5, B =8) whereas
A > B in the second case (A =13, B = 8).
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