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Abstract

Necessary and sufficient conditions for Gal(X4 +aX +b)= A4 and

Gal(X* +aX +b)=V, are given in terms of simple arithmetic
4

conditions on the integers a and b.

Let @ and b be nonzero integers such that the quartic trinomial

X* +aX +b is irreducible in Z[X]. Its discriminant is the integer

- 3%a* + 2883, see for example [4], which is nonzero as X% + aX + b is
irreducible. It is known [3, Theorem 1] that

-33a% + 288 = ¢2 )
for some integer c if and only if
Gal(X* + aX + b)= A4 or V, )

where A4 denotes the alternating group of order 12 and V, denotes the

Klein 4-group of order 4. (We note that the formula for the discriminant
of a quartic polynomial given in [3] is incorrect.) Assuming that (1) holds,
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the two possibilities in (2) for the Galois group of X 4, aX +b can be
distinguished by means of the factorization of the resolvent cubic

r(x) = X% - 4bX - o?

of X* +aX + b as follows:
A4 & r(X) is irreducible in Z[X],
Gal(X* + aX +b) =V, & r(X) = (X - t1)(X - t2) (X - t3) 3)
for iy, tg, 13 € Z,
see [3, Theorem 1]. We remark that the discriminant of r(X) is

- 4(- 4b)3 —27(-a?)? = -3%a* + 2803 = ¢%. The purpose of this note is
to show the rather surprising result that the factorization conditions on
r(X) in (3) can be replaced by simple arithmetic conditions on the

integers a and b. It is convenient to let r denote the largest integer such
that

8 | ged(a*, 64b3%).

We note that az/r3 € Z, 4b/r2 € Z and c/r3 € Z. With the above

notation, we prove the following result.

Theorem.
Gal(X* + aX + b) =V, if and only if
(a) ged(a®/r®, 4b/r?) =1 and either
@) 3] 4b/r?
.
Gi) 3 || 4b/r2, 31 a?/r3, 3%|¢/rd.

Gal(X* + aX + b) = A, if and only if

®) ged @?/r®, 4b/r?) = 1
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or

(© gcd(a2/r3, 4b/r2) =1 and 3| 4b/r2 , 3/ az/r3, 32| c/r3.

Before proceeding we state and prove a simple arithmetical lemma
that we shall need.
Lemma. Let x, y and z be nonzero integers such that
—4x% - 27y% = 22 @)
and

not both of 3% | x and 33 | ¥ hold. 6))

Then exactly one of the following possibilities occurs

3lx, 3]z, (6)
3% 3y 3%z (7
3% |lx, 32|y 3%|-= (8)

Proof of Lemma. Define nonnegative integers r and s by 3" || x and
3°|ly. f r=1, s21 or r>2, s=0, then 3% || -4x3 - 2792 = 22,
which is impossible. If r > 2, s =1, then 3° | —4x3 - 27y% = 22, which
is impossible. If r >3, s =2, then i | —4x3 —27y2 = 22, which 1is
impossible. The possibility » > 2, s > 3 cannot occur by (5). Hence r = 0

or r=1 s=0 or r =2, s=2. The first of these is (6), the second (7)
and the third (8). 0

The proof of our theorem makes use of an explicit formula for the
conductor of an abelian cubic field. Let A and B be nonzero integers such

that X3 + AX + B is irreducible in Z[X] and such that its discriminant

—~443% —27B%isa perfect square, say
- 4A% - 27B% = C?, 9)

where C e Z. The irreducibility of X3 + AX + B ensures that C is
nonzero. Let 6 be a root of X3 + AX + B. Then the cubic field K = Q(0)
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is a normal extension of Q with Galois group C3 (the cyclic group of
order 3). If R is an integer such that R? | A and R3 | B, then
K =Q@®/R) and O/R is a root of X3 +(A/R®)X +(B/R®) of
discriminant (C/ R3)2. Thus we may suppose that the following
simplifying assumption

R?|A R} B=|R|=1 (10)

holds. In view of (9) and (10), the Lemma tells us that exactly one of the
following possibilities occurs:

31A 3/Cor3||A 3B 32|Cor3%| A4 32|B 3|C. @11
We split the possibilities in (11) into two cases as follows:
Casel: 3] A, 3|Cor3| A 3] B, 33|C, 12)
Case2: 32| A4, 32| B 33|Cor3| A 3B, 32|cC, (13)
and define
o =0, in Case 1, (14)
o = 2, in Case 2. (15)

As K is an abelian field, by the Kronecker-Weber theorem, K is a subfield
of some cyclotomic field, that is, K < Q(&,,) for some primitive m-th root
of unity £,,. The smallest such positive integer m is called the conductor
of K and is denoted by f(K). We will use the following formula for f(K),
which is due to Hasse [1]. A simple proof of Hasse’s formula can be found

in Huard, Spearman and Williams [2].

Proposition. Under the above assumptions

=3 1] »

p>3
plA, p|B

where p runs through primes and o is defined in (14) and (15).
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We remark that in [2] the formula for f(K) contains the additional
restriction that p = 1 (mod 3). However, it is easily seen from (9) and the
simplifying assumption (10) that there are no primes p = 2 (mod 3)
dividing both A and B.

Proof of Theorem. From (1), we have
— 4(- 4b/r2)3 - 27((12/r3)2 = (c/r3)2.

Clearly, by the maximality of r, we cannot have both of 32 | 4b/ r? and

33 | a? / r3 holding. Hence, by the Lemma, exactly one of the following

possibilities must occur

3 | 4b/r? (16)
or
3| 4b/r%, 31 a%/r®, 3% |c/r} an
or
32 || 4b/r2, 32 || a%/r3, 33| /3. (18)
Also by (2), we have
Gal(X* + aX +b)= Ay or V. (19)

We suppose first that Gal(X* + aX + b) = V4. By (3), r(X) has three
linear factors, say

X3 —4bX —a? = (X —uy) (X —ug) (X —u3),
where u;, ug, ug € Z. Thus
X3 —4brX —a® = (X —uy) (rX - ug) (X - us)
and so

X3 - (@b/rH)X - @*[r®) = (X - (uy /) (X = (ug/r)) (X — (ug/r)).
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Since 4b/r2 € Z and a2/r3 € Z, uy/r, ug/r, ug/r are rational roots of
a monic cubic polynomial with integer coefficients. Thus ¢ = u;/r,

ty = ug/r, t3 = ug/r e Z and
X% - @b/r?) X - @2/r®) = (X - 1) (X - 1) (X —13).
Hence
t) +1g +13 =0, tity + 1oty + sty = — 4b/r2, titets = a2/rd.  (20)

Suppose there exists a prime p such that p | gcd(a2/ r3, 4b/ r2). Then,
from the third equation in (20), we have p | tjtot3 so without loss of
generality, we may suppose that p | ¢;. Clearly p | t5t3 from the second
equation in (20). Then, from the first equation in (20), we deduce that
p |ty and p | t3. Thus p° | a2/r3 and p? | 4b/r'2 S0

p6 | gcd(a4/r6, 64b3/r6)
contradicting the definition of r. Hence

ged(a?/r3, 4b/r?) = 1. (21)
Thus (18) cannot occur. Next, we show that we cannot have

3| 4b/r2, 31 a%/r®, 3% c/rd. (22)
Suppose (22) holds. Clearly from (20) we see that
3| t1, lg, t3.
Since t; + tg +t3 = 0 we must have #; = t3 = t3 (mod 3). Now
e/ )2 = (1) - t5)*(ty — 13)%(t3 — t3)% = 0 (mod 39)
so that
c/r3 =0 (mod'33),

which is a contradiction. Hence we have shown that ged (a? / r3, 4b/ r?)

=1 and either
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3 | 4b/r? or 3| 4b/r2, 3] a%/r3, 33 |¢/rd. (23)

Now suppose that (21) and (23) hold. Clearly (21) ensures that the
cubic polynomial X2 —(4b/ r2)X —(az/ r3) satisfies the simplifying

assumption (10). Moreover,
dise(X® - (4b/r?) X — (a%/r3)) = (c[r3)?

so that either X3 — (4b/r2) X - (az/rB) is irreducible or has three linear
factors in Z[X]. Suppose X3 - (4b/r?)X - (a%/r3) is irreducible. Let 0
be a root of this cubic polynomial. Then K = Q(@) is an abelian cubic
field. Hence, by the Proposition, the conductor f(K) of K is given by

=3 T »

p>3
p|4b/r2» 10102/'3

where
a=0if 3} 4b/r2 or 3 || 4b/r2, 3] az/r?’, 38 | c/r3, 29)
and
a =2, if 3% | 46/r%, 32 || a®/r® or 3| 4b/r2, 31 a®/r®, 32 | ¢/r®.(25)
By (21) and (23) we have f(K) = 1, contradicting [K : Q] = 3. Hence
X¥= (4b/r2)X - (az/rS) has three linear factors in Z[X]. Thus

X3 - 4bX - a® has three linear factors in Z[X] and so, by (3),
Gal(X* + aX + b) = V4. This completes the proof of the first part of the

Theorem.

The second part of the Theorem follows from the first part and (16)-
(19). ]

We conclude with some examples. The authors would like to thank
Shawn Godin who found the last example in the table for them.
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a b c r  Conditions satisfied  Gal(X* + aX +b)
8 12 576 4 © Ay
24 36 1728 4 (b) Ay
24 73 9520 2 @)@) Vy
28 147 28224 2 (b) Ay
36 63 4320 6 (@)@ Vy
56 196 40768 4 (b) Ay
136 372 62784 4 (© Ay
144 468 120960 12 (@)@ 1A
168 441 21168 2 (b) Ay
392 2793 2222640 14 (a)(ii) A
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