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Let r; and r, be any two roots of a monic irreducible quintic polynomial in Q[X] with Galois group Ds. It is
shown how to determine the other three roots as rational functions of ry and r, in accordance with a theorem
of Galois.
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|. INTRODUCTION

If fAX) € Q[X] is a solvable irreducible polynomial of prime degree, a theorem of Galois asserts that
all the roots of f{X) can be given as rational functions of any two of them. When the degree of
fiX) is 2 or 3, this assertion is trivial. However, it is an unsolved problem to determine these rational
functions when f(X) is of degree 5 [Bruen et al.], p. 355]. In this paper, we show how to find
these rational functions when fX) is an irreducible quintic polynomial whose Galois group is Dq,

the dihedral group of order 10. When f(X) is a trinomial of the form X° +aX + b the rational functions
are given explicitly.
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2. THE MAIN RESULT

We prove

Theorem — Let fiX) e Q[X] be a monic irreducible quintic polynomial with Galois group
Ds. Let r be a root of fiX). Then there exist four polynomials 8,(X), &,(X), hy(X), hy(X) € Q[X] of

degree at most 4 such that
AX) = (X=1) (X + g, (DX + hy(7) (X + (DX + ho(r)

is the factorization of fiX) into irreducible polynomials in Q(r)[X]. Let ry and r, be any two of the
roots of fiX). Then the other three roots of fiX) are

hy(r) - hy(ry) hy(ry) - hy(r))
H gl(rl)—gz("z) ' 81(’2)"82(’1) '

hy(ry) = hy(ry) + hy(ry) — hy(ry) @
— Ty —Ty— U, .. (2.
81(71)—82'("2) 81("2)"82("1) L

where u is the coefficient of xX* in fiX). The polynomials g,(X), g5(X), h,(X), h,(X) are unique up to
interchange of the pairs (g,(X), h,(X)) and (8,(X), hy(X)).

PROOF : Let L be the splitting field of AX). As the Galois group G of fX) is Dy, we have

[L : Q] = 10. Let r be any root of AX). Set K = Q(r), so that K is a subfield of L such that
[K:Q]l=5and [L:K]=2. AsflX)is of prime degree and its Galois group G =Ds is solvable,

by a theorem of Galois3, all the roots of fX) can be given as rational functions of any two of
them, in particular as rational functions of r and r, where » is any other root of fiX). Thus
L=Q(r,r)=K(r'). We now consider the factorization of fX) over K. If the factorization of X
over K has a linear factor X —s(# X —r) then s(=r) is a root of AX) in K and so L = K(s) = K,
contradicting [L : K] = 2. If the factorization of fX) over K has an irreducible quartic factor then
[L:K]=[K(r): K] =4, contradicting [L : K] = 2. Hence

fX) = (X = Dmy (Xmy(X),

where m,(X) and my(X) are monic irreducible quadratic polymonials in K[X]. Thus
mX)=X*+g(NX+h(n), i = 1, 2,

where g,(X), h(X) € Q[X]. Since [Q(r): Q]=5 we can choose 8(X) and h(X) to be of degree at

most 4. Since K[X] is a unique factorization domain m(X) and m,(X) are uniquely determined up

to order and so the uniqueness of the pairs (&;(X), hy(X)) and (&5(X), ho(X)) follows up to order.
Now let r, and r, be any two of the roots of fiX). We have

’

% = (X% + g, (rX + hy(r)) (X2 + go(r )X + hy(r)))
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and
}ﬂ_)—(rl = (X2 + 8 ()X + hy(ry) (X + g(rp)X + hy(ry).
2
As r, is a root of AX) , it is either a root of
-

(i) X2+g|(r1)X+hl(rl) or of (ii) X2+g2(r1)X+h2(rl).

Case (1) In this case r, is a root of X2+g1(rl)X+h1(r1). Let ry be the other root. As r
is a root of ’\{(f)’z it is a root of X2+g](r2)X+h](r2) or a root of X2+g2(r2)X+h2(r2). We show

that the latter occurs. If not we have
2
ry+g,(rry+h (r)) =0,

2
ry+ gl(rz)r3 + h](rz) =0.

Subtracting these equations, we obtain
(8,(r)) = 8, (ry)r3 + (hy(r)) = hy(ry) =0.
If g,(r;)—g,(ry)) =0 then h(r))—h,(ry))=0
and
gi(r))=g,(r)) e Q(r)) M Q(r)) =0

and

hy(r))=hy(ry) € Qr) M Q(ry) =Q

so that r; is a root of a quadratic polynomial in Q[X] contradicting that [Q(r3) : Q]1=5. Hence,
8,(r;) —g,(ry) #0 and so
(hl(rl)_h](rz)) 2.2)
P = . 2
3 (gl(rl)_g](rz))
The Galois group of L/Q is Ds. As a permutation group the elements of Dg of order 2 are

(in cycle notation)
(12)(35), (13)(45), (14)(23), (15)(24), (25)(34). =23)

Thus there is a unique automorphism of L/Q which interchanges any pair of roots of AX).
In particular there exists an automorphism ¢ such that ¢(r,) = ry and ¢(ry) =r,. Applying ¢ to (2.2)

we see that ¢(r;) =r;. Further from the cycle structure (2.3) we see that ¢(ry) =rg and ¢(r)=r,,
where r, and rg are the remaining roots of f{X). Applying ¢ to
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X2+ go(r)X + ho(r)) = (X =) (X = 1)
we deduce that
X2+ gy (r)X + hy(ry) = (X = r5) (X = 1,)
so that
8y(r)) =gy(ry) € Q(r)) M Q(rp)) =0
and
hy(ry) = hy(ry) € O(r)) M Q(ry) = Q.
Hence r, is a root of a quadratic polynomial in Q[X] contradicting that [Q(r,) : Q] =5. Hence
ry is a root of X2+g2(r2)X+h2(r2). Thus

2
ra +g1(rl)r3 +h](r1) =0,

2
ry+ 85(ry)ry + hy(ry) =0.
Subtracting these equations we obtain
(81(ry) — 85(r)r3 + (hy(r)) = hy(ry)) = 0.

Arguing as above we see that (g,(r)) —g,(r) #0 so that

hy(ry) = hy(ry)
==| ———— 1. .. (24
"3 (g](rl)—gz("z)] (24)

The roots of X2+g1(r2)X+hl(r2) are ry and r, or r and rg. Interchanging r, and rs, if
necessary, we may suppose that the roots are r; and r,. Hence ¢(r;)=r,. Applying ¢ to (2.4) we

obtain
[ () = hp(ry)
L g](r;)_)"gz("l) '

Then from the relation
ry¥rytrytrgtro=—u,
we obtain rs.

Case (ij) — In this case r, is a root of X2+g2(rl)X+h2(rl). Let r; be the other root.

Arguing as in Case (i), we obtain that r; is a root of X2+g](r2)X+ hi(ry). As in Case (i) we
deduce that
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hy(ry) = hy(ry)
ry=- it b . S .. (2.5)
81(ry) — 8,(r))
Applying ¢ to (2.5) we obtain

~ hy(ry) = hy(ry)
4T gl(rl)—g2(r2) .

Thus the three roots of fX) different from r, and r, are

hy(r)) = hy(ry) hy(ry) = hy(r)) hy(r)) = hy(ry)
i 81(r)) —85(ry) : g}("z)_gz("|) ' gl("l)—gz(rz)

4 | )=k _
g](rz)‘gz(r]) “HThTh

in agreement with (2.1).

3. EXAMPLES

In order to apply the theorem to a particular polynomial f{X), it is necessary to factor fiX) over an
algebraic number field. An algorithm for doing this is described in Cohen’s bookz, [pp. 143-145]

and is available in software packages such as MAPLE and PARI. We illustrate the computations
with some examples.

Example | — The quintic fiX)=X"-X~2X*~2X-1 has Galois group D;. MAPLE
determined that A

f0=X-D P+ =r =27 22X+ (- + P +2r+ 1))

X (X2+(—2r4+r3+2r2+3r+2)X+(—r4+r3+r2+r))

for any root r of filX). Hence
g, 0=2"—x* - 2x* - 2x -2,
hX)=-X"+X +2X + 1,
g(X) =-2X"+ X1 +2X7 +3X +2

and hy(X) ==X+ X7+ X2+ X.

Thus if r| and r, are any two roots of flX) then the remaining three roots of fiX) are
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4 3 4 3 2
. (r+n+2ri+)=(rptry+r+r)
- 4 3 2 4 3 2 ’
S @ - =2 - 2r =) (~ 25y 4 1y + 21y + 31y +2)
4 4
e (—r2+r;+2r2+1)—(—r1+r?+rf+rl)
- 4 3 2 4 3 2
Tl @y -ry -2 - 2r =) = (= 27 47+ 27, + 31, +2)

and
Example 2 — Let X>+aX+be QO[X] (@a#0,b#0) be an irreducible quintic trinomial with
Galois group Ds. Then, by [Spearman and Williams®, pp. 987, 990] there exist rational numbers
c(20), e(#0), (=% 1), 1(>0), such that
a=5¢* (3-4dec)/(cF+ 1),
b=—4e>(116+2c)/(c* + 1), % (34)
5(c2 +1)= é

Moreover, any choice of c, e, & t satisfying (3.1) gives an irreducible quintic trinomial with Galois
group Dy except ¢ = 11/2, e#0, €=~ 1,t=5/2 [5]. MAPLE found that

gX)=ay+a X+ a2C2_+ a3X3 +aX?

4 ’

and  h(X) =by+ by X +bX2 4 by X + b, X

where

ay = 20ee(4ec - 3)/E,

a =%+ (2ec + 1) (ec = /E,

a,=— 82c% +2ec + 13)1/eE,

ay = (3ec +4) ec + 1)i/2¢°E,

a,=- &’ /e’E,

by=- 5e2 (2(4ec - 3)2 + (2ec+11) ec+ 1) (3ec +4)/1)/E,

b, = — (265 + 85ec + 110c%) + (55 + 10ec))/ 2E,
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b, = ((4ec - 3) (2c* + 2ec + 13) + (20ec — 15)1)/2E,
by=— &(5Qec + 11)(c? + 1) + (2ec + 1) (ec - T)1)/2¢E

and b, = (S(4ec - 3)(c® + 1) + (2c* + 2ec + 13)1)/2%E,
where
E=4¢ec® - 84c? — 37ec - 122.
The polynomials 8,(X) and h,(X) are formed from 8(X) and h(X) by changing r to — r.

Taking ¢ = 2, e = - 1, €=1,t=5, we obtain ﬂX):X5—5X+ 12. The above formulae give

gl(X)=:lt-(—X4—X3—X2+3X+4),

hl(X):%(—X4—X3—X2—5X+8),
. (32)
gz(X)=%(X4+X3+X2+X-—4),

hy(X) = % (-2X° —2X - 4).

Thus if r; and r, are any two roots of X*~5X+ 12 the other three roots are given by (2.1) with

81»hy 85, hy as in (3.2). The roots of X>-5X+12 in radical form are given in [4].
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