# DIHEDRAL QUINTIC POLYNOMIALS AND A THEOREM OF GALOIS

### BLAIR K. SPEARMAN\*

Department of Mathematics and Statistics, Okanagan University College Kelowna, B.C., Canada VIV 1V7, Canada

AND

# KENNETH S. WILLIAMS<sup>†</sup>

School of Mathematics and Statistics, Carleton University Ottawa, Ontario K1S 5B6, Canada

(Received 12 October 1998; Accepted 2 February 1999)

Let  $r_1$  and  $r_2$  be any two roots of a monic irreducible quintic polynomial in Q[X] with Galois group  $D_5$ . It is shown how to determine the other three roots as rational functions of  $r_1$  and  $r_2$  in accordance with a theorem of Galois.

Key Words: Dihehral; Quintic Polynomials; Theorem of Galois; Rational Functions; Algebraic Number Theory

#### 1. Introduction

If  $f(X) \in Q[X]$  is a solvable irreducible polynomial of prime degree, a theorem of Galois asserts that all the roots of f(X) can be given as rational functions of any two of them. When the degree of f(X) is 2 or 3, this assertion is trivial. However, it is an unsolved problem to determine these rational functions when f(X) is of degree 5 [Bruen et al.<sup>1</sup>, p. 355]. In this paper, we show how to find these rational functions when f(X) is an irreducible quintic polynomial whose Galois group is  $D_5$ , the dihedral group of order 10. When f(X) is a trinomial of the form  $X^5 + aX + b$  the rational functions are given explicitly.

<sup>\*</sup>Research supported by a Natural Sciences and Engineering Research Council of Canada grant.

<sup>&</sup>lt;sup>†</sup> Research supported by Natural Sciences and Enginnering Research Council of Canada grant A-7233.

### 2. THE MAIN RESULT

We prove

**Theorem** — Let  $f(X) \in Q[X]$  be a monic irreducible quintic polynomial with Galois group  $D_5$ . Let r be a root of f(X). Then there exist four polynomials  $g_1(X)$ ,  $g_2(X)$ ,  $h_1(X)$ ,  $h_2(X) \in Q[X]$  of degree at most 4 such that

$$f(X) = (X - r) (X^2 + g_1(r)X + h_1(r)) (X^2 + g_2(r)X + h_2(r))$$

is the factorization of f(X) into irreducible polynomials in Q(r)[X]. Let  $r_1$  and  $r_2$  be any two of the roots of f(X). Then the other three roots of f(X) are

$$-\left(\frac{h_{1}(r_{1}) - h_{2}(r_{2})}{g_{1}(r_{1}) - g_{2}(r_{2})}\right), -\left(\frac{h_{1}(r_{2}) - h_{2}(r_{1})}{g_{1}(r_{2}) - g_{2}(r_{1})}\right),$$

$$\left(\frac{h_{1}(r_{1}) - h_{2}(r_{2})}{g_{1}(r_{1}) - g_{2}(r_{2})}\right) + \left(\frac{h_{1}(r_{2}) - h_{2}(r_{1})}{g_{1}(r_{2}) - g_{2}(r_{1})}\right) - r_{\bullet} - r_{2} - u, \qquad \dots (2.1)$$

where u is the coefficient of  $X^4$  in f(X). The polynomials  $g_1(X)$ ,  $g_2(X)$ ,  $h_1(X)$ ,  $h_2(X)$  are unique up to interchange of the pairs  $(g_1(X), h_1(X))$  and  $(g_2(X), h_2(X))$ .

PROOF: Let L be the splitting field of f(X). As the Galois group G of f(X) is  $D_5$ , we have [L:Q]=10. Let r be any root of f(X). Set K=Q(r), so that K is a subfield of L such that [K:Q]=5 and [L:K]=2. As f(X) is of prime degree and its Galois group  $G=D_5$  is solvable, by a theorem of Galois<sup>3</sup>, all the roots of f(X) can be given as rational functions of any two of them, in particular as rational functions of r and r', where r' is any other root of f(X). Thus L=Q(r,r')=K(r'). We now consider the factorization of f(X) over K. If the factorization of f(X) over K has a linear factor X-s ( $\neq X-r$ ) then  $s(\neq r)$  is a root of f(X) in K and so L=K(s)=K, contradicting [L:K]=2. If the factorization of f(X) over K has an irreducible quartic factor then [L:K]=[K(r'):K]=4, contradicting [L:K]=2. Hence

$$f(X) = (X - r)m_1(X)m_2(X),$$

where  $m_1(X)$  and  $m_2(X)$  are monic irreducible quadratic polymonials in K[X]. Thus

$$m_i(X) = X^2 + g_i(r)X + h_i(r), i = 1, 2,$$

where  $g_i(X)$ ,  $h_i(X) \in Q[X]$ . Since [Q(r):Q] = 5 we can choose  $g_i(X)$  and  $h_i(X)$  to be of degree at most 4. Since K[X] is a unique factorization domain  $m_1(X)$  and  $m_2(X)$  are uniquely determined up to order and so the uniqueness of the pairs  $(g_1(X), h_1(X))$  and  $(g_2(X), h_2(X))$  follows up to order.

Now let  $r_1$  and  $r_2$  be any two of the roots of f(X). We have

$$\frac{f(X)}{X-r_1} = (X^2 + g_1(r_1)X + h_1(r_1)) (X^2 + g_2(r_1)X + h_2(r_1))$$

and

$$\frac{f(X)}{X - r_2} = (X^2 + g_1(r_2)X + h_1(r_2)) (X^2 + g_2(r_2)X + h_2(r_2)).$$

As  $r_2$  is a root of  $\frac{f(X)}{X-r_1}$ , it is either a root of

(i) 
$$X^2 + g_1(r_1)X + h_1(r_1)$$
 or of (ii)  $X^2 + g_2(r_1)X + h_2(r_1)$ .

Case (i) In this case  $r_2$  is a root of  $X^2 + g_1(r_1)X + h_1(r_1)$ . Let  $r_3$  be the other root. As  $r_3$  is a root of  $\frac{f(X)}{X - r_2}$  it is a root of  $X^2 + g_1(r_2)X + h_1(r_2)$  or a root of  $X^2 + g_2(r_2)X + h_2(r_2)$ . We show that the latter occurs. If not we have

$$r_3^2 + g_1(r_1)r_3 + h_1(r_1) = 0,$$

$$r_3^2 + g_1(r_2)r_3 + h_1(r_2) = 0.$$

Subtracting these equations, we obtain

$$(g_1(r_1) - g_1(r_2))r_3 + (h_1(r_1) - h_1(r_2)) = 0.$$

If 
$$g_1(r_1) - g_1(r_2) = 0$$
 then  $h_1(r_1) - h_1(r_2) = 0$ 

and

$$g_1(r_1) = g_1(r_2) \in Q(r_1) \cap Q(r_2) = Q$$

and

$$h_1(r_1) = h_1(r_2) \in \mathcal{Q}(r_1) \bigcap \mathcal{Q}(r_2) = \mathcal{Q}$$

so that  $r_3$  is a root of a quadratic polynomial in Q[X] contradicting that  $[Q(r_3):Q]=5$ . Hence,  $g_1(r_1)-g_1(r_2)\neq 0$  and so

$$r_3 = -\frac{(h_1(r_1) - h_1(r_2))}{(g_1(r_1) - g_1(r_2))}.$$
 ... (2.2)

The Galois group of L/Q is  $D_5$ . As a permutation group the elements of  $D_5$  of order 2 are (in cycle notation)

$$(12)(35), (13)(45), (14)(23), (15)(24), (25)(34).$$
 ...  $(2.3)$ 

Thus there is a unique automorphism of L/Q which interchanges any pair of roots of f(X). In particular there exists an automorphism  $\phi$  such that  $\phi(r_1) = r_2$  and  $\phi(r_2) = r_1$ . Applying  $\phi$  to (2.2) we see that  $\phi(r_3) = r_3$ . Further from the cycle structure (2.3) we see that  $\phi(r_4) = r_5$  and  $\phi(r_5) = r_4$ , where  $r_4$  and  $r_5$  are the remaining roots of f(X). Applying  $\phi$  to

$$X^{2} + g_{2}(r_{1})X + h_{2}(r_{1}) = (X - r_{4})(X - r_{5})$$

we deduce that

$$X^2 + g_2(r_2)X + h_2(r_2) = (X - r_5)(X - r_4)$$

so that

$$g_2(r_1) = g_2(r_2) \in Q(r_1) \cap Q(r_2) = Q$$

and

$$h_2(r_1) = h_2(r_2) \in Q(r_1) \cap Q(r_2) = Q.$$

Hence  $r_4$  is a root of a quadratic polynomial in Q[X] contradicting that  $[Q(r_4):Q]=5$ . Hence  $r_3$  is a root of  $X^2+g_2(r_2)X+h_2(r_2)$ . Thus

$$r_3^2 + g_1(r_1)r_3 + h_1(r_1) = 0,$$

$$r_3^2 + g_2(r_2)r_3 + h_2(r_2) = 0.$$

Subtracting these equations we obtain

$$(g_1(r_1) - g_2(r_2))r_3 + (h_1(r_1) - h_2(r_2)) = 0.$$

Arguing as above we see that  $(g_1(r_1) - g_2(r_2) \neq 0$  so that

$$r_3 = -\left(\frac{h_1(r_1) - h_2(r_2)}{g_1(r_1) - g_2(r_2)}\right). \tag{2.4}$$

The roots of  $X^2 + g_1(r_2)X + h_1(r_2)$  are  $r_1$  and  $r_4$  or  $r_1$  and  $r_5$ . Interchanging  $r_4$  and  $r_5$ , if necessary, we may suppose that the roots are  $r_1$  and  $r_4$ . Hence  $\phi(r_3) = r_4$ . Applying  $\phi$  to (2.4) we obtain

$$r_4 = -\left(\frac{h_1(r_2) - h_2(r_1)}{g_1(r_2) - g_2(r_1)}\right).$$

Then from the relation

$$r_1 + r_2 + r_3 + r_4 + r_5 = -u$$

we obtain  $r_5$ .

Case (ii) — In this case  $r_2$  is a root of  $X^2 + g_2(r_1)X + h_2(r_1)$ . Let  $r_3$  be the other root. Arguing as in Case (i), we obtain that  $r_3$  is a root of  $X^2 + g_1(r_2)X + h_1(r_2)$ . As in Case (i) we deduce that

$$r_3 = -\left(\frac{h_1(r_2) - h_2(r_1)}{g_1(r_2) - g_2(r_1)}\right). \tag{2.5}$$

Applying  $\phi$  to (2.5) we obtain

$$r_4 = -\left(\frac{h_1(r_1) - h_2(r_2)}{g_1(r_1) - g_2(r_2)}\right).$$

Thus the three roots of f(X) different from  $r_1$  and  $r_2$  are

$$\left[ -\left(\frac{h_1(r_1) - h_2(r_2)}{g_1(r_1) - g_2(r_2)}\right), -\left(\frac{h_1(r_2) - h_2(r_1)}{g_1(r_2) - g_2(r_1)}\right), \left(\frac{h_1(r_1) - h_2(r_2)}{g_1(r_1) - g_2(r_2)}\right) + \left(\frac{h_1(r_2) - h_2(r_1)}{g_1(r_2) - g_2(r_1)}\right) - u - r_1 - r_2\right]$$

in agreement with (2.1).

#### 3. EXAMPLES

In order to apply the theorem to a particular polynomial f(X), it is necessary to factor f(X) over an algebraic number field. An algorithm for doing this is described in Cohen's book<sup>2</sup>, [pp. 143-145] and is available in software packages such as MAPLE and PARI. We illustrate the computations with some examples.

Example 1 — The quintic  $f(X) = X^5 - X^3 - 2X^2 - 2X - 1$  has Galois group  $D_5$ . MAPLE determined that

$$f(X) = (X - r)(X^2 + (2r^4 - r^3 - 2r^2 - 2r - 2)X + (-r^4 + r^3 + 2r + 1))$$
$$\times (X^2 + (-2r^4 + r^3 + 2r^2 + 3r + 2)X + (-r^4 + r^3 + r^2 + r))$$

for any root r of f(X). Hence

$$g_1(X) = 2X^4 - X^3 - 2X^2 - 2X - 2,$$

$$h_1(X) = -X^4 + X^3 + 2X + 1,$$

$$g_2(X) = -2X^4 + X^3 + 2X^2 + 3X + 2$$

$$h_2(X) = -X^4 + X^3 + X^2 + X.$$

and

Thus if  $r_1$  and  $r_2$  are any two roots of f(X) then the remaining three roots of f(X) are

$$r_{3} = -\left(\frac{(-r_{1}^{4} + r_{1}^{3} + 2r_{1} + 1) - (-r_{2}^{4} + r_{2}^{3} + r_{2} + r_{2})}{(2r_{1}^{4} - r_{1}^{3} - 2r_{1}^{2} - 2r_{1} - 2) - (-2r_{2}^{4} + r_{2}^{3} + 2r_{2} + 3r_{2} + 2)}\right),$$

$$r_{4} = -\left(\frac{(-r_{2}^{4} + r_{2}^{3} + 2r_{2} + 1) - (-r_{1}^{4} + r_{1}^{3} + r_{1}^{2} + r_{1})}{(2r_{2}^{4} - r_{2}^{3} - 2r_{2}^{2} - 2r_{2} - 2) - (-2r_{1}^{4} + r_{1}^{3} + 2r_{1}^{2} + 3r_{1} + 2)}\right)$$

and

$$r_5 = -r_1 - r_2 - r_3 - r_4$$

Example 2 — Let  $X^5 + aX + b \in Q[X]$  ( $a \ne 0, b \ne 0$ ) be an irreducible quintic trinomial with Galois group  $D_5$ . Then, by [Spearman and Williams<sup>4</sup>, pp. 987, 990] there exist rational numbers  $c(\ge 0)$ ,  $e(\ne 0)$ ,  $e(\ne 0)$ ,  $e(\ne 0)$ , such that

$$\begin{cases} a = 5e^{4} (3 - 4\varepsilon c)/(c^{2} + 1), \\ b = -4e^{5} (11\varepsilon + 2c)/(c^{2} + 1), \\ 5(c^{2} + 1) = t^{2}. \end{cases}$$
 ... (3.1)

Moreover, any choice of c, e,  $\varepsilon$ , t satisfying (3.1) gives an irreducible quintic trinomial with Galois group  $D_5$  except c = 11/2,  $e \ne 0$ ,  $\varepsilon = -1$ , t = 5/2 [5]. MAPLE found that

$$g_1(X) = a_0 + a_1 X + a_2 C^2 + a_3 X^3 + a_4 X^4$$

and

$$h_1(X) = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4$$

where

$$a_0 = 20e\varepsilon(4\varepsilon c - 3)t/E,$$

$$a_1 = \frac{1}{2} + (2\varepsilon c + 1)(\varepsilon c - 7)t/E,$$

$$a_2 = -\varepsilon(2c^2 + 2\varepsilon c + 13)t/eE,$$

$$a_2 = (3\varepsilon c + 4)(2\varepsilon c + 1)t/2e^2 E$$

$$a_{\Lambda} = -\varepsilon t^3/e^3 E$$

$$b_0 = -5e^2 (2(4\varepsilon c - 3)^2 + (2\varepsilon c + 11)(2\varepsilon c + 1)(3\varepsilon c + 4)/t)/E$$

$$b_1 = -e\varepsilon((265 + 85\varepsilon c + 110c^2) + (55 + 10\varepsilon c)t)/2E$$

$$b_2 = ((4\varepsilon c - 3)(2c^2 + 2\varepsilon c + 13) + (20\varepsilon c - 15)t)/2E,$$

$$b_3 = -\varepsilon(5(2\varepsilon c + 11)(c^2 + 1) + (2\varepsilon c + 1)(\varepsilon c - 7)t)/2eE$$

$$b_4 = (5(4\varepsilon c - 3)(c^2 + 1) + (2c^2 + 2\varepsilon c + 13)t)/2e^2E,$$

and

where

$$E = 4\varepsilon c^3 - 84c^2 - 37\varepsilon c - 122.$$

The polynomials  $g_2(X)$  and  $h_2(X)$  are formed from  $g_1(X)$  and  $h_1(X)$  by changing t to -t. Taking c = 2, e = -1,  $\varepsilon = 1$ , t = 5, we obtain  $f(X) = X^5 - 5X + 12$ . The above formulae give

$$g_{1}(X) = \frac{1}{4} (-X^{4} - X^{3} - X^{2} + 3X + 4),$$

$$h_{1}(X) = \frac{1}{4} (-X^{4} - X^{3} - X^{2} - 5X + 8),$$

$$g_{2}(X) = \frac{1}{4} (X^{4} + X^{3} + X^{2} + X - 4),$$

$$h_{2}(X) = \frac{1}{4} (-2X^{3} - 2X - 4).$$

$$(3.2)$$

Thus if  $r_1$  and  $r_2$  are any two roots of  $X^2 - 5X + 12$  the other three roots are given by (2.1) with  $g_1, h_1, g_2, h_2$  as in (3.2). The roots of  $X^5 - 5X + 12$  in radical form are given in [4].

## **REFERENCES**

- 1. A. A. Bruen, C. U. Jensen and N. Yui, J. Nt. Theor. 24 (1986), 305-39.
- 2. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag Berlin Heidelberg New York (1996).
- 3. F. Sigrist, Math. Intelligencer 11 (1989), 53-54.
- 4. B. K. Spearman and K. S. Williams, Amer. math. Mon. 101 (1994), 986-92.
- 5. B. K. Spearman, L. Y. Spearman and K. S. Williams, New Zealand J. Math. 26 (1997), 293-99.