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Abstract: Let n be a positive integer. The nth row of Pascal’s triangle consists of
the integers (3}, (1),..., ({}. In 1971 F.T. Howard [6] showed that the number f(n,m)
of entries in the nth row of Pascal's triangle which are exactly divisible by 2™, where m
is a positive integer, is giver by

m
Hp. s o,

w=1l

where n; denctes the number of 1's in the binary representation of n and the an, are
nonnegative integers given by a complicated combinatorial prescription [6, p. 237}. In
this paper we show that

fnym} =3 b2,

w=]
where the nonnegative integers by, are given by a simple formula (Theorem 1). It is
conjectured that @my = Bme for all positive integer m and w with 1 € w £ m. This is
verified for m = 1,2,3,4. Finally it is shown (Theorem 3] that for fixed m

f(n,mp2™ = nf02™m! + O (ngy "),
as ngp ~— +00.
Key Words: Binomial coefficients
AMS Classiflcation: 05A10, 11B65
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0 NOTATION

‘We denote the binary representation of the positive integer n by aga; ... 4y, that is
n=dg+ a2+ +a2, e=00r1 (i=0,1,...,£-1), ar=1.

If § and A are finite nonempty strings of 0's and 1’s the number of occurrences of the
string S in the string A is denoted by ng(A). Thus, for example, ng;p(00110) = 0,
n33(11101011) = 3, nop;(01) = 0. In particular if A is the string aga; ... a; we set

ng = ng{A) = ns{aoa; .. .as).

Thus if n = 670 then ag61...q; = 0111100101 and ng = 4, =y = 6, ny3 = 3, ngy = 3,
mo = 1. We denote the empty string by § and define

as@) =0, if S#0.

We do not need to define ng{A). The length of the string S is denoted by |5, so that
{0011 =4, |0] = 1, |§]| = 0.

1 INTRODUCTION

The nth row of Pascal’s triangle is

(5):(3)(2) a1

Let m be a positive integer. We denote by f(n,m) the number of entries in {1.1} which
are exactly divisible by 2™. Howard {6: eqn. (2.2)] has shown that

f(n,m) = z amwzn’*MLim (12)
w=1
for certain integers am.. He also gave a complicated combinatorial interpretation of
the integers Amy, [6: p. 237]. Using this viewpoint he evaluated f{n,m) explicitly for
m=1,23 and 4 [6: pp. 237-238]. In this paper we show that f(n,m) can be expressed
in the form -
f{n,m) = 2 bmw2m+m_2w;
w=l
where the integers by,,, ate given by a compact formula (see (1.4) below). In order to do
this we introduce a certain sum (Definition 1) which counts the number of occurrences of
certain patterns of 0's and 1's in the string aga; ... 2.
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DEFINITION 1 Let n be a positive integer. Let 2ga; ... ay be the binary representa-
tion of n. Let u be a positive integer. For i =1,...,t let B; be a string of 0’s and 1’s of
length k; — 1. (If k; = 1 then B; is the empty string §.) We define

SulBiy..., Bu) = Y1
ot
05y iy 4 by Cig <y g .o i g S8
My iy 4108y WOBy L

B Sy 1 Wiy ey =P 5wl

We remark that if ky + -+ 4+ ku > £+ 1 — u then the above sum is empty and we have
S4(By,...,8,) = 0. Properties of $.(By, ..., B,) are given in Section 2. In Section 3
two lemmas are proved and these are used in Section 4 to prove the following theorem.

THEOREM 1 Let u and m be positive integers. Let agay ...a; be the binary rep-
resentation of . Then the number f(n,m) of binomial coefficeints (¥) (r = 0,1,...,n),
which are exactly divisible by 2™, is given by

f(“! m} = E bmw2m+m_!w.& (13)
w=1
where -
b""" = E Z Sﬂ(81|"'}Bu)! (1.4)
u=1 By o By
AT AVt i
and

Bi{i=1,2,...,u) is a finite string of 0's and 1,
no(B:)(6 = 1,..., 1) denotes the number of 0°s in the string B;,
m(B)(i = 1,...,u) denotes the number of 17s in the string B;,
the inner sum in (1.4) is laken over all possidle sirings
(including the empty string} By, ..., By such that
no(B1) + -+ ne(By)=m—w,
ni(By)+ -+ m(B,) = w~ 1,
n, denotes the number of 1’5 tn aga; ... 8q.

In Section 5 we determine the integers by1,...,0mm for m =1,2,3 and 4.

THECREM 2

by = np,
b = noo,
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bay = ﬂuu+(n;l),

bi1 = mpoor,

b2 = ngou + nao + fonr{nor ~ 1),
by = ﬂo111+ﬂ011(ﬂm—1)+(n§1).
ba = nooom,

by = mnorom + noorer + Booon + nooor(ner — 1) + ( ﬂc;n ) )
bs = moon1 + %oto11 + Rontar + neonr{no — 1) + naia(ner — 2}

+no01Ro11 — Nao11 + Rom ( “012_ 1 ) +

ﬂ01111+ﬂo111(ﬂ-01—1)+( n;“ )+ﬂa11 ( "‘“2—1 ) + ( “:1 )

Using the above formulae for by, b21, 541, . . - , 44 in Theorem 1, we obtain the following
formulae for f(n,1), f(n,2), f(#,3) and f(r,4).

f(m,1) = by 2M 7t = ng2m1,

This reault is a special case of a result due to Carlitz [1: egn. (2.5)], see also Howard (5],
[6: eqn. (2.4)], Davis and Webb (2], Huard, Spearman and Williams [7].

byq

f(n,2) = b12™ + 522" = poos2™ + (ﬂml + ( ﬂ;u )) 2=l

This result is due to Howard [6: eqn. (2.5)], see also Huard, Spearman and Williams {7].

f(ﬂ,s) e b312‘"+l + byp2™ -1 + 6332"1_3
= agn2™*! + (noon + moon + mour (R0 — 1))am-t

+ (ﬂmu + no1i{(nor — 1) + ( n;n )) guie3,

This result is due to Howard [6: eqn. {2.6)]. It was also discovered independently by K.
Hardy and K.S. Williama (unpublished).

f(n,4)

b1 22  bea2™ 4 bea2™ 2 4 hy ™Mt
oo 22

+ (ﬂmcm + noo1o1 + Aooo1 + ooor{ner — 1) + ( ngn )) 2™
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+ (ﬂ-oom + figront + Rorim + Roany (Ao — 1)
o1 — 1 . ny -2
+nmoi{noy — 2) + nporBo11 — Moo11 + Boor 9 2

+ (ﬂouu + ngi(ro — 1) + ( n;n )

ap —1 7oL -4
+ﬂen( 9 )+( 4 ))2’“ .

This result is due to Howard [6: eqn. (2.7)]. For the convenience of the reader we note the
correspondence between Howard's nonstandard notation and the standard notation used
in this paper: g1 = fo1; g2 = Nom, 93 = Boool, 4 = Mooool, 96 = %011, §5 = Mol — Mool
g7 = Too11, @8 = Rooo11, g = Ro101, §10 = Romoy, f11 = Noin, $12 = Roolll; f13 = Boioll,
e = Nor104, @5 = Ro1n1,> $16 = Rojon- Theorem 2 shows that Howard’s mw and our

bmw agree for m = 1,2,3,4 and 1 € w € m. It is conjectured that Gpy = by for all
m and w satisfying 1 < w < m. Finally in Section 6 we obtain the following asymptotic

result as a consequence of Theorem 1.
THEOREM 3 Let m be a fixed positive integer. Then

f(n,m}2™ = afHe2™m! + O (nt‘ﬁ‘l), a8 ng; — +00.

2 PROPERTIES OF S.(B,,...,B.)

If B; =@ fori=1,...,u, then §,(Hy,..., By} is the sum

21
) LTty o
Dy iy +Agig Cighi . iy Ciutl1 52
P Ry LT B LT T T

This sum counts the number of ways of choosing u disjoint strings 01 from the string

g1

agay ... & without regard to order. This number is so we have

PROPERTY 1 S.08,...,.0)= ":1
If each string B; = 0 (i = 1,...,u) then the sum $.(By,...,B,) is

7

gareoiim
0Ly iy $ICig dig <, iuCintigd
T I TE T L PR PP T DR L L ML SR S L
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This sum counts the number of ways of choosing u disjoint strings 001 from aga; ...a,
without regard to order. Thiz number is n‘:“ 50 we have

PROPERTY 2 Sal0,...,0) = ( ﬂt:‘ua ) In exactly the same way we have

PROPERTY 8 Sa(l,...,1) = ( o ) Another case when S.(Bi,...,B,) is casily
evaluated occurs when u = 1. In this case Sa(By,...,By) is

El = fgB 1.
1

[
Ogiy iy iy £t
iy Wi 1Sy kg 05 1

PROPERTY 4 S5.(B) = nom. The evaluation of S,(B,...,B,) becomes more diffi-
cult when some of the B; are different. In fact it seems quite difficult to evaluate a sum

such as
8,(0,0) = Z 1

iy
DXiy <+ 1432431-!5!
Hiy %y 1™
iy Sy 1%ig 42 =01

explicitly. Fortunately for our purposes in applying Theorem 1 it suffices to evaluate
(2.1) Y Su(Biy.. ., Ba)

diatiaet Antions
However when evaluating (2.1) the problem of the strings 0B8;1 ({ = 1,...,u) overlapping
arises and must be taken into consideration. This ie illustrated in the remaining properties.
We consider the case uw = 2, By = §, B3 = 0. Here we have

Sn{B1,B3) + Sn( B3, By)

X1+ 3
iy iy $ICigCig425E 0Li) iy $+2Cig gl i
i) By 41 =01 i) iy $1%y $7m003
=iy Sig 4194 42 =00 iy %ig 4101

The combined sum counts the number of ways of choosing nonoverlapping strings 01
and D01 from aga; ...a;. Since there are exactly noor overlapping pairs of strings 01 and
001, the combined sum is no1Roor — Rom -

PROPERTY 5 5,(8,0) + 5.(0,8) = no1nom — nom.
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Similarly we obtain

PROPERTY © Sa(8,1) + 54(1,8) = Roaon1 — nonr-
More generally when 0 and 1 in Properties 5 and 6 are replaced by an arbitrary string
B, we have

PROPERTY T Sa(8, B) + 5.(B,0) = noinep; — ro1(081)rog;.
We remark that when B = B, Property 7 gives 25,(0,8) = n3, —noy, that is, 5,(8,8) =
( n;‘ ) in agreement with Property 1.

Next we determine 5.(0,1) + 5,(1,0). This sum is clearly nop1no1y — &, where k is
the number of overlapping pairs 001, 011 in the string aga; ...as Since these pairs can
only overlap in the string 0011, and each such string contributes exactly one overlap, we
have & = ngon-

PROPERTY 8 5n(0,1) + 5,(0,1) = B Roay — Rooii-
Finally we evaluate 5,(1,0,8) + 5.(0,4,0) + 5.(8.0,1) for i = 0 and 1.

PROPERTY 9 Fori=0and 1

Suli,0,8) + Sa(8,1,8) + 5n(9,0,5) = nour (MI; 1).

Proof We just treat the case 1 = 1 as the case ¢ = 0 can be handled in a similar
manner. From Definition 1 we have

5n(1,8,0) + 5a(8,1,0) + 5.(9.0,1)
- 21

iy g, iy
iy iy 42ig Cin+1giy iy #1528
Hip %ig 1%y 4201

g iz 41 =01
Biy Biy 41 =01
v > + !
s o fbady T Simis
Daiy iy 1 <in g4 iy iy +1 54 iy iy o b oTiy oD ) iy i 4 TEE
iy iy +1=0 iy iy 41201
SigSig+1%0p+2=0l1 =y i 4101
By Biy41 =9 iy Sy 1%y 42w011
1 2-34-14-1 1 -24-14-1
=3 X 1=3 L,
im0 i Jom
A L) [Tt
il kel b Akt 884184300
Fyfh—=1.0 041 l"l,'+:-°|
%4y ni 43001 A ayyq =01
ayuyy =0l

iy =0
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aiy3=1#£0=20;=06; implies i#£j—-2,ik-2

G413 =1l#0=aqj=a; implies igj-~1igk—1,

8, =0#1=aj =ag implies iFj4+1L,ikk+1,
gipp=1#0=a), implies jF#k-1,
a;=0# 1=ap;, implies jF#k+1.

Let () indicate the coaditions

8i0i41Bigg = 011, a;a;41 = 01, apagyq = 01.

By the inclusion-exclusion principle we have

—-240-1.0-1

t—z.t—_l.t—l t-z,l-‘l.t-l t—?.t—_l,t—l t—z,t—‘l,l-l
31 - 31 - 1 - %0
1.7k=0 i\, kim0 iy g ijkmt
imy imh Jmk

-28-12-1 E-2L-10-1  L-2d-Nd-1 24101

+ X1+ 31+ ¥~ ¥yt

i3, il (ST ] §of k=l LA L]

imjink darg ke imb fmbh imjmk

ﬂon"%; = Rouiftol — Bouftol ~ No1ifor + Mot + Rowr + Apil — Non
noni(nor — 1}(noy — 2).

3 TWO LEMMAS

In this section we prove two lemmas which will be used in the proof of Theorem 1.

LEMMa 1

Let n be a positive integer. Let aga; ...ae be the binary representation

of n. Let r be an integer with 0 < » < n. Let bgb, ... b, be the binary representation of r.
Let cqcy . . . ¢¢ be the binary representation of » — r. When adding doby ... be to cgey ... 2
in base 2 to obtain aga; ... 4y suppose that a carry occurs when adding b; and ¢;forj =1,
i+1,...,i+ %~ 1, where i and k are integers with 0 € i < i + k < £, no carry occurs
when adding 5 ; and ¢;4x, and if { £ 0 no carry occurs when adding b;_; and ¢;_;. Then

(i)ai =0,

(i) aige = 1,
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(iii) the total number of possibilities for bibiyy ... biyg_y ia 2511 (AiBisa),

Proof (i) When adding & and ¢; in base 2, as there is no carry coming from the
addition of b;_; and ¢;_; if i > 1, the only way we can obtain a carry is with ; = ¢; = 1,
so that a; = 0. (ii) When adding by and c;yx in base 2, as there is a carry coming
from the addition of biyg—1 and ¢;4x—_1, the only way that no carry can occur is with
biyx = €ipx = 0, so that a;yp = 1. (iii) First we treat the case & > 2. We consider the
addition of b; and ¢; for j = i+1,...,i+k— 1 in the addition of bpby ...0¢ and cgey ... ¢
in base 2 to obtain apay ...ay. As there is a carry coming in and a carry going out, we
must have 14+ b; + ¢; = a; + 2, 60 that &; + ¢; = a; + 1. If a; = 0 then (bj,¢;) = (0,1) or
(1,0). If a; = 1 then {b;,¢;) = (1,1). Hence the number of possibilities for b; is 21-™{a/),
Thus the number of possibilities for bibiyq ... bijx—1 8

1 % 2—misi) ... 91-mlaiena )} o phelemisia - gipe1) = 2'\'-1-“1{“-'0‘“1--»“-'“-1}’

as &; = 1 and &; = 0 by part (i). Secondly we treat the case & = 1. Here the addition

bibipa 10
citipr is 10
;841 01

by parts (i) and (ii), so there is exactly one choice for &;, namely 1. This agrees with the

asserted formulas ag 28— 1-m(ei-8ibs—1) = gl-i-mla) — 2—mi0) — 90 — |

LEMMA 2 Let n be a positive integer. Let apay...as be the binary representation
of n. Let r be an integer with 0 < r € n. Let byd; ... by be the binary representation of r
and €gey ... ¢ the binary representation of n — r. When adding boby ...bs to cpey...ee in
base 2 to obtain agay ... e, suppose that no carry occurs when adding §; and ¢; for § = ¢,
i+1,...,+ k&, where i and k are integers with 0 < { < i+ %k < £, and, if i # 0 a carry
occurs when adding b;_; and ¢;_3, and if i + k& # £ a carry occurs when adding byyx41 and
¢itk41. Then the total number of possibilities for bibiyy ... biyy is

2n;(¢oll:|mﬂk)’ i_f i = 09
2n1(ui...ﬂi+t)'—1, if £>1.

Proof Suppose first that ¢ > 1. Consider the addition of b; and ¢; in the addition
of bgby ...by to cocy ... ¢ to obtain agay ... 4. There is a carry coming from the addition
in the i — 1th place and no carry going to the addition in the ¢ + 1th place. Hence we
must have & = ¢; = 0 and a; = 1. For the addition in the jth place (f =i+ 1,...,i + k)
there is no carry coming in ot going out so we must have

(bs,63) = (0,0), if ¢; =0, and (b;,¢;) =(0,1) or (1,1), if ¢; = 1.
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Hence the number of possibilities for b;( = i +1,...,5 + k) is 2°4%), and so the number
of possibilities for bibiy1... biyx in

1 x 2ulein) o Ly grrlmign) — grilaipiaaign) — gmifeiaoiga) -t

Now suppose that ¢ = 0. By the above reasoning we see that the number of possiblities

for boby .. .0, is
gmiieo) g gmi(m) 5 ., o gmler) . gmilooar..ay)

4 PROOF OF THEOREM 1
Before giving the proof we give a definition.

DernNITION 2 Let n be a positive integer. Let 6ga; . .. a¢ be the binary representa-
tion of n. Let r be an integer with 0 < r < n. Let bydy ... b, be the binary representation
of r and egeq . .. ¢ the binary representation of n — r. In the base 2 addition

boby...b;... b

+ o€ ...0i...0
Qoly ... 8 ... 34 (4.1)

we suppose that a carry occurs in the ith position for
i=q i+l bt Ll d it k- Lt b Lty b Ry — 1,
and there is no carry in the ith position for
i=0..,4=-Lig+k,. .. iz Liatka.. .0z 1,0+ k.o 8,
where 1, b (7 = 1,2,...,%) are integers such that
DS <hi+hk <ig<igrhp<...<iutkhy L
We define strings N; (7 =1,2,...,u+1) and C; ( = 1,2,...,%) by

Nl = h...b{l_‘l(:oif il =0),
G = biyaobierg
Nz = B4k

Ca = bi...byery1,

N = oy thyer - Y-ty
C\t = h‘- bt 2 h-"'k."‘l’
Nopt = Biqa, .- De(# B)'
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g0 that

bob] ...bg = N'IC].N:;C:...NNC‘,NM.'.;[. (4.2}
We call (5.2) the carry partition of r. We also define

carry numberof r=e¢{r)=ky + -+« + &,

carry block number of r = cbu{r} = u,

carry block vector of r = ebw(r) = (ky,..., k),
index vectorof r = i(r) = (&,...,144).

Clearly the C; (j = 1,...,u} are the blocks of consecutive positions where carries occur
in the addition (5.1), the carry number is the total number of carries, the carry block
number is the number of blocka of consecutive carries, the carry block vector is the vector
of lengtha of the blocks of consecutive carries, and the index vector is the vector of initial
positions of the blocks of consecutive carries. We give an example to illustrate Dafinition

2.

EXAMPLE We choose n = 803031 and r = 33630 so that n — r = 769401. The binary
representations of n, 7, n—r are 11101011000000100011,01111010110006001, 11001111010111101110
respectively. The addition of r and 5 — r in base 2 is
kkEh kA kkk Kk kkAk
01111010110000010000
+10011110101111011101

11101011000000100011
where the asterisk indicates a position in which a carry is generated. Hence

f; =

k=

N =

h
¢(33630)
cbn(33630)
cbv(33630) =
i(33630) =

PROOT OF THEOREM 1

3,i0=8,13 =154 =3,

d,kp =6,k =3,

011, N; =0, N3 =0, Ny = 00,
110%,C; = 110000,Cy = 100,
13,

3,

(4,6,3)

(3,8,15).

Flan amt — \ 1
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By Kummer’s theorem [8] we have 2™||(*) ¢ o(r) = m, 50 that

L3
f(n,m) = E 1.
Tl
rimm
First we split up this sum accordmg to the value of the carry block number of r. As

m > 1 we have
S(n,m) = E El .

a{:)-‘ -
chm(rime

Next we split up the inner sum according to the carry block vector of r. We have

f(“tm)=i E El

uel ks, ka1 qr-n

eln(r}-(il ,....n.]
Since e(r) = ky + -+ + k. we can rewrite the expression for f(n,m) as

f(n,m)= i > 31 ;

SN

ch{rimu
chv(riu{ky,.. )
Now we split up the inner sum according to the initial vector i(r). We obtain

fam =3 X% = S

u=l ki, ;_.:.2 n » it r]t-
dey 4 - 5iy g+ 14: <t¢<lu+h5‘ eb(rhalby b}
Hrmliy,... im}
By Lemmas 1 and 2 we have a;, = ... =4, =0, 6; 44, =..- = Gi 4%, = 1, and
n
1
-

cbv(rim{ky,... iy}
I{#)ym(ry ... .¢u])

= gh(Bo-si—1} o oki-1-ny{ai iy phy 1} o0 gna(ai 4n, n8ip—1)—1
xzkl—‘l—m (u.-, ‘--ﬂ.".phz—l) X run
B it e S LT TRy | X 2!‘;{!;.“‘....&1)—1 )

The exponent of 2 on the right hand side is

(B4 -+ k) —2u+ map...ar) -2 m(ay «os Gipphi—1)
=1

u
= m-2u+4 ny —2 z ﬂl(d.'j+1 v G,'jq.kj_l).
i=1
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Thus

f(n,m}

m—Zutn—2 3 m (@i 420 8i 4, =)

™
= 3o X ) 2
u=1 ki, ku32t iggedu
Ky dophymm 0Liy Qi iy €. Cludiutkugs
iy Pig o g iy iy kg =01

m

- Z2n1+m—2u E Z E 9-2(n1(B1)+-+n1(Bu))
u=1 RO - 3 By.nBu i,
kyderdkymm By lmky =1 0Ky €y bk <. Ciu Siut hu s
a1 G
By O g T Bul
m
- E2n1+m—2u 2 9-2(n{B1)++n1(Bu)) Z]\
w—  By.Ba By

By Ba i
1By |44 | Bgimm—u LESTRATE 1 IR AN PPV 1 T 4
By By =0 fy 1

By iy kg, ®0 B

» i gna+m—2u ) 9-2m (Bi++m(BNG (B ... By)

u=1 By By
183 [+ + | Bul=m—x

- YemaYen  F g(m,.,B)

u=1 u=0 By Bu
1By j+--+ | Bulm m—u
n{ 8y - +ny(Bu)=r

m m=u

- Z Z 2m+m—2(u+u] Z Sn(B1,..., By)
u=1 v=0 10 Bu
1By [+--+|Bglmm-u
ny {8y 4 tny (B )me
m w
= Z Z2n1+m—2m Z S"(Bl,---,Bu)
w=lu=1 A i B

By 14 Bu)zm—u
Al H A Bu)mw—y

m w
= Z gnitm—2uw z: Z SQ{BI"")B“)
w=1 u=1

By,... By
ng(By )4 A ng( HyJmm—u
n1{ By J+ - my (Bu)=w—u
m

= Z 2m+m'—2wbva

w=1
where

ey > 8B Be

u=lL By oo Bu
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$ PROOF OF THEOREM 2

b1, bas, buz, a1, baz, bys, ba1, buz, bea and bey are easily evaluated using Properties 1-7.

We juat give the detaile for bey.

bu = Y 5B+ Y Sa(BuB)
"1(::}'5 "1(31]51!:!0 By =0
ny (8 i LA S RELITE YL
+ Y Su(B1, By, Ba)

By, 85,8,
nol 8y 34 ng(Bg)+ng( By J=d
n1( By Hng (Be 4wy (By)ui

+ Z Sn(Bll BI; 33’34)

By . By,By 33‘.
vigl 8y H-ngl Byldngl By Heong{ By b=
n1{ 81 }+ny{ Bg)+ny (By)4ny{ By =0

= Sp(111) + {(Sn(8,11) + 54(11,8)) + Sa(1,1)}
+{5a(9,0,1) + 5a(8,1,8) + Sa(1,0,0)} + 5.(8,9,0,0)

-1
= npun + {{ro1Bonn1 — nem )} 4+ (";“) } + non (ﬂm2 ) + (“:’)

6 PROOF OF THEOREM 3

From the proof of Theorem 1 we have

fla,m)= Y omtm-a ¥~ g-dmiBitm(B)g (B . B,).
v 1By 1 i fames

The term with u = m is by Property 1
= -mf ™0 —m [ RG] ,
2mMes(@,...,. 0 =2™ "'( ml) = 2% {%;}- + Om(ng} 1)}!

a8 gy — +oo. For 1l Su<m—1 we have
Sn(Bl:"'lBﬂ) SMB,l"'ﬂoB.l Snl‘:l‘l Eﬂ('ﬁ_l.

eo that

m-1

Z gm4m—3u E 9=2(n1{B1 }+-+n1(By)) S"(Bl, — B“)
uml

By,.Bu
1By |+ -+ | By |wm--u

(6.1)
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m—1 ;
Z 2u1+m—2u Z "-3'1_1
u=1

8y, Bu
181 14+ 8ulwm—u

A

m—1

- 2m+m—2n3;—l Z 2 : i

=1 By By
By 4+ |Bulmm—u

g T (5 o)

u=1 B
1Bl Em=—u

1A

=1
2n1+m—2ng;—l ME (2m—u+l)u
u=l

< 2n1+m—3n$—l(m _ 1)2m(m—1]‘

IA

Hence i
fin,m) = 2"1—"“”_2;‘ + Om(2"‘“3rl)‘

as ngy =+ +o0o, which completes the proof of Theorem 3.
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