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Abstract. Let d denote the discriminant of a quadratic field. Let n be the number of
distinct prime factors of d. Let x, and h{d) dencte the character and class number of
the field respectively. Let Bk,xd denote the generalized Bernoulli number attached to x,.
It is shown in an elementary manner how Gauss’ congruence for imaginary gquadratic
fields A(d) = 0(mod 2" !) can be deduced from Dirichlet’s formula for h(d). We also
generalize the Gauss congruence to 2-integral rational numbers (Bk'xd /k). We prove
that {Bk,xd/k) = 0(mod 2" 1) if xz(-1) = (=1)%. This is a further application of an
identity proved in [10] expressing short character power sums of any length in terms of
generalized Bernonlli numbers. The first application of the identity to classical problems
was due to Schinzel, Urbanowicz and van Wamelen [9].
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1. Preliminaries

Let d be the discriminant of a quadratic field. Let h{d) and x, denote the class
number and the character of this field respectively. It is convenient on occasion to
allow d = 1 in which case x,, is the primitive trivial character. Together with d = 1,
these nutnbers d are the so-called fundamental discriminants. As a consequence of
his theory of genera for imaginary quadratic fields, Gauss obtained algebraically
the congruence

h{d) = 0(mod 2°1), (1)
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where n is the number of distinet prime factors of d (d < 0), see for example
{1, p. 247), [4, p. 227}, [6, p. 133}. Dirichlet showed analytically that

[la1/2]
w{d)
h{d) = ————t—our x.,(r), 2
@ = 552y 2 X @
where

6, ifd= -3,

w(d) =< 4, ifd=—4,

2, ifd«<—4,

see for example [1, p. 346], [7, p. 325]. We show in an elementary manner how
Dirichlet’s formula {2) can be made to yield Gauss’' congruence {1). We accomplish
this by putting (2) into a form (see Theorem 1) from which (1) can be deduced
by induction on n, The proof of Theorem 1 is based on three elementary lemmas.
The first gives a congruence modulo a power of 2 for ¢(|d|), where ¢ is Euler’s
phi function. The second evaluates a sum which occurs in the proof of Theorem 1.
The third puts (2) into a more general form for use in the proof of Theorem 1.
Before the lemmas we give some elementary observations. The detailed proofs of
the lemmas are left to the reader.

As d is the discriminant of a quadratic field, we have d = 1(mod4), d = 8
(mod 16} or d = 12 (mod 16). Moreover, we have

d= H'p*!
pld
where the prime discriminant p* corresponding to the prime p|d is given by
p* = (-1)~1/2p,
if p is odd, and

2*=¢ -8, ifd=24{mod32),

—4, if d =12 (mod 18).
Write 2* =1 if d = 1(mod4). If d < 0, we have
/2| = 3(mod4), ifd=1(mod4) or d = 8(mod 32),
~ | 1(mod4), if d=12(mod16) or d = 24 (mod 32).

Let u denote the number of distinet prime divisors of d which are congruent
to 1 modulo 4 and v the number of distinct prime divisors of d which are congruent
to 3 modulo 4, so that

_n, if d = 1 (mod 4),
B¥Y=1n-1, ifd=0(mod4),

{ 8,  if d=8(mod32),

and
{ 1 (mod2), ifd=1(mod4) or d=8(mod 32},
v=

0(mod2), ifd=12{mod16) or d = 24 (mod 32).
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Lemma 1. Let d be the diseriminant of an imaginary quadratic field. Let n denote
the number of distinct prime divisors of d and u the number of prime divisors of d
which are congruent to | modulo 4. Then

#(dl) = 0 (mod 27+, if d = 1(mod4) or d = 12 (mod 16),
| 0{mod 27*1+%), if d = 8 (mod 16).
Moreover if u= 0 then
_ {27 (mod 27+1), if d = 1{mod4) or d = 12 (mod 16),
Q‘)(Idl) = n+1 n+2 s e
27t (mod 27%2),  ¢f d = 8 (mod 16).

Proof. The proof is straightforward by an inspection of cases. We apply the obser-
vations made before the formmlation of the lemma. O

Lemma 2. If N is a positive integer with N > 3 then

Proof. For 1 < k < N we have (k,N) = 1 if and only if (N — &, N} = 1. Hence the
lemma follows at once. 0

Lemma 3. Let d be the diseriminant of an tmaginary quadratic field and let e be
the discriminant of a quadratic field such that e|d. Then

2
[t /2 (2-x.(2) E(éj{ IT -x.) }h(e),
x. (k) = 2| (d/e)
— ¢ if e < 0 and {d/e) is odd,
(i dy=1 0, otherwise,

Proof. Denote by S the sum on the left hand side of the above equation. We have

S= 3 x(k X whH= 3 wH Y xk

1<k<|d|/2 flikd/e) Fl{d/e) 1<k<jd|/2
flk

(here as usual u denotes the Mobius function). Replacing k& by fg in the inner
sum, we obtain

S= > whHix,f) > xde-
flidie) 1g=lid/e}/ fliel/2
Therefore, in view of

X (9) =0
1<g<(l(d/e}/ f1/2]|¢|
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we obtain
S= Y wlfix.(f) > X.(9).
fltd/e) [ld/e)/F1/2Nlel<g<i(d/e)/ fliel /2
If (d/e)/f is even the inner sum vanishes. Thus

S= 3 w(n Y xe(—(l(d/e)£f|_1)|e|+h).

f|(d/e) 1<h<|e|/2
2f(d/e)/ f .

But x_(Ale| + A) = x,(h) for any integer A so

s={ ¥ wmol T xw} @

fl{d/fe) 1<h<|el/2
2dfe)/ f

Next we determine the left hand sum in the above product.
If (d/e) is odd then (d/e)/f is odd for all f|(d/e) and

> wOx () =0

fl(d/e)
2|(d/e)/ f

If (d/e) is even, as (d/e) is the discriminant of a quadratic field, we have
(d/e) = 2, where @ = 2 or 3 and ¢ is odd. Writing f = 2%g, where ¢ is odd
and 0 € 8 < a — 1, we see that

3w = {ofﬂ@ﬁ)xe(?)"}{Zu(g)xe(g)}-

flid/e) f=0 gt
2|(d/e)/f

Hence and from a product expansion property of multiplicative functions, we de-
duce that

¥ s =a-x,N[O-x0)= I O-x0)

fild/e) plt pl{d/e)
2f(d/fe)/ f
S v =3 sHxH- D wHx)
Fl(d/e) Fl(dfe) fidfe)
2J(d/e}/ f 2)(d/e)/ f
II -x.®). if (d/e) is 0dd,
= < plid/e)
0, if (d/e) iz even.

Now to prove Lemma 3 it suffices to make use of the above equation, formula (3),
Dirichlet's formula (2) and the trivial equality

> x(h)=0
1<h<]el/2
which holds for e > Q. D
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We remark that when e = d the formula of Lemma 3 reduces to (2). Throughout
the paper, as usual we denote by w{n) the number of distinct prime divisors of an
integer n (n # 0).

Theorem 1. Let d be the discriminant of an imaginary quadratic field. Then

wie)— 2
> (e ’(2—xe(2))@{ﬂ(1—x,,,(p))}h(e)

1 s
(d/e)=1 (mod 4) pfe
[14/2]
#(ld))
-4 (Ta-xm),
k=1 pid
{k,d)=1

where e runs through fundamental discriminants dividing d such that e < 0 and
(d/e) = 1(mod 4).

Proof. From a product expansion property of multiplicative functions and Lemmas
2 and 3 we obtain

[1d]/2] [14]/2] [1d]/2]

> {a-%0}= X 1+ 0% 5 %
k=1 ©pld k=1 eld k=1
(k.d)=1 (k. d)=1 el
A, 9 e-x @) ] T - k) @
eld pld
(d/e)éf{)mod4) ple
and the theorem follows. O

2. Gauss’ congruence from Dirichlet’s class
number formula in an elementary manner

Before proving Gauss’ congruence we make some preliminary observations. Re-
garding the product in the left hand side of the equation of Theorem 1, we note
that '
H (1 - x_(p)) = 0{(mod guld=ule]y, {4)
pld
ple
Similarly, for the sum on the right hand side of the equation of Theorem 1, we

have
[14]/2]

2 { IT0 - (k))} = 0 (mod 2*(?). (5)

e P
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We now discuss briefly the case when d (d < 0) has exactly one prime factor. Then
we have the classical congruence

h(d) = 1 {mod 2).

An algebraic proof of this congruence is given in [4, p. 187]. See also {6, p. 135].
In this case d = —4, —8 or —p, where p is a prime = 3 (mod4). It is well known
that h(—4) = (-8} = 1. In the remaining case the above congruence follows from
formula (2} easily. Indeed, if d = —p we have w(d) = 2 if p > 3, and w(3) = 6,
2 —x,(2) =3, resp. 1, if p= 3, resp. 7 (mod8), and

(p—1)/2 (p—1)/2

Z Xq(r} = E 1={p—-1)/2=1(mod2).

r=1 r=1

We are now ready to deduce Gauss’ congruence (1)} from Dirichlet’s class num-
ber formula (2).

Theorem 2. Let d be the discriminent of an imaginary quadratic field. Then
h(d) = 0 (mod 2"~ 1),

where n is the number of distinct prime factors of d.

Proof. We make use of Theorem 1 which was proved using Dirichlet’s formula.
We proceed by induction on the number n of prime divisors of the fundamental
discriminant d.

If n = 1 the congruence of Theorem 2 is trivial. We thus make the inductive
hypothesis that h(e) = 0(mod2"~1) whenever ¢ is a negative fundamental dis-
criminant having r distinet prime factors where r =1,2, ... ,n—1 and n > 2. Let
d be a negative fundamental discriminant with n prime factors.

First we treat the case when d = 1 (mod 4}. In Theorem 1 the terms with e # d
have w(e) =7, 1 < r < n—1, and are congruent to 0 modulo 27" x 271 = 271
by (4) and the inductive hypothesis. The term with e = d is

(—l)"_l—tﬁ@ — x,4(2)) h(d) = {odd number) x h(d).
By Lemma 1 and (5} the right hand side of the equation in the Theorem 1 is
divisible by 2"~1. Hence h{d) = 0 (mod 2" 1).

Secondly we treat the case d = 8 (mod 16). In this case the terms with e # d
in the equation of Theorem 1 have wie) = r, 1 € r € n — 1, and are divisible
by 2 x 2"77 x 27! = 2™ by (4) and the inductive hypothesis. The term with
e =d is (—1)*"12h{d). By Lemma 1 and (5) the right hand side of the equation
of Theorem 1 is divisible by 27. Hence h{d) = 0 (mod 2*~1).

Finally we treat the case d = 12 (mod 16). Clearly the fundamental discrim-
inants e in the summation on the left hand side of the equation of Theorem 1
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contain —4 as one of their prime discriminant factors. The term with e = —4 is
21 fu=0
1 _ s 1 y
I1 (- x.@) {0, Rl
rld
p¥El

The term with e =d is
(—1)""12h(d).

The remaining terms in the sum each contribute by (4) and the inductive hypoth-
esis
+2(multiple of 2"~*(€))(multiple of 2¥(e)=1) = multiple of 27.

Hence the left hand side of the equation of Theorem 1 is
(~1)""12h(d)+2°" 1 + k2", fu=0,
(-1)"~12h(d) + k2", ifu>1,

for some integer k. By Lemma 1 and (5) the right hand side of the equation of

Theorem 1 is
{2“‘1 + 127, ifu=0,

1on, ifu>1,

for some integer . Hence h{d) = 0 (mod 2°~!). Gauss’ congruence (1) now follows
by the principle of mathematical induction. m]

3. Character power sums
in terms of Bernoulli numbers

It follows from Dirichlet’s class number formula that
h{d) = _Bl,xd (d < —4),

where By denotes the generalized Bernoulli number attached to x (see [15, Chap-
ter 4] for details).

Let F denote a real quadratic field with the discriminant d and let Or be the
ring of integers in F. Let K; be the Milnor functor and k2(d) denote the order of
the finite group K20r. The corresponding formula for k2{d) is

ka(d) = Bay, (d> 8). (6)

It is a special case of a famous conjecture of Birch and Tate, proved by Wiles, see
[16, p. 499].

It is well known that ko(d) for positive d is always divisible by 4. Using Gauss’
theory of genera Browkin and Schinzel in [2] obtained algebraically the congruence

(k2(d)/2) = 0 (mod 2"71), )

where d is the discriminant of a real quadratic field having n distinct prime factors.
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We recall that for ¢ 3 —4 the numbers (B, ,,/m) (m > 1) are 2-integral. In
fact, these numbers are always integers unless d = —4 or d = +p, where p is an
odd prime number such that 2m/(p--1) is an odd integer, in which case they have
denominator 2 or p (for details see [3] or [8]). The left hand side of the congruences
(1), resp. (7) is equal to (B g /m) for m = 1, resp. 2. By analogy, one could
expect that these congruences are special cases of a more general corresponding
congruence for the generalized Bernoulli numbers attached to quadratic characters
(Brmx, /m) (m = 1, x,{~1) = (—1)™). The main result of the paper is Theorem 6
giving a congruence of this type.

It follows from (6) that

[d/2]
ka(d) = Z Xa(r)r, (8)

5, #d=5,
w2(d): {2) ]fd=8g

1, otherwise,

where

see [12]. Formula (8) for k3(d) corresponds to formula (2) for h(d), which yields
the identities of Lemma 3 and Theorem 1, and in consequence Gauss’ congruence.
Thus one could expect that there should exist some corresponding identities for
ko (d) implying Browkin and Schinzel’s congruence (7). In this paper we find such
identities. In fact, we find identities of a more general form, for the generalized
Bernoulli numbers (Theorems 3, 4 and 5). Theorems 3, 4 and 5 are further con-
sequences of an identity proved in [10], expressing short character power sums of
any length in terms of generalized Bernoulli numbers.

Let x be a Dirichlet character modulo M and let N be a mnltiple of M. For
any integer r > 1 prime to N and any natural number m we have the following
formula from [10]

mrm—l Z x(a)am—1=_ mxrm 1+ (?)Zw( N)B ,xﬂ«'(N)i (9)

O<a<({VN/r)

where the last sum is over all Dirichlet characters ¥ modulo r. Here for a Dirichlet
character y, we have

B x(X) = i (T) Bk,me_k-

k=0
Thus we have

mr™ ! Z x{a)a™ ! = =By, ,r™ !
0<a<(N/r)
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Note that if the character ¥ modulo T is induced from & character x” modulo some
divisor of T then we have

Bmyx = Bmy [[ (1= X2} "), (10)

p|T

where the product is over all primes p dividing T. For more details see [10].
Formula (9) if N odd and r =2, 4, 8 together with formula {10) gives some
identities for the generalized Bernoulli numbers corresponding to those in Lemma 3.
The case m = 1 is much simpler than the other cases. For m > 2 we also need
shorter character power sums.
If x is a Dirichlet character modulo M and N is a multiple of A, then for
m > ) we set

BM =Bn, [I (-xtwem).
pI(N/M)

Moreover, we write
B[N] X _E : m B[N] Xm—k
m.x( ) s (k) k.x ’

Set Bff] = B,[fl( ) BE:'](X) = BEfL {X) for any integer N > 1.
* 1 3 1

Lemma 4. Let x be a Dirichlet character modulo M and let N be an odd positive
multiple of M. Then for any natural number m we have the following formulae:

(@ m2™? 3 x(a)a™ ' =(x(2)-2")BY]
0<a<(N/2) ’
{a.N)=1

+x()(BEW) - B2V,
B mmt Y xaant = (HAZXEATE T ) g

O<a<(N/4} ¢
(&, N)=1

+@((Bgf‘g(mwﬁ§‘) X_q(N)BEY (N)),

MX_ X

© mmt P et = (MR DT )

4 m,x
u<n<(N/8)
(a,N)=
(3) [:m] [2N] [8N]
(BENI(N) ~ BEY) - x_(M)BEY (W)

X MBE) (N)+ xg(N)BEY ().
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Proof. N is odd and so we can make use of formula (9} for r = 2,4 and 8,
respectively. Then we have

mamt Y x(a)am-‘=(az(z)—2"‘)Bm,x+i(2)(3£3f‘§](”)‘Bﬁfﬁ])’

G<a<{N/2)
and
cl4) — v(2 2m—1 _22m—1
m2°m—2 Z x(a)a™ ! = (X( ) 2 )Bm,x
O<a<(N/4)
x(4) [274] [2M]
&l T ((Bm,x (N) - Bm,x ) - x—‘i(N)Bm'x-qx (M) )
and
. mot _ (X(8) — x(4)2mt — 23mt
m2a3m—3 Z X(G)ﬂ L (X( ) X( )4 )erx
0<a<(N/8)
x(8) (2M) (2]

X ANIB )+ X5(N)B () ):

Now it is sufficient to replace the character x modulo M in the above formulae by
a character modulo N induced by x and Lemma 4 follows immediately. O

4. The main results

We are now ready to deduce the main regults of the paper. First we prove some
identities for the generalized Bernoulli numbers corresponding to that in Theo-
rem 1 (Theorems 3, 4, 5). Next we deduce the main congruence of the paper
(Theorem 6) for the numbers (B, /m) for d odd, divisible by 4, or divisible by 8
from Theorems 3, 4, or b respectivedly. We will proceed by induction on the pairs
(m, n), where n is the number of distinct prime factors of d.

Theorem 3. Let m be a natural number and let d be an odd discriminant of a
guadratic field. Then we have

Bl B4 (|d]) — pi2d
W X, wie m‘xe X,

S (2)-27) 2 4 3 (-1, o) <)
eld eld
e7#1 ex¥l

g 2m—1( Z am—l{ H (1 _ Xp‘(a})} - z am—l)‘

o<a<(|dl/2) pld o<a<(|d|/2)
(a.d)=1 (a,d)}=1

where e (e # 1) runs through fundamental discriminants dividing d.
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Proof, Denote by & the left hand side of the equality of Theorem 3. By Lemma 4(a)
we have

8§ =2m"1 ( Z,u(e} z x {a)a™ ! - Z am_l)

e|d 0<a<(ld|/2) o<a<(|d|/2)
{n,d)=1 {a,d)=1
— gm-1 ( Z g™l Zﬂ(e}xe(a) : Z am—l)‘
O<a=<(|d],/2) e|d O<a<i(|d|/2)
{a,d)=1 (z,d)=1

Now the theorem follows from a product expansion property of multiplicative
functions. 0

Theorem 4. Let m be a natural number and let d be an odd discriminant of a
quadratic field. Then we have

Bl
(-1 (1 - x ()2t - 2P e
eld m
exl
B2 (jdp)— B2 x_,(14DBYY | (d)
+ Z(—l)“’(e) m-xe(l y mx, 4 TLX_4Xe
eld 1 m
eF#l
= 92m-1 ( Z am—l{ H (1 = (G))} . Z am—])’
O<a<(|dl/4) pld 0<a<(|d|/4)
{ad)=1 (a,d)=1

where e {e # 1} runs through fundaomental discriminants dividing d.

Proof. Denote by S the left hand side of the equality of Theorem 4. By Lemma 4(b)
we have

s= (T Y x@- Y o)

eld O<a<{|d]/4) O<a<(|d|/4)
{a,d)=1 {a,d)=1
e DAL ( S @™y pex(a) - > am*l).
D<a<{|dl/4) eld 0<a<{|d]/4)
(a|d)=]- (a,d):l

Now the theorem follows from a product expansion property of multiplicative
functions. a
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Theorem 5. Let m be a natural number and let d be an odd discriminant of a
quadratic field. Then we have

Bld
Z(_l)w(e) (xe(z) _ 2m—1 o 23m-—1) ﬂ_e_
eld "
eyl
o BEY (ld) - BRY  x_,(d)BEY | (ld)
+ D (- . =
e#l
Xa(DBRS () xa()BEY (b
m m
_ 23m—1( Z am—l{ H (1 - xp‘ (a))} _ Z lum—l),
O<a<(|d]/8) pld 0<a<(|d|/8)
{a.d)=1 (a,d)=1

where e (e # 1) runs through fundamental discriminants dividing d.

Proof. Denote by S the left hand side of the equality of Theorem 5. By Lemma. 4(c)
we have

5= 93m-l1 ( Z ule) Z x (@)a™ 1 — Z am_l)

eld 0<a<{{d]/8) 0<a<(|d]/8)
{a,d)=1 {a,d}=1
= g%m—1 ( Z a™! Z ule)x, (a) - Z am‘l).
0<a<(|d|/8) eld O<a<(|d|/8)
(a,d}=1 {e,d)=1

Now the theorem follows from a product expansion property of multiplicative
functions. O

The proof of the main theorem (Theorem 6) is based on Theorems 3, 4, 5
and five lemmas (Lemmas 5, 6, 7, 8 and 9). In Lemma 5 we prove an elementary
congruence. In Lemma 6 we give an extension (probably already known) of the von
Staudt-Clausen theorem for Bernoulli numbers. These two lemmas together with
Lemma 7 and 8 imply Lemma 9. Theorems 3, 4, 5 and Lemma 9 give Theorem 6.

Lemma 5. Let N > 1 be o sguarefree odd natural number. Then for an even
integer m = 2 we have

N H (1 +p+-- +pm——2) = (_l)w(.N) (mod gorda m.)
pIN

Moreover, if every prime p dividing N satisfies p = 3 (mod4) then the above
congruence holds modulp 2°Td2m+1,
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Proof. We note that for any p| N we have the congruence
p(l+p+--+p™ %) = -1 (mod 2ord2mtorda(p+i)—1) (11)

This congruence yields the lemma at once.
The task is now to prove congruence (11). Indeed, for u odd we have

= 1 {mod 20732 merda(w’~1)=1y (12)

It follows from the equation

_1+Zm/2((m/2 )(uz__l)k

because
korda(#? — 1) > ordg k + orda{u? — 1),

ifk>1.
Thus we obtain

p(l+p+- +p™ %) = pp _11 — 1= —1 (mod 2°orde mtorda(p+l)=1)

Hence congruence (11) follows at once. 0

Lemma 6 extends the von Staudt-Clausen theorem in case p = 2. The theorem
asserts that for a prime number p satisfying (p — 1)|m, the rational numbers pB,,
are p-integral and

pB,, = —1 (mod p). (13)
If (p — 1)fm then B,, are p-integral, but we will not use this. In the proof of
Lemma 6 we apply the power summation formula

Y 0"t = (Ba(N) - Bn), (14)
Oa<N

where m = 1. In the proofs of Lemmas 7 and 8 we make use of the following
formula for the generalized Bernoulli polynomials

B, (X+Y)=Y_ (’:) B, (X)Y™*, (15)

k=0
which easily follows from the formula

B, (X)= (X)-

m—l WX

Lemma 8. For an even integer m > 4 we have

2B, = 1 (mod 20742 m+1),
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Proof. Let R be a natural number such that R = 2 (mod 4}. From formula (14) we
obtain

(m+1) Z: a™ = m+1(R)‘_Bm+1;

O<a< R
and hence
Bm(m+1) s m—1 k1 (m+ 1R
2B 11 —— m
2 ék{k—l) k-2 ) @Btk )R+ === (2Br)
= (m+ 1) Z a™ (mod 20792 ™1y,
O<a<HhH
aodd

Therefore by (12} and
k—12ord; (k(k — 1)) +1,

if k > 3, we deduce that

(m "; l)R (2Bm) — (m -; I)R (de2°rd2 m+1)_
This implies Lemma 6 easily. (I}

Remark. Note that if m == 2 the above congruence holds modulo 2°79: ™ only,
and if m > 6 we have ord;(2B,,, — 1) =ordom + 1.

Lemma 7. Let N > 1 be a squarefree odd natural number having n distinct prime

factors. Then for a natural number m we have
B[‘ZN](]_)
—2 = 0(mod2"},
m

unless m = 1,2 and p = 3(mod 4) for any p|N, in which cases

BE¥](1
m—() = 2771 (mod 27).
m

Proof. If m = 1 we have

[2N] 71y _ ml2N an] _ 1 o1y HN)
# = B 4= [ (L) =
rIN

and the lemma. follows. If m = 2 we have

B ](1) 1 ¢(N) 1
2 Mo 2| gl NT) PV S yw()
5 5 (BO +B2 ) 1 (1 3( 1) N)

Denote by v the number of distinct prime divisors of N which are congruent to 1
modulo 4. From now on, the proof will be divided into two cases

(i) ©>0,

(i) u=0.
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Case {i). In this case

% = 0{mod 2" 1)

and .
1- §(-1)“’“")N = 0{mod 2),
and hence the lemma follows immediately.
Case (ii). In this case

(ﬁ(N) . pn—2 n—1

and
1-— %(wl)”(N)N =1+ (-1)*¥) = 2 (mod 4),
and hence the lemma follows easily.
If m > 3 we proceed by induction on m. If m = 3 we have
B[2N](1)
"_3__

which gives the lemma.

The subsequent proof is based on the following observation. Putting in (15)
X =1and ¥ = —1 we obtain

B[2N]

BEM [2V]
+{(-)™*m - (1)+E{ 1)rek ( I)M.

; (BW + 3Bl2N1) = "’6(_1"\‘?(1 — (=1)“"™IN) = 0(mod 2" '),

-1 k
Lemma 7 can be deduced from the above forrnula inductively if we prove that
B[2N] N B[zN]
(-1)ym™—== SN + al ) -1)-2 - @) = 0({mod 2"). (16)

m  2mN 2N
Denote by L the left hand side of the above congruence. For odd m we have

N BNl
L=—%+%(%1—(m—l) 2 )E(;b(N)(l—%) = 0 (mod 27).

2 2N
For m (> 4) even we have

e (BENI B ¢(N)) i (¢(N) e 1)“)_

m ImN 2N 2

Case {i). In this case
&(N) = 0{mod 2"t")

and we have

Lo BN e

= m 2mN (mad2%).
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Thus in order to prove (16} it suffices to show that
(2Bm) (1 - 27N [T (1 - p™7") = p(NV) (mod 27+ord2m+1),
pIN
The left hand side of the above congruence equals
$(N)(2Bm) (1 -2 )N(=1)*M [ A +p+---+p™72),
piN

and so the congruence follows easily from Lemmas 5 and 6.
Case (ii). In this case we have

[2¥]
T (E ¢(N)) + (2771 —271) (mod 27),

m  2mN
and so o
_ B S(N) "

Analysis similar to that in case {i) shows that L = 0 (mod 2"). It suffices to make

use of Lemmas 5, 6 and the congruence
#(N) = 2" (mod 27H1).
The congruence of Lemma 6 in this case has the form

N H (1 +p+- +pm—~2) 2 (__1)w(N) (mod 2nrd2 m+1).
plN

Lemma 8. Let m be a nafural number. Let N > 1 be an odd squarefree natural
number having n distinct prime factors and let d = —4, £8. Write & = |d|. Then

we have
B[JN] (N)
X = 0 {mod 2"),
m

unlessm=1, 2, d= —4 and p = 3 (mod 4) for any p|N, in which cases

B[4N} (N)

Xog = agn—1 n
= = 2" (mod 2™).

Proaf. The proof is straightforward and based on the following observations, For

an even integer k (k > 0) we have

Bk,x_4 =0,
and for an odd integer k (k > 1)
1 1
;Bks)(_q = §Ek_1,

where E). denotes the kth classical Euler number, which is an odd integer.
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Moreover, for an integer k {k > 0) we have

Bk.x =10,
if k is even, and
Bk.x = (),
if k is odd, and
Oxg 0.
For & > 1 the numbers
1
E kX

are rational and 2-integral (see [3] or (8] for more details).
Let 4 be a natural number relatively prime to N. For a non-principal Dirichlet
character x modulo & we have

BIN(N) 1 B
m.X — L — k-1 kX arm—k
= > (k~1){H(1 x(p)p )} ENTTE )
1<k<m N
¥=T)=(~13*
We first consider the case d = —4. If ;m = 1, by virtue of (17), we have
1
4N — pltN] _
BN (N)=BM =2 r”{ (1~ x_y(p))
P

_ 0 {mod 27), if u > 0,
T 1271 (mod2”), fu=0.

(recall that Ey = 1) and the lemma in this case follows. If m = 2, by virtue of (17),
we have
BN (N)
2'3(_4 - B[4 N] N
2 Lx 4

and similar arguments to those in case m = 1 apply.

Denote by u the number of distinet prime divisors of N which are congruent
to 1 modulo 4. By virtue of {17} if d = —~4 and m > 3 we have

B 1
mx_, m— _ .

& Z (k— 1){ H (1= x_,o)p* 1)}E"~'—1N b

g

-1
2"t 3y (’:’ 1) =0(mod2™), ifu=0,
= 1<k<m -
% odd
0 (mod 27), ifu>0
because

1—x_,(@p* ' =1-x_,(p) (mod8)
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for k odd, and

m_l _ m—2
i e S
1<k<m
kodd

We now turn to the case d = 8. Then, by virtue of {17), we have

Br[ﬁl,\;(]is (N) m—1 Bk'xig
e B X (k_l){H(l—xﬂ(p)p’“‘l)}—k Nk
lsk<m p|N
kodd
= 0 {mod 2™)
because
k—1 Bk’xia n

I (1~ s ") p—** = 0(mod2")

pIN
for any 1 < k < m. This completes the proof. 0

Lemma 9. Let m be o natural number. Let N > 1 be an odd squarefree natural
number having n distinct prime factors. Then we have

gm~1 Z am-l = 22m—1 Z am—i

O<a<{N/2) D<a<{N/4)
{a.NM)=1 {a,N)=1
= 2%m-1 Z a™ 1 =0 (mod 2"),
D<a<{N/8)
(a.N)=1
excepl one case
2™l %" @™ =271 (moed2")
0<a<(N/2)
{a,N)=1

if m=1 and p=3{mod4) for any p|N.

Proof. Dencte by u the number of distinct prime divisors of ¥ which are congruent
to 1 modulo 4.
In order to prove that

gt Z a™ ! = 0 (mod 2™), (18)
0<a<(N/2)
(a,N}=1
we make use of Lemma 4(a) for the principal character x modulo N. Then, by (13)
if p = 2, we have
B[N] m—1
gt Zn = 2 ] (1™ ) (2B, =

m 2m
pINV
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_ { 2"~ (mod2™), ifm=2andu=0,
7 | 0{mod 2™), otherwise.

Therefore Lemma 4{a) implies the congruence

gm—1 Z am—l

0<a<(N/2)
(e, N)=1
B[ZN’](N)
gn—1 4 m (mod2™), ifm =2 and u=0,
= L (19)
B[ZN](N)
—2 _— {mod 2"}, otherwise.
We first prove the lemma if m = 1 or 2. Then by definition
2N _ piaN A 2Y)
BPN(N) = BNV = e
N _ p2N] A2 2N _ 9UV) 1 w(N)
BEN(N) = BVIN? + Bl ]—T(N—E(—l) ;
and so
BENH(N)} [ 0(mod2m), if u> 0, (20)
m |2 (mod2™), ifu=0.

Therefore the lemma if m = 1 or 2 follows from (19).
If m > 3 the proof is based on the following observation. By (15} (when X =1,
Y = N —1), we have

BEM(N) _ ¢(N) $(N)

_1ym —_1ym-1
m ey ACAE T S )
B[2N}(1) m—3 N B[ZN] (1)
_ 2 _ m—2 m— L k
+ (m— )2 (N ~1) +k2=0( " )T—k (N — D),
and in view of Lemma 7 we conclude that (recal] that N — 1 is even)
RBl2N] (N)
— =0 (mod2"™).
m

Therefore congruence (18) follows from (19).
In order to prove the congruence

22m=t %" g™l =0(mod2"), (21)

0<a<(N/4)
{a. N)=1
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we use Lemma 4(b) for the principal character x modulo N. Then, in view of (13)
if p = 2, we have

B[N] 92m—1
grtom = S [ (1= 9™") (2Bm) = 0(mod 2").

pIN
Therefore Lemma 4(b) yields
4N N
BENI(N BRM (N)
22l M gmls B W) _ x_,(N) Xt (mod2").
0<a<{N/4) a
(a,N)=1
Thus congruence (21) follows from Lemma 8 and (20).
In order to prove that
2m=1 3" q™ 1 =0(mod2”), (22)
0<e<<(N/8)
(e, N)=1

we apply Lemma 4(c) for the principal character x modulo N. Then, in view of (13)
if p = 2, we have

—lB[N] o3m—1 1
A [T 0= 2™"")(2Bm) = 0(mod 2™).

pIN
Therefore Lemma 4(c) together with Lemma 8 and congruence (20) gives
BleN] (N) B[SN] (N)

LTS

93m-—1 z a™l= _X_g(N)

O<a<{N/8)
(a,N)=1

Now congruence {22} follows from Lemma 8§ at once. O

Let m be a natural number. Let D be the discriminant of a quadratic field such
that D # —4 and x (—1) = (~1)™. Then the rational numbers By /m) are

2-integral, see for example [3] or [8]. More precisely, we have ord; (B, /m) =0
and ordy (B, /m)>11fm>2a.ndD9é:i:8 see [13] for details.

Theorem 6. Let m be a natural number. Let D be the discriminant of a quadratic
field such that D # —4 and x ,(—1) = (—1)™. Assume that x , is the corresponding
character and n is the number of distinct prime factors of .lﬁ) Then we have

By
%5 = 0 (mod 2" Y).
m
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Proof. Let d be an odd fundamental discriminant. The proof falls naturally into
three cases

(i) D=d,
(i) D= —4d,
(iii) D = +8d.

In order to prove the congruence of Theorem 6, we proceed by induction on
the pairs (m,n) ordered lexicographically, that is,

(k,7) < (m,n)

ifandonlyif k< m,ork=mandr <n.

If m = 1 Theorem 6 follows from Theorem 2. We now make the inductive
hypothesis that
B
Thxe = 0 (mod 2™~ 1),

k

whenever 1 £ k < m (m 2 2) and e # 1 is a fundamental discriminant having r
distinct prime factors where 1 <r <n—1 (n > 2).

Case (i). In this case Theorem 3 together with Lemma 9 gives the congruence

Bl B[2d1 (]d|) Bl2d
Z( l)u(e) (X (2) — 2m) 'xc + Z w{e)xe(z) ( — X, )
eld eld
e#l e#1

=0{mod2™). (23)
Let us first consider the first sum on the left hand side of the above congruence.
If e = d we have
Bl Bld
X i m,x
—2™)—"4d — (odd —d
(xa(2) ~ 2) —22% = (0dd integer) x "2,

and if e|d and e # d, by the inductive assumption, we have
Bi[fl‘x . k—1 Bm.x
(x,(2) - 2"")T'= = (odd integer) x { H (1—x.(p)p* )}Te
pl{d/e)
= (integer) x 2v(4/€} x (€)= — (integer) x 271,

We now turn to the second sum of the left hand side of congruence (23). It consists

of the numbers
B4 (|d)) - B2

m

where e|d and e # 1. Therefore the summands of the second sum are up to sign
of the form

(’"’“1)3”‘ 1-x@2Y T (- x.@p)dm*,
k=1 & pl(d/e)
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where 1 < k <m — 1. If k = 0 the summand disappears since

By, =0

if € £ 1. Thus, by the inductive assumption, the summands of the second sum are
of the form
(integer) x 22(&3—1 5 owld/e) — (integer) x 27!

and all these observations together give Theorem 6 in case (i).
Case (ii). In this case n — 1 = w(d). We make use of Theorem 4 and Lemma 9,

which give the congruence

Bl
Z(_l)w(e) (1 — XE(2)2m_l _ 22m—1) _1‘?1:-)52
eld m
e#l
B2 (|dj) - B2 B9 (|d))

+ Z(—l)w(e)( Xe = X, ) _ X_4(|d!) Z(_l)w(e) 'X_?::(e

eld eld

e#1 el

= 0 (mod 2¢(4),

We first consider the first and second sums on the left hand side of the above

congruence. The numbers
B9 B (|d))

e

m m

are divisible by 2°(®)=1_ this follows from Theorem 6(i). Thus, by virtue of con-
gruence (23}, we deduce that

RBld
Z (_1);.;(9) (1 — Xe(2)2m_1 L 2217&—1) ﬂ
eld m
e®l
Bl24 (df) - Bl2d
+ Z{——l)“’(e)( e s ) = 0 (mod 209)),
eld m
e#l
Thus we obtain the congruence
Bl (|d])
M@=t = 0 (moed 2¢()). (24)
e|d T
ezl

Let us consider the summands of the sum on its left hand side.

i AL (2D I -t ) 2smams

X _4Xe
pl{d/e)
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(Recall that
Bﬂ,x_4xe =0)

If ¢ # d then, by the inductive assumption, the summands of the sum on the right
hand side of the above equation have the form

(integer) x 2¢(4/€) x 29() — (integer) x 2(4)

If e = d the summands of the sum on the left hand side of congruence {24) have
up to sign the form

__lffl Al i( )%kﬂm-k.

Thus, by the inductive assumption, they are

B
X 4 Xd

(integer) x 29 &

and the theorem in case (ii) follows.
Case (iil). In this case n — 1 = w(d). We make use of Theorem 5 and Lemmna 9,
which yield the congruence

Bld
Z(_l)w(e) (Xe(2) - 2m—1 gz 23m—1)ﬂ
e|ld "
e¥l

BU4 () - BEA
+ Z (_1)w(e]xg(2) ( X, X, )

eld m
ezl
BEA  (ld])
_olldl) (-1 x ()=
o
d|)BEd d d\BE (|4
B Z(—l)“’(e)x (2)(Xﬂs(| 1) m»xﬁsxe“ ) ~ xs(l2}) m,xaxe(l i))
=4 m B
i
= 0 (mod 2¢#),

We first consider the first, second and third sums on the left hand side of the above
congruence. The numbers

[4) [2d]
By, Hawtd)

m m
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are divisible by 2¥(9—1, this follows from Theorem 6(i), and the numbers
BR - (|d])

X X,
™m

are divisible by 2¢(9), this follows from Theorem 6(ii). Thus, by virtue of congru-
ence (23), we conclude that

X-s(dDBET  (dl)  x(|d)BES  (id))
Z _1ywle) X _gXe _ TN X e
e|d( 1) Xc(z)( m m )
el

= ( (mod 2¢(4).

The summands of the sum on the left hand side of the above congruence have up
to sign the form

B4 (ld) BB (ld))

MmX_ X, ™M, X — (m~1 —k
i B™E = :I: ™
- - g(k_l)s(k,e,dnd! A
where
B,
" KIEKE
II (=x_ax ™) —32 i xel-1) # (-1)%,
Bk, e,d) = rlid/e)
R § = Bk
II -xexe* )5, ifxe(-1) = (-1)*
pl(d/e)
(Recall that
Osxiaxg =
and B .
{ KX _gXe } % { K XgXe } =0.) (25)
m m

If € # d then, by the inductive assumption, the summands of the above sum have
the form
(integer) x 2¢(4/¢} x 2%(€) = (integer) x 2(4,

If e = d the corresponding summand has the form

i m—1 Bk,x_gxg + Bk,xsxg |+
k-1 k k ’

k=1

and so, by the inductive assumption, this summand is

d B x i . Prwsgi
(integer) x 24 4 ( ==L+ 8 d).
m m

Now the theorem in case (iii) follows from {25) if e = d and k = m. O



Gauss’ congruence from Dirichlet’s class number formula and generalizations 837

5. Final remarks

One of the most important properties of the generalized Bernoulli numbers is that
they give the values of Dirichlet Z-functions at negative integers. Namely, we have
L{1 —m,x) = —(Bm.x/m), where m > 1 (see [15, Theorem 4.2]). Thus, we can
rewrite the congruence of Theorem 6 in the form

L(1—m,x,) =0(mod 2™ 1),

where x,(—1) = (—1)™ and d has n distinct prime factors. In particular Gauss’
congruence considered in Theorem 2 was proved for the numbers L(0, x,) = h(d)
(d negative). It is surprising that as yet no one has deduced Gauss’ congruence for
positive d using complex analytic methods, that is, from Dirichlet’s class number
formula, which in this case has the form L(1,x,) = 2d~1/2h(d}loge, where ¢ is the
fundamental unit of a quadratic field with the discriminant d. Gauss’ congruence
for positive d has the form

_ [O0(mod2™ 1), if N(e)=-
h(d) = {O(mod m=2), if N(e) =1,

where N denotes the norm,

As usual, the complex and p-adic formulae differ by an Euler factor. The cor-
responding p-adic formulae for class numbers of quadratic fields are of the form
Ly(1,x,;) = 2(1 ~ x,(p)p~)d"/2h(d)log, ¢ if d positive and log, denotes the
p-adic logarithm (this is Leopoldt’s formula}, and L, (0, x ) = (1 — x,4(p)) (d)
if d negative and w), is the Teichmiller character at p. Similarly, we have
Ly(1 = m,xwh) = —(1 — x(®)p™ ") (Bm,x/m) if m > 1. Uehara [11, Lemma 3]
found an inductive p-adic formula corresponding to that in Lemma 3. Uehara's
formula was proved for any quadratic field. It was noticed by Urbanowicz and
Wojcik that Uehara’s formula is a special case of a more general inductive for-
mula for the so-called p-adic multilogarithms introduced by Coleman [5]. Let x
be a primitive Dirichlet character modulo M > 1 and r(x)} denote the normalized
Gauss sum attached to x. Write {3 = exp(2wi/M). Denoting by I, _(s) the p-adic
multilogarithms, it was proved by Coleman [5] that

M
Lp(k,xw},'k) ={1- "ML Z (r),, (Car

Denoting by {, . {s) the complex multilogarithms, we have the well known formula

M

k,m(cf:fn



838 Glenn J. Fox, Jerzy Urbanowicz and Kenneth S. Williams

Let N be a positive multiple of M such that N/M is a rational squarefree integer
prime to M. Uehara’s inductive formula in its most general form is

N M

D x(®lep(Ch) = 0PN TT (1 —xl'™) 3 x(k)en(¢k)
o 2l (N/M) P
(k,N=1 (k,M)=1

(see {14, Lemma 1]). This identity implies many new congruences for the values
of L,{k, xw~*}. The most general such congruences were proved in [14] and 17].
One may expect that both Gauss’ congruence (for any quadratic field) and its
generalization for generalized Bernoulli numbers presented in this paper can be
deduced from these congruences. This means that with high probability we should
be able to prove Gauss’ congruence for any quadratic field using p-adic analytic
methods. The related complex problem seems hopeless today.
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