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Abstract

Explicit formulae for the five roots of DeMoivre’s quintic polynomial are
given in terms of any two of the roots.

If f(x) is an irreducible polynomial of prime degree over the rational
field @, a classical theorem of Galois asserts that f(x) is solvable by
radicals if and only if all the roots of f(x) can be expressed as rational
functions of any two of them, see for example [2, p. 254]. It is known that
DeMoivre’s quintic polynomial

f(x) = x% —5ax® +5a%x-b, a,be@Q, 1
is solvable by radicals, see for example Borger [1]. In this paper we give
explicit formulae for the roots of f(x) in terms of any two of them. We do
not need to assume that f(x) is irreducible only that it has nonzero
discriminant, that is,

d = 55(4a% - b2f = 0. @)

We remark that if d = 0 then 4a% = b2 so that a = u? and b = 2u5 for
some u € @ and the roots of f(x) are
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2u, (c) + w“)u, (co + w“)u, (a)2 + o)a)u, (m2 + m3)u,
where
' o = 25, 3)
We denote the roots of f(x) by xg, x;, x3, x3, x4 so that the splitting
field of f(x) is F = Q(xo, X1, X9, X3, x4). As
J(_i'=i l—[ (x,-—xj)eF,
0<i<js4 -
we see from (2) that »
J5 ¢ F. CY)
We denote the Galois group of f(x) by ‘G f» the cyclic group of order m by
Z,,, and the symmetric group of order m! by S,,. The Frobenius group

F5¢ (of order 20) is the group under composition of transformations of

the form
x »> mx +n, m(#0), neGF(5),

where GF(5) is the finite field with 5 elements. If we write A for the
transformation x - x +1, B for the transformation x o 2x + 1, and I

for the identity transformation x — x, we find that
Fp = (A, B), A% =B*=1, AB-= BA%.

‘The elements of Fpy are A'B/(i=0,1,23,4;j=0,1,2, 3) and their

orders are given as follows:

order elements
1 I
2 B? AB? A’B?, A%B?, A‘B?
4 B, AB, A’B, A3B, A*B, B®, AB®, A%2B3, A3B3, A%B?

5 A, A2 A3, At
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Thus Fyo has five subgroups of order 2 (generated by Bz, AB?, A%B2,
A3B? and A%B? ), five subgroups of order 4 (generated by B, AB, AZB,

AsB, A*B ), one subgroup of order 5 (generated by A), and one subgroup
of order 10 (generated by A and B?).

With f(x) as in (1) and (2), we prove
Theorem. (a) f(x) is solvable by radicals.

(b) f(x) ts either irreducible in Q[x] or f(x) is the product of a linear
polynomial and an irreducible quartic polynomial in Q[x].

(¢) F contains the cyclic quartic field

Q[J(405 - bz)(5 + Zw/g)]
(d) If f(x) is irreducible, then Gy = Fy.

(e) F containé a untque quadratic field, namely Q(Jg )

@® If n and rp are any two roots of f(x) then the other three roots
are

(n+ r2)(3a - (r12 + r22)) nd -3ar —ary, 1§ - 3ar, -an
nre +a ’ nrp+a nrp+a

Proof. (a) Setting x = y + (a/y) we obtain the roots of f(x) as
xj = o'H+o /K (j=0,1, 2 3, 4), where o is defined in (3),

H = (%(b + Vb2 — 445 D1/5, K - (%(b ~Vb? — 4a® ])1/5, HK - a.

Thus f(x) is solvable by radicals and G/ is a solvable group.

(c) Letrbearootof f(x). Now

f(x)/(x -r)= xterad s (r2 - 5(z)ac2 + (r3 - 5ar)x + (r4 - 5ar? + 5a2),
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which has the root

-i-[—r+ ra/g+J(4a —rz)(10+2a/g)).

Appealing to (4) we deduce that

4o -2)(10+ 245) e F.

Taking r = xg, %1, X3, X3, x4 (the roots of f(x)), we obtain

1?([)J (4a - sz)(lo + 2\/5) e F

that is

0 + 205} J 1-[ to- 3)(10+ 205) < F

8 (10 + 2«/5)2 € Q(\/g) c F we deduce that

Jﬁ ta-x2)(10+2J5) e F
0

Now

4
H 4a - x = g(4a),
je ,

where
4

g(x) = H(x - sz)

j=0
A standard calculation gives
g(x) = x® — 10ax* + 35a2x3 - 50a3x? + 25a%x - b2
from which it follows that
9(4a) = 4a® - b2

Q(v/ha” ~52)(10 + 2@)) cF

Hence
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Since
10 + 2v5 = (5 + 245)(1 - V5

we obtain

Q[y/(4a5 —b?)(5 + 2\/5)] c F.

It is easily checked that Q(J (4(15 - bz)(5 + 2\/5)] is a cyclic quartic
field, see for example [3, Theorem 3(ii)]. Thus, by Galois theory,

4 divides | Gy | (5)
and

a quotient group of Gy is isomorphic to Z. ®)

(b) If f(x) is not irreducible in @Q[x] then f(x) must have a

factorization into distinct irreducible polynomials of Q[x] whose degrees

are
@ 1,4
(ii) 1,1, 3.
(iii) 1,1,1,2
@iv) 1,1,1,1,1
) 1,2, 2
or (vi) 2, 3.

In cases (ii), (iii), (vi) | Gy | =1, 2, 3 or 6 contradicting (5). In case (v)
Gf =29 or Zyx2y contradicting (6). In case (vi) Gf =ZyxZ3 or
Z5 x S3 or S3 again contradicting (6). Hence case (i) must hold.

(d) If f(x) is irreducible, then by (a) Gy is a solvable transitive
subgroup of Sy and thus can be identified with a subgroup of Fy [2, pp.
253-254]. Hence |G, | < | Fyo | = 20. But, by (5), 4 divides | Gf | and, as’
f(x) is of degree 5, 5 divides |Gf | so that | Gy | = 20 and Gy = Fy.
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() If f(x) is irreducible, by (d), G; = Fy9. We have already noted
that Fy; has a unique subgroup of order 10, that is, a unique subgroup of
index 2. Hence, by Galois theory, F has a unique quadratic subfield. By
(4), Q(Jg ) c F so Q(Jg ) must be the unique quadratic field in F.

() Let  and ry be any two roots of f(x), say, n = xj and ry = x,
where j, R =0,1,2 3,4; j # k. Set

u=woH, v= co_jK, z =0k,
so that u, v are complex numbers and z is a fifth root of unity#1 such
that

n=u+v, m=zu+zlv, uw=a. (D

The other three roots of f(x) are

rg = 22u+z7%, ry = 25u + 273, rg = 2lu+ 27,

Asl+z+22+2%+2% =0, we have
r3 =(-1—-z—z3—z4)u+(—l—z—z2—24)0

=—(u+v)- (1 +22 4+ z3)(zu +271 )
that is
r3 =-n + (z + z4)r2. - ®

A similar-calculation shows that
rs = -Ty +(.z+z4)r.'1. )]

Then, from r, + 1y + r3 + r4 + 15 = 0, we obtain

T4 = —(z +24 )(rl +13). (10)
It remains to determine z + 2% in terms of n, and ry. From (7) we obtain
ro —247‘1 zZn —rg
= -_—4_ , U= ——4— (11)
z2-z z-z

As uv = a, we deduce as (z —24)2 = -3 -2z-2*% that

(nre + a)(z + z4)= r+rd-3a. (12)
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If nry + @ = 0, then (12) gives r12 + r22 — 3a = 0 so that
n+rg = eva, nre = -a, (13)

where ¢ = +1. From the first equation in (13) we see that Q(v,;) c F.
But the only quadratic subfield of F is Q(Jg) so that a = t2 or 5¢t2 for

some positive rational number t. From (13) we deduce that
r1=1,;(8+8\/gy2, r2=1,;(e—5\/5y2,

for some & = + 1. This shows that r; € Q(Jg) and rp € Q(Jg) Thus f(x)
is divisible by a quadratic polynomial in Q[x], contradicting (b). Hence
we have shown that njry + @ # 0 so that
2 2
z+2% = 'LM (14)
nrg +a

Using (14) in (8), (9) and (10), we obtain the asserted formulae for r3, ry
and ry.
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