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Abstract. Let @ denote the field of rational numbers. Let K be a cyclic quartic extension
of Q. It is known that there are unique integers A, B, C, D such that

K= Q( A(D+B\/5)),
where

A is squarefree and odd,
D = B% 4+ C? is squarefree, B >0, C > 0,
GCD(A,D) =1.

The conductor f(K) of K is f(K) = 2'|A|D, where
3, if D=2 (mod4)or D=1 (mod4), B=1 (mod 2),
=<2 ifD=1(mod4), B=0 (mod2), A4+ B =3 (mod 4),
0, f D=1 (mod4), B=0 (mod 2), A+ B =1 (mod 4).

A simple proof of this formula for f(K) is given, which uses the basic properties of quartic
Gauss sums.

Let Q denote the field of rational numbers. Let K be a cyclic extension of Q of
degree 4. It is known [1, Theorem 1] that there exist unique integers A, B, C, D
such that

(1 K =a(y/A(D + BVD)),
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where

2) A is squarefree and odd,
(3) D = B? + C? is squarefree, B > 0, C > 0,
(4) GCD(A,D) =1.

The minimal polynomial of 1/ A(D + Bv/D) is X* — 2ADX? 4 A2C? D whose roots

are &1/ A(D + Bv/D) and +£1/ A(D — By/D). It is convenient to consider three cases

as follows:

Casel: D =2 (mod 4),
(5)1 Case2: D=1 (mod4), B=1 (mod2),
Case3: D=1 (modd4), B=0 (mod2).

We also divide case 3 into two subcases according as

(5)2 { (a) A+ B =3 (mod 4),

(b) A+ B =1 (mod 4).
We note that

B=C=1 (mod2), D=2 (mod 8), in casel,

(6) C =0 (mod 2), in case 2,
C =1 (mod 2), in case 3,
and
D =1+2C {mod 8), in case 2,
(7 =-1-24A=1+42B (mod 8), in case 3(a),

D=3-2A=1+2B (mod 8), in case 3(b).
We set

3, incases 1 and 2,
(8) l=1(K)=1< 2, in case 3(a),
0, in case 3(b).

In {1, Theorem 5] the conductor of the field X was determined using p-adic arith-
metic.
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Theorem. The conductor f{I) of the cyclic quartic field K, as given in (1)—{(4), is
(9) () =24|D,

where | is defined in (8).

In this paper we give a simpler proof of this theorem than the one given in [1].
Instead of p-adic arithmetic, we use the basic properties of quartic Gauss sums, as
given for example in [2].

Sm%l):(iBV+%iCPamiK::Q(MAU)iBJBU,wewemlmmwto
change the signs of B and C without changing the field K. We do this as follows:

(Case 1: replace B by —B if necessary and C by —C if necessary so that
B=C =1 (mod 4);
Case 2: replace B by — B if necessary so that
1 (mod 4), if D=1 (mod 8),
{3 (mod 4), if D=5 (mod 8);
Case 3: replace C by —~C if necessary so that
_{1@@@,&051@@&,

(10) B =

3 (mod 4), if D=5 (mod 8).

\

The choices of B and C in (10) will always be assumed from this point on.
Next we define a Gaussian integer « (that is, an integer of the field Q(i)) as follows:

Case 1: k=1L(B+C)+ii(C - B),
(11) Case 2: k=B +iC,
Case 3: k=C+1B.

It is easy to check using (7) and (10) that
k= 1(mod(1 +1)?),

that is, x is primary. From (3) and (11) we deduce

1D, incasel,
(12) N(k) = vk = )
D, in cases 2 and 3.

As N(&} is squarefree and odd, and & is primary, « is the (possibly empty) product
my ... 7 of primary Gaussian primes whose norms py,...,px are distinct rational
primes = 1 (mod 4). Note that

(13) N(k)=p1...px.
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The empty product is understood to be 1. This occurs only when D = 2 in which
case B =C =1, k = 1. The Gauss sum G(7;) (j = 1,...,k) is defined by

(14) G(r;) = pf [iLezm/z};)

i

where [:—1] , is the fourth root of unity given by

2] = pe-1/4 .
Ler =z (mod =);.
We set
k
(15) G =G(x) = [] G(my),
i=1

it being understood that G = 1 when k = 0 <= k=1 <= D = 2. As each Gauss
sum G(r;) (j = 1,...,k) has the following properties:

G(r;)G(r;) = p;, [2, Prop. 8.2.2]

G(m;) = (~1)Pi~VAGE), 2, p. 92)

G(m;)? = —(=1)®i=V/4 s5ems [2, Prop. 9.10.1]
G(ﬂ'j) € Q(e2ni/4,e2ni/m) — Q(e2"i/4pj),

we see from (13) and (15) that

(16) G(k)G(k) = N(x),

(17) G(k) = (-1)W=D/G(R),

(18) G(K,)2 = (_ )lc+(N(n 1)/4N(n)1/2/€,
(19) G(x) € Q(e2™/4N ),

Our first lemma determines the effect of a certain automorphism or G = G(k)
when D =1 (mod 4), a result we shall use later.

Lemma 1. If D = 1 (mod 4) and 1 # ¢ € Gal (Q(e*™/4P)/Q(e2™/P)) then

o(G) = (-1)(P-D/4gG.

Proof. The automorphisms o, of Q(e?™/4P) are given by
o, (e*/4D) = e¥™/4D | p =1 .. 4D, GCD(r,4D)=1.
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Those automorphisms o, fixing Q(e?*/2) must satisfy

r=1 (mod D), 1<r<4D, GCD(r,4D) =1,

so that » = 1 or r = 2D + 1. Thus the unique nontrivial automorphism of
Gal (Q(e?/4D) /(y(e?™/P)) is 0 = oa2p41 given by o(e?™/4P) = —e?r/4D A
o(t) = ~i and o (e?™/Pi) = e2/Pi (j =1,...,k), we have
pi—1 T pi—1 =
) = 2| e2ifei ) — 2| e2mi/p;
o(@m)=o( X [£].en) = L [F]
z=1 z=1 4
pj—1 -
=2, [T] /P = G(T;) = (=1)P V4G (),
el Tjd4

so that by (15), (12) and (13)
o(G) = (~1)Zi= P~ D/AG = (—1)(P-1/2gG,

O
Our next lemma determines the roots of the minimal polynomial X* - 24ADX? +

A2C?D in terms of G = G(k).

Lemma 2. The roots of the minimal polynomial X* — 2ADX? + A2CD of
A(D + Bv/D) are given as follows:

Case I: £VAWG +wd), £iVA(WG — wG),

Case 2: +VA(G + G)/V?2,£iVA(G - G)/V?2,

Case 3: *+IVA((1+1)G+(1-1)G),£3VA((1 -1)G + (1+i)G),
21i/16_

wherew = e

Proof. We set
c = (_1)k+(N(n)—1)/4'

From (18) we have
G? = eN(k)2k, T = eN(x)"/?R,
so that by (11}, (12), (13) and (16)
eDY/2(B + C)/2'/?, in case 1,

G*+G = 2eD'/?B, in case 2,
2eD1/2C, in case 3,
ieDV2(C — B)/2'/2, in case 1,
G -@ ={ 2ieD'20, in case 2,
2ieD'/?B, in case 3,
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and

— D, in case 1,
2GG =
2D, in cases 2 and 3.

Hence in case 1 we have

= 141) (1-1)=2 =
G+5G)? = & G? G +2GG
(WG +@G) 73 + 7 +
=eDY3(B+C)/2+eDV*(B-C)/2+ D
=D +eBvVD
and
. = 141) (1-1)=2 -
¢-z0)°=-Ute_ (-Um o0p
(i(wG — ©G)) 7 7 +
=D - eBVD,
so that
(£ VAWG +3G))* = A(D +BVD),
(+iVAWG -w0))* = A(D - eBVD),
as asserted. Cases 2 and 3 follow in a similar manner. O
We set
0 = VAWG + ©G), ¢ = iVA(WG - ©G), in case 1,
(20) < 0 =+AG+G)/V?2, ¢ =iVA(G - G)/V/2, in case 2,
0=IVA(1+1)G+ (1 -1)G), ¢=LVA(1-1)G+(1+i)G), in case 3,

so that by Lemma 2
(21) K= @( AD + B\/I_D)) = Q) = Q).

Lemma 3. (i)

Q(eZRi/lAl), if A=1 (mod4),

Ve {@(e%i/‘ilf*l), if A=3 (mod4).
(i) If D =1 (mod 4)

Q(e*/14),  in case 2 when A+ C =1 (mod 4)

(-=1)(P-D/44 € and in case 3(b),
Q(e*"i/4l4l),  in case 2 when A+ C =3 (mod 4)

and in case 3(a).
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Proof. The assertions of the Lemma are easily checked when A = 1 50 we may
assume A # 1. Set k = Q(v/A), so that k is a quadratic field, and let f(k) denote
the conductor of k. Now

f(k) = | disc(k)|

A, ifA>0,A=1 (mod4),
44, ifA>0,A=3 (modd),
T)-4, ifA<0,A=1 (modd),
-44, if A<0,A=3 (mod4),

|4, i A=1(mod4),
~ 14)4), if A=3(mod4),

so that

Q(e*™/141),  if A=1 (mod4),

AekC 2ri/f(k)Y — ]
\/_ €rC Q(e ) {Q(e2m/4|A|), ifA=3 (mod4)

This proves (i).
Suppose now D =1 (mod 4). In case 2 we have

(—1)(P-D/i4 = 1(mod4), ifA+C=1(mod4),

3 (modd), if A+C =3 (modd),
in case 3(a) (—1)(P~1/*4 = 3 (mod 4), and in case 3(b) (—1)(P~V/44 =1 (mod 4).
Part (i) now follows from (i). 0O

Lemma 4. f(K) < 2!|A|D, where ! is defined in (8).

Proof. We consider cases 1, 2 and 3 separately. Set w = e27/16,

Case 1. Clearly w € Q(e?™/1¢) and, by (12) and (19), we have G € Q(e?"/2D),
so that wG € Q(e?™/8D), Similarly @G € Q(e?™/3P) so that wG +wG € Q(e/8D),
By Lemma 3(i) VA € Q(e?™/4141) 50 that § = VA(WG +©G) € Q(e*™/8l4I0) that
is by (21), K C Q(e?™/81A1D) and so f(K) < 8|A|D = 2*|A|D, as | = 3 in case 1.

Case 2. By (12) and (19) we have G € Q(e*™/4P), G € Q(e?™/4P), so that
G + G € Q(e?™/4P), By Lemma 3(i) vA € Q(e2™/441), and clearly v/2 € Q(e?™/8),
so that 8 = VA(G + G)/v2 € Q(e*™/8141D) that is by (21), K C Q(e?™/814IP), and
so f(K) < 8|A|D = 2!|A|D, as | = 3 in case 2.
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Case 3. By (12) and (19) we have G € Q(e*/4P), G € Q(e*/4P). Clearly
i € Q(e*™/4P) 50 that ﬂi;%é’;%:—‘ﬁ € Q(e?™/4D), Then, by Lemma 1, we have

0((1 +1)G+ (1~ i)@) (1 -1)(=1)P-D/4G + (1 +1)(-1)(P-D/4q

(D-1}/4 (—i)(D-1)/4
_(1+1)G+(1-1)C
- i(D-1)/4 ’
so that

i(D~-1)/4
By Lemma 3(ii) we have

21:1/‘.4{

(D~1)/4 J(=1)@-1/1
(23) i VA = 4/(=1)( Ae{ MMA')’

Then, from (22) and (23), we deduce

1+1G+(1-1)G Q(e?™/141D), in case 3(b),
6 =vA ,
( 2 ) {Q(e2"‘/4"4m), in case 3(a),

in case 3(b},

in case 3(a).

so that, by (8) and (21), K C @(ez"i/2l’A|D) and so f(K) < 2!|4|D. |
Lemma 5.

% | f(K), incasel,
D | f(K), in cases?2 and3.

Proof. Let pbe an odd prime divisor of D. As D is squarefree, we have

(p) = (p,VD)?

in Q(vD). Thus p ramifies in Q(v/D) and, as Q(vD) C @( AD + B\/l_))> C
Q(e2™/f(K))| p ramifies in Q(e?™// (X)), Hence p | f(K) for every odd prime divisor
of D. This proves the assertion of the lemma. O

Lemma 6. |A] ]| f(K).
Proof. Let p be prime divisor of |A]. As A is odd, p # 2. In K we have

(p.\/A(D+BVD)) it p1C,
{p) = 2
(r, VJA(D + BVD) +/A(D - BVD)), ifptB.
Thus p ramifies in K and so in Q(e?™//(9)), Hence p | f(X) and so |A| | f(K). O
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Lemma 7. 4| f(K) in cases 1, 2 and 3(a).
Proof. We have
2
<2, \/5> in Q(vD) in case 1,
2
@ =1 (2, VA(D + BVD) +/A(D - BYD)) in K in case?2,

<2, 1+ /A + B\/l_7)>2 in K in case 3(a),

so that 2 ramifies in Q(e®™/fU)), and thus 4 | f(K). ]

Lemma 8.

16 | f(K), in case 1,
8| f(K), in case 2.

Proof. From (21) we have
6,pe K C Q(e%i/f(K)),
and by Lemma 7 for cases 1 and 2 we have
i€ Q(e2“i/f(K)).
Case 1. By Lemmas 3(i), 6 and 7 we have
\/AT € Q(ezni/4|A|) C Q(e2ni/f(K)).
By (12), (19), Lemma 5 and Lemma 7, we have
Ge Q(e2ni/2D) C Q(e2mi/f1),
Hence, appealing to (20), we see that
G2N/16 ) 9—~_\/1_<ﬁ € Q(eH/I10),

and so 16 | f(K).
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Case 2. By (12) and (19) we have G € Q(e*/*D), G € Q(e*™/4P), so that
G + G € Q(e*™/4P). By Lemmas 5 and 7, we have 4D | f(K), so that

G +G € Q(e2¥/ 1)),

By Lemma 3(i) we have

\/Z € Q(e2ni/4|A]),
and, by Lemmas 6 and 7, 4|4| | f(K) so that

VA € Q(emi/It0),
Hence we have shown that
\/Z(G +'G“) € Q(e2ni/f(1())‘

But, by (20) and (21), § = VA(G+G)/V2 € K C Q(e*™//U0) 50 /2 € Q(e?//(K))

and thus 8 | f(X). O

Proof of Theorem. From (8) and Lemmas 5, 6, 7 and 8, we see that 2!|A|D

divides f(K). Hence by Lemma 4 we have f(K) = 2!|4|D. a
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