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1. Introduction. We call the double infinite series 
03 

1 
T(r, = C (r, s,  t nonnegative integers) 

p , v = l  p'vS ( p  + v)t 

a Tornheim series, after Tornheim who made a systematic and thorough 
investigation of this interesting series in a paper [6] published in 1950. The 
Tornheim series T(r, 0, t ) ,  when rewritten in the form 

J 
03 7 - 

arises in the study of the gamma function (see, for example, [3, p. 471). The 
series T(r,  s, t )  is finite if and only if 

(1.1) r + t > l ,  s + t > l ,  and r + s + t > 2 .  
The basic properties of T(r,  s,  t )  (assuming (1.1)) are the following 

(1.2) T(r, s,  t )  = T(s, r, t ) ,  

(1.3) T(7-7 s,  0) = <(r)<(s), 

(1.4) T(r, 0, t)  + T(t,  0, r) = <(r)<(t) - <(r + t ) ,  r > 2, 
(1.5) T ( r , s - l , t + l ) + T ( r - l , s , t + l ) = T ( r , s , t ) ,  r > 1 ,  s > 1 ,  

where < denotes the Riemann zeta function. 
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Properties (1.3) and (1.4) give us a glimpse of the fascinating interplay 
between Tornheim series and the Riemann zeta function which we explore in 
this paper. The key to understanding this interplay is the recurrence relation 
(1.5). For a fixed value N (1 3) of r + s + t ,  we place the (finite) T(r,  s,  t )  
in a hexagonal array TN of N rows by arranging those T(r, s, t) with t = k 
in the (N - k)th row in order of increasing s. For example, the array T5 is 

The Tornheim hexagon TN is symmetric about its vertical axis in view 
of (1.2). The recurrence relation (1.5) shows that each entry with r # 0 and 
s # 0 is the sum of the two entries immediately above it, as in Pascal's 
triangle. Applying this relation successively, we see that every entry can be 
expressed as a linear combination of those entries with r = 0 or s = 0, 
and thus (in view of the symmetry) just in terms of those with s = 0. For 
example, in 75, 

In general, if r and s are integers satisfying 

then 

where 

which is easily established by induction. We note that TN-i is not finite. 
From (1.4) we see that 
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When r  + s  = N the left side of (1.6) is given by (1.3), and we obtain the 
following system of [N/2] - 1 linear equations for the Ti: 

( N  - i ; 1)  
N-r (N - i - 1 )  

T - 2  z f  C N - r - i  Ti = C(r)C(N - r ) ,  
i=l i= 1 

Using (1.7) to replace Ti by C(i)C(N - i )  - C(N) - TN-i for i = [N/2] + 1, 
. . . , N - 2 ,  and using the value 

found by Tornheim [6, eq. ( l o ) ] ,  we obtain from (1.8) a system ( S N )  of 
[N/2] - 1 linear equations for the [N/2] - 1 quantities T2,.  . . , TNl2]. 

In addition to (1.9), Tornheim has evaluated T(r ,  s, t )  explicitly in certain 
other cases. For example he has shown for N > 3 that 

Further, when N = r  + s  + t is odd, he proved that T(r ,  s, t )  is a polynomial 
in C(2) ,  . . . , C(N) with rational coefficients but did not give the polynomial. 

The purpose of this paper is to determine T(r ,  s, t )  explicitly when N = 
r  + s  + t is odd. We show that T(r ,  s, t )  is an integral linear combination of 
the products C(2i)C(N - 2 i ) ,  i = 0,1, . . . , ( N  - 3)/2,  except when r  = s  = 0. 
We also indicate why our approach does not appear to work when r  + s + t 
is even. We use the identity 

where k and r  are positive integers, and u and v are nonnegative integers 
not both zero, which follows easily from [3, p. 48, eq. (9)].  When N is odd 
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we use (1.12) in Section 3 to show that the system (SN) uniquely determines 
T2,. . . , TLNj2]. We prove 

THEOREM 1. Let N be an odd integer with N 1 3. Then, for i = 
1,. . . , N - 2, we have 

where we recall that [(O) = -112 

However, when N is even the system (SN) is not in general sufficient to 
find all of the Ti, for example when N = 8,10,12,14,16,18. 

The value of a general T(r, s, t) when r + s + t is odd is obtained in 
Section 4 by using in (1.6) the values of the Ti given in Theorem 1 and 
appealing to a combinatorial identity (Lemma 2.1) to evaluate the resulting 
sums of binomial coefficients. We prove 

THEOREM 2. Let N be an odd integer with N _> 3. Let r and s be non- 
negative integers satisfying 1 5 r + s 5 N - 1, r 5 N - 2, s 5 N - 2. 
Set 

Then 

T(T, S, N - r - s) = EN(T, S) + EN(s,T). 

Theorem 2 covers all nonnegative integers r, s, t for which T(r, s, t) is 
finite and r + s + t = N is odd except for the case r = s = 0, which is 
covered by (1.10), and the case t = 0, which is covered by (1.3). All of 
Tornheim's other evaluations [6] are special cases of the above theorem. 
Furthermore, taking r = s = t = 2k + 1 (k 1 0) in Theorem 2, we deduce 
the result 
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The problem of evaluating T(2k + 1,2k + 1,2k + 1) was posed in 1958 by 
Mordell [2], who showed that T(2k, 2k, 2k) is a rational multiple of T~~ for 
k 2 1, but gave the multiple only for k = 1. In 1985 Subbarao and Sitara- 
machandrarao [5] gave the explicit evaluation (with a misprint corrected) 

which can be rewritten in the simpler form 

and then combined with (1.14) to give 

THEOREM 3. For r > 1, 

2. A combinatorial identity. As usual the binomial coefficient (E) is 
defined for any real number x and any integer n. We just note the properties 

and, for any integer m, 

(2.2) (r) = 0 if and only if n < 0 or 0 5 m < n. 

The following identity is used in the proof of Theorem 2. 

LEMMA 2.1. For nonnegative integers m, n, p and q with p > q, we have 

Proof .  We have 
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q - n - 1  
= ( - l ) m (  

m - p + q  
by the Vandermonde convolution (see [ I ,  p. 221 or [4,  p. 81). rn 

3. Evaluation of T ( i ,  0 ,  N  - i ) ,  N  (odd)  2 3. We begin this section 
with two recurrence relations involving the T j .  Each of these is obtained by 
summing the identity (1.12) and making use of (1.7) and (1 .8) .  

PROPOSITION 3.1. Let N  be an integer with N  > 3, and let i  = 1, . . . , N - 2 .  
Then 

2-1 

(b) ( ( - I ) ~  - ( -1y )Ti  + ( - I ) ~  ( 
N - j - 1  

j=1 
N - i - 1  

P r o o f. When i = 1, (a) holds by (1.9),  and (b) follows from 
N-2 N - 2  
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Thus we may assume that 2  5 i  5 N  - 2 .  
(a) Collecting together the terms with j  = 1  in (1 .12)  (with v = i ,  

u = N  - i), we have 

(-1)' = , ( N -  j - 1  
k i ( k  + r ) N - i  

j=2 

Summing over all positive integers k  and r ,  we obtain 

Hence 

by ( 1 . 7 ) ,  ( 1 . 9 )  and ( 1 . 1 1 ) .  Appealing to ( 1 . 8 ) ,  and noting that 

we deduce that 
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from which (a) follows. 
(b) Replacing i by N - i in (3.1), multiplying by ( - I ) ~ ,  and appealing 

to (1.7), we find that 

Equation (b) now follows after rearranging, noting that (:::I:) = (r~~'), and changing j to N - j in the second summation. . 
P r o of of T h e  o r e m 1. As N is odd, adding equations (a) and (b) 

of Proposition 3.1 eliminates the term (N;sl) Tj, and we obtain 

- .  
j odd 

j even 

from which Theorem 1 follows. . 
When N is even, the left sides of (a) and (b) of Proposition 3.1 are the 

same, and equating their right sides, we obtain the following result. 
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PROPOSITION 3.2. Let N be an even integer with N 2 4 ,  and let i = 
1, ..., N / 2 .  Then 

We remark that when i = 1 Proposition 3.2 is a well-known identity (see 
for example [6, p. 3081). 

We now discuss briefly the case when N (2 4 )  is even. Recall that ( S N )  
is a system of [ N / 2 ]  - 1 linear equations in the [ N / 2 ]  - 1 quantities Ti 
(i  = 2, .  . . , [ N / 2 ] ) .  When N is even, (1.7) gives 

Using this in ( S N ) ,  we obtain a new system ( S h )  of N / 2  - 1 linear equations 
in the N / 2  - 2 quantities Ti (i = 2,  . . . , N / 2  - 1).  The system ( S i )  is trivial. 
When N = 6 , 8 , .  . . ,18 the rank of the system ( S h )  is [ N / 3 ]  - 1. Thus ( S h )  
does not determine all of the Ti when N = 8,10, . . . ,18,  but does when 
N = 6. It would be of interest to know if the rank is given by [ N / 3 ]  - 1 for 
N 2 20. 

When N = 4 ,  Proposition 3.2 gives the relation 2<(2)2 = 5<(4), which 
we use to obtain T ( 1 , 0 , 3 )  = i < ( 4 )  and T ( 2 , 0 , 2 )  = :<(4). When N = 6 ,  
the same proposition gives 4<(2)<(4) = 7<(6),  and hence 

When N = 8 ,  after a little algebra, we have 3<(2)<(6) = 5<(8), and 6<(4)2 = 
7<(8). The system ( S i )  reduces to the single equation 

so we are unable to determine the values of T ( 2 , 0 , 6 )  and T ( 3 , 0 , 5 ) .  When 
N = 10, the system (Si ,)  determines only the quantities 7 T ( 2 , 0 , 8 )  + 
2T(3 ,0 ,7 )  and T ( 3 , 0 , 7 )  + T ( 4 , 0 , 6 ) .  

4. Evaluation of T ( r , s ,  N - r - s )  for N (odd) > 3: Proof of 
Theorem 2. Let N be an odd integer with N 2 3,  and let r and s  be 
nonnegative integers satisfying 1 < r + s  5 N - 1,  r < N - 2,  s < N - 2. 
When r = 0 or s = 0 Theorem 2 follows from Theorem 1 and (1.2). Thus 
we have only to prove Theorem 2 when r and s are positive integers. From 
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(1.6) we may write 

where 

In (1.6) the range of summation of each of the two sums may be extended 
up to j  = ( N  - 3) /2  provided that the term C(i)C(N - i )  is appended when 
i  is odd and at least 3, since in this case there is a contribution from the 
term with j  = ( N  - i ) / 2 .  We therefore obtain 

where 

T + S - i - 1  
S 4 ( ~ , 4  = 2 ( s - 1  

i=3 
i odd 

Using Lemma 2.1 (with m = T - 1, n = s  - 1, p = q = N - 2j - I ) ,  we 
obtain 
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AgainusingLemma2.1 (withm = r, n = s - 1 , p  = N-1 ,  q = N - z j - l ) ,  
we obtain 

Next, using (2.1) we have 

Clearly 

Also, 

1 + 5{(-1)' - (-l)'}C(N - r - s)C(r + s), 

where the last term occurs since [ (N - r - s)/2] = [(N - r - s - 1)/2] + 1 
when r + s is odd. Now by (1.13) we have 

E N ( ~ , s )  = Sl(r ,s)  + S ~ ( S , T )  + S2(r, 5) + S3(5 ,~ )  
1 - -{(-I)' - (-l)'}C(N - r - s)C(r + s). 
2 
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Hence 

EN(s ,T )  = S I ( S , ~ ) + S ~ ( ~ , S ) + S ~ ( S , ~ ) + S ~ ( ~ , S )  

so that 

EN(T,s )  + EN(s ,T)  = UN(T,S)  + UN(S ,T )  = T(T , s ,  N - T - s).  

5. Conclusion. It appears to be a difficult open problem to determine 
an explicit formula for T(r ,  s, t )  when r  + s  + t = N is even. Such a formula 
is known for a general even N in the following cases (where we have taken 
r  2 s  in view of (1.2)): 

r  s t  Reference 

0 0 N  [6, Theorem 51 

r  N - r  0 [6, eq- (6)l 
1  1  N  - 2 [6, eq. (8)l 
1  0  N  - 1  [6, eq. ( lo ) ]  

r  N  - r  - 1  1  [6, Theorem 31 

N/2 0  N/2 [6, Theorem 61 
N/3 N/3 N/3 [5, p. 2541 

N/3 N/3 - 1  N/3  + 1  (by preceding result and (1.5)) 

In each of these cases except the first (see (1.10)) the formula for T(r ,  s, t )  can 
be given as a linear combination of <(N)  and <(i)<(N - i ) ,  i = 2,3, . . . , N/2. 
It would be interesting to know if this is the case in general. 
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