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Let L be a quartic number field with quadratic subfield Q(\/;). Then L=

Ql \/;, Ja+bh \/EJ. where a + b \/(_ is not a square in Q(\ﬂ) and where a, b, and
¢ may be taken to be integers with both ¢ and (a, b) squarefree. The discriminant
of L. as well as an integral basis for L. is determined explicitly in terms of
congruences involving a. b, and ¢. These results unify the existing results in the
literature for quartic fields which are pure, bicyclic, cyclic, or dihedral, and
complete the incomplete results in the literature for dihedral quartic fields. It is
also shown that for each squarefree integer ¢ there are infinitely many non-pure,
dihedral quartic fields L with a power basis. 1995 Academic Press, Inc.

Let L be a quartic number field with quadratic subfield Q(\/;), where Q

denotes the rational number field. Then L = Q( \/1_ Ja+b ﬁ), where

a+b \/(_ 1s not a square in Q(\/;) and where «, b, and ¢ may be taken to
be integers with both ¢ and the greatest common divisor (a, b) squarefree.
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Let L denote the normal closure of L. The Galois group Gal(L/Q) is
the Klein 4-group, the cyclic group of order 4, or the dihedral group of
order 8; L is called a bicyclic, cyclic, or dihedral extension of Q, respectively.
[t is known that

L is bicyclic < a* — b*c = k? for some integer k,
L is cyclic <= a” — b*¢ = ¢k* for some integer k, (n
L is dihedral <> a” — b%c # k? or ¢k? for any integer k:

see, for example, [7, Theorem 3]. When L is bicyclic L=Q(\ﬂ,
\/Z(zl—k), \/2(a+k)).

In this paper we give a simple, explicit determination of the discriminant
d(L) of L using Godwin’s extension [ 2] of a theorem of Hilbert [4, Satz 4].
Hilbert’s theorem gives a necessary and sufficient condition for a prime
ideal P of the ring Oy of integers of an algebraic number field K to divide
the relative discriminant (L/K) of a quadratic extension L/K in terms of
the solvability in Oy of a certain congruence modulo a power of P. The
relative discriminant d(L/K) of the relative quadratic extension L/K is the
ideal of Oy generated by the set of all elements of the form (¢ — ' )2, where
e O, and ' denotes the conjugate of ¢ in L with respect to K. The
discriminant (L) is given by the formula

d(L)=d(K)* N o (d(L/K)), (2)

where Ny, denotes the norm from K to @ [10, Prop. 49, p. 159].
A slightly reformulated version of Godwin’s extension of Hilbert’s theorem
is Proposition | below. For integers (or ideals) 4 and B, we write 4 | B
to mean A divides B, and A" || B to mean A™ | B, A”*' [ B (m a positive
integer).

PropoSITION 1| (Hilbert and Godwin). Let K be an algebraic number
field. Let pe Ox— O% and set L = K(\/;_z) so that [L:K]=2. Let P be a
prime ideal of O and define the nonnegative integers Ip, mi,, and w, by

P2, P, P d(L/K).

Then wp is the least nonnegative integer h with h = m, (mod 2) for which the
CONngruence

al =u (mod P21p+mp /l)

is solvable with a€ Oy.
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For brevity we suppress the subscript P in /,, m,, w.; that is, we write
w for w,, wy for wp, w, for wp,, ete

Applying Proposition 1 with K = Q(\ﬂ), u=a+b \/: L=
Ol \ﬂ \/a+b \/z_'), we obtain the relative discriminant d(L/K) and then,
by (2), the discriminant d(L) of L. We also give an integral basis for L. The
details are given in [5].

THEOREM 1. Let L be a quartic field with quadratic subﬁ'eld K= Ql\/;).

Write L= 0 ﬁ, Ja+b \/;). where a, b, and ¢ are integers with both ¢

and (a, b) squarefree and y=a+ b \/: is not a square in K. Let r denote the
nonnegative integer such that 2"\ a®> —b*c, and let s denote the squarefree

part of a* —b*c. Set
N (a, b, cs) Na*— bzc),
(a, b) s

so thar N is an integer such that N* | a*® — b?c.
Then the discriminant of L is given by

2%(a* —bc) ¢? 2 _tab)
S L L A PPVLY L
d(L) E - & (((1, b, ('.V)> ' )

TABLE A

{c=2(mod 4))

r a h Congruence conditions W d=w+6 e Case
0 1(2) 0(2) a+h=14) 0 6 4 Al
a+h=3(4) 2 8 6 A2

12) 4 10 8 A3

i 2} 1(2) 5 It 8 Ad
2 2(4) 0(4) u+hb=c(8) 0 6 4 AS
a+b=—(8) 2 8 6 Ab

2(4) 4 10 8 A7

3 0(4) 2(4) 5 11 8 A8
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TABLE B
{e=3{mod 4))

P=2 14 /ey, 2=P

r a b Congruence conditions w d=w+4 e Case
0 0(2) 1(2) 4 8 8 Bl
1(2) 0(4) 0 4 4 B2
2(4) 2 6 6 B3
] 1{2) 1(2) 5 9 8 B4
2 0(4) 2(4) a=c+ 1(8) 0 4 2 BS
a=c+5(8) 2 6 ) B6
2(4) 0(4) 4 8 6 B7
3 24y  24) 5 9 8 B8

where the values of the integer ¢ are given in Tables A, B, C, D. Set

a b

3 h =TT
“ e h) "4, b)
Ny=N/N,. Y =a®*¥=1p ¢

N, =(N, ¢),

and let Y be such that Y=Y, (mod 4N ), 0< Y <4N.
Then an integral basis for L is given in Tables A', B', C', D'.

TABLE C
{c=5(mod 8))

P=<2>
r a b Congruence conditions w d=2w e Case
0 0(2) 1(2) 2 4 4 Cl
1(2) 0{2) a+b=1(4) 0 0 0 C2
a+h=34) 2 4 4 C3
Tt IR 163 : 6 6o
0(2) 0(2) a+h=2(4) 3 6 4 C5
4 2(8) 2(4) 2 4 2 C6
6(8) 2(4) a—b—c=3or 1516} 0 0 -2 7
a—b—c=7o0r 11(16) 2 4 2 C8
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Tables A, B, C, D also give the values of ¢ and w, where 2¢ | d(L) and
P¥ || d(L/K). Here P denotes a prime ideal factor of 2 in the ring Oy of
integers of K= Q(\/ The cases in the tables arise naturally from studying
the congruence of Proposition 1 for such P’s.

Formula (3) unifies known results given here as corollaries.

CororLARY 1. (Williams [13]). Let a and ¢ be distinct squarefree
integers ( #1). Then

0(/a, /o) =

where the values of e are given in Table E

(a(

CoRrOLLARY 2. (Funakura [1]). Let n be a fourth-power free integer
such that the polynomial X* —n is irreducible over Q. Let n* denote the
squarefree part of n. Then

\/ n(n*)?

y T

e n, (n*)*)

where
2, if n=1 (mod8)orn=28 (mod32),

e=<4, if n=5 (mod8),n=4 (mod16), orn=12 (mod 32),
8, if n=23 (modd4),orn=8 (mod16).

CoroLLARY 3. (Hardy, Hudson, Richman, Williams and Holtz [3]).
Let L be a cyclic quartic field. It is known [ 3] that there exists a unique
representation of L in the form

L=0Q(,/A(D+B /D)),

where A, B, C, D are integers such that A is squarefree and odd, D = B> + C?
is squarefree, B>0, C>0, and (A, DY=1. Then

d(Q(/A(D + B /D)) =2°4D",

where
8, if D=2 (mod8),
6, if D=1 (mod4),B=1 (mod?2),

*“Y4. if D=1 (mod4), B=0 (mod2), A+B=3 (mod4),
0 if D=1 (mod4),B=0 (mod2),A+B=1 (mod4).



TABLE D

{c=1{(mod 8))

Pi=2 41+ /e)),  Pr=(2 0 —Je).  2=PP,

2_b2

r a b Congruence conditions a > C(mod 4) m,; m, w, w, d=w,+w, e Case

0 0(2) 1(2) a+b=1(4) 0 0 2 0 2 2 D1
a+b=3(4) 0 0 0 2 2 2 D2

1(2) 0(2) a+b=1(4) 0 0 0 0 0 0 D3
a+b=34) 0 0 2 2 4 4 D4

2 0(2) 0(2) a+b=2(4) 1 1 3 3 6 4 DS
Odd =3 1(2) 1(2) a=h(4) —a+2? r-1 1 2 3 5 4 D6
a+2 73 r—1 1 0 3 3 2 D7

a= —bh(4) —a+2"° 1 r—-1 3 2 5 4 D8

a+27? ] r—1 3 0 3 2 D9

Even =4 1(2) 1(2) a=h4) r—1 1 3 3 [ 6 D10
a= —h(4) 1 r—1 3 3 6 6 D1l

6
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2(8)
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D22
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TABLE A’
(=2 (modd))

1+ Y— NN + "
l—ﬁ\ﬂ(_"f)fv_—\/l_l) if a=1 (mod4).h=0 (mod4)

Al

]\/—1+ u+f<_}_f JNWVM if a=3 (modd)h=2 (mod4)
A2 l\/ﬁ\ﬂu%%i@
A3, A4 1\/;\ﬂw
Ny f\/;+\/uf\/>h°+‘\f'” 2+ VK
AG f\/— \/— 7_{\/-
ar A8 1w e ‘/f

TABLE B'

(c=3 (mod4))

B 1\&\/% SN

1
- +\/ﬁ\/|)+’\ \/L(V“-\/,u) i
2N

]\[\/;+\/_(}+N f N+\/!‘> if a=3 (mod4)

a=1 (mod4)

N AL \/;(m+\/')

B4 1\/2\/'7)7\/)‘/“
BS l,ﬁ.]+ ;¢+f()+fv MBI+ SN+ 1)

4N
] -/
B6 1.k + #+f )+N7,L\/#

2N
/

. l\/;\/yw_f;
B8 1ﬂf}v\/’f

N
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TABLE C’
{c=5 (mod8)}
cl 1'\/—‘]+\/;‘(Y+Nf\/;)\//7
- 11+f1+f (Y4+N— \/N+f
1+f|)+N \/—)V/l
L SN
s ]'\/7‘]4-\/;’()’7\/(’ N
s 1v\[1+\/q(}’+N f
- 1_\/2 1+f(y f)f
- .
- ]ﬁh2+ \/Z(}A feN(b2 + /o) N2 + /)
2 4N
- l_\/_,71+\/'u~\/)f
5 .
TABLE D’
(c=1 (mod8})
|+\/?((Y+N+|)(N+1;—1-\/?)(N+\/%
DI 1 , N
|+f((}+N—1)(N+|)+1—VC)(A+V/;7
D2 1, Vu. N
D3 ]I+f 1+v (Y+N-— \/—)(N+ﬂ
2
D4 DS ]‘\/—1+\/' Y+/V— f)\/_
D6 ]‘\/;‘1+\/-‘ f)\/—
D7 1\/—1+\/' (N*+ Y- f)(N+f
1+\ﬂ()—\/5)\//7
D8 N T
1+ /c (N4 Y= JON+ /)
D9 L =5 e
DIn, D11 l.fH‘/‘y ‘/)‘/’:
b2 D1y 1 YA ]+\/"_f)f

2

Table continued

95
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TABLE D'~ Continued
(c=1 (mod8))

\/;z 1+ N2+ Y- SN2+ )

D14, D15 1. 5 5 SN
DI6 | LZ +V/E+\/¢ (N324 Y = SN+ )
2 2 N
D17 ]!2 l—+—\/,u+v( 1)7\/—) /;1
2 4 ' 2N
DIg : NCR +f N2+ Y = SN+ /)
22 aN
e _
DIY K e Y \/ vz
2 "!
r/_ -
D20 IR ! +\/‘_‘*\/ RERs ’_[.’..fy.ff
D21 { Z ‘]+f+w (Y—Jo
- "2 ‘ 2N
D2 N \/#. 1+ e (;'\‘"‘2+ Y — JHN + Ju)
2 20 4N
D23 | \//1 14+ /¢ ()—V()\,//'l
2 2 2N
24 1>i/“l_i.]+\/}l+\/( NN
2 4 N
D25 147._‘+’/‘+/“’*f)ﬁ
D26. D27 1\/~1]+\/( (Y— '()v,u
N
TABLE E
¢ a (e
0 1 {mod 4) 1 {mod 4)
4 1 {mod 4) 2.3 (mod4)
2,3 (mod4) 1 (mod 4)
3 {mod 4) 3 (mod 4)
2 (mod 8) 2 (mod 8)
6 (mod &) 6 (mod 8)
6 2 {mod 4) 3 (mod 4)
3 {mod 4) 2 (mod 4)
2 {mod 8) 6 (mod 8)
6 {mod 8) 2 {mod 8)
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TABLE F

€ a h «
-2 2 (mod ¥) 2 (mod4) I (mod8§)
6 (mod§) 2 (mod4) 5 (mod 8}
0 1 (mod4) } (mod4) 1 {mod 8)
3 (mod4) 2 (mod4) S {mod 8)
2 6 (mod R) 2 (mod4) I (mod &)
2 {mod8) 2 {mod 4) 5 (mod 8)
4 2 (mod 4 0 (mod4) I (mod4)
3 (mod4) 0 (mod4) I (mod 8)
1 (mod 4) 2 (mod4) 5 (mod 8)
6 I (mod?2) I (mod?2) 1 (mod 4)
8 4 (mod§) 2 (mod4) 2 {mod &)
2 (mod4) I (mod 2} 2 {(mod &)

The next result does not depend on the special representation used in
Corollary 3.

COROLLARY 4. If Q(\/ +bf is a cyclic quartic field then

d(Q m)) .,((a b)* ¢

(a, b, )’

where the values of ¢ are given in Table F.

We remark that Sommer [ 12, pp. 298-299] gives an integral basis for L
which is less explicit than that of Theorem 1.
The integral bases given by Williams [13] for bicyclic quartlc fields

for pure quartic fields, and by Hudson and Williams [6] for cycllc quartic
fields are consistent with our Theorem 1.

We now turn to dihedral quartic extensions L. In [8] Lederman and
van der Ploeg determine integral bases for a dihedral extension

L=0(/a+b Jc) for ¢=2,3 (mod4) and ¢=5 (mod8) but not for
¢c=1 (mod8). In [8 Theorem 1] they express their integral bases in
terms of an integer r, where r, s, i, v is the solution of a certain nonlinear
system of three equations, but do not give r explicitly. Their equations
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TABLE G

A B d Integral basis

1
3 (mod4) 2 (mod4) 2 (mod 4) {l\/; +\/(2?+\/;.\/:{,+’]}

3 (mod4) 0 {mod 4) 3 (mod 4) {1‘\/;.\/:’;\/;”{/%1}
0 (mod §) 6 (mod 8) 7 (mod 8) {L\/&‘W#'z:”}

4  (mod 8) 6 (mod &) 3 (mod 8)

define r uniquely modulo C, where their C can be shown to be the odd part
of our N, and their r satisfies » =r, (mod C), where

r—{_yl’ if ¢=2,3 (mod4),
P NI =Y NC+1))2, it e=1 (mod4).

In Table 1 on page 370 of [8] the corrections shown in Table G should
be made, and Table 2 on page 371 should be replaced by Table H.

In [11] Schmal determines d(L) and an integral basis for L =K (f ),
K= \/ we Ok, N o(w)squarefree. These are our cases A1-A4, B1-B4,
C1-C3, D1-D4 with N=1, and cases C6-C8 and D12-D15 with ¥ =4.

Next we determine when L = Q( \ﬂ Ja+b \/;) is a pure quartic exten-
sion of Q, that is, when there exists an integer n such that L= Q(.n).
Analogous to (1), we prove

TABLE H
A (mod 4) B (mod 4) d (mod 16) Integral basis
| 0 s 3 { 1+[ 1+ﬂ(l+ﬂ 2+r;}
1 I 5 L/ +\/2)/ +f 1+»;
3 I 13
2 3 5 | \/—1:7(1+\/E),f2+\/; I +7
0 3 13 v 2 "2

Otherwise {], \/;, ]+\/‘_1 ,]}
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PROPOSITION. 2. Let a, b, ¢ be integers such that (a, b) is squarefree, ¢ is
squarefree (£ 1), and a+b \/(_ is not a square in Q(\ﬂ). Then the quartic

field L= Q \/: \/ a+b \/;) is a pure field if and only if there exists an
integer k such that

@ — b= —ck?, (4)
in which case L= Q(Yde(b—k)?).

Proof. Suppose first that L=Q(ﬁ../u+b\/;) is a pure quartic

extension of Q, where a, b, ¢ are integers satisfying the conditions stated in
the proposition. Then there exists an integer n such that X*—n is

irreducible over Z and L = Q(\J/)-z). Since \ﬂe L there exist a, f e Q(\/);)
such that \/c = a + f# /n. Squaring, we obtain ¢ = (a® + 2. /n) + 248 Yn.
As ¢, 2% + f* \/n, 2f all belong to the field Q(,/n), we must have ff = 0.
If =0 then \/Z =f \“/)_z which is impossible since
[QUY/n): Q1=[Q(8 V/m: Q/mILQ(/m): ]
=[0Y/m): QL/mILQ(/m): Q]
=[Q(J/m:Q1=4.

Hence « # 0 and we must have f=0. Thus \/Zz xe Qf V/;z) and so, as ¢ is

squarefree, we have n=ct’, for some positive integer #: thus Q(ﬁ) =

Q(\/(') and L= Q(\%-tv:). As \/a +b \ﬂe L, there exist y,d¢e Q(\/;)

such that \/a+b \/: =343 Yer*. Squaring, we obtain
a+b\ﬂ=(}'2+dzt\/;)+2y6 ;VZF

As a+b \ﬂ ;'z-l—(?:t\ﬂ, and 2yJ all belong to Q(ﬁ), we must have

70=0. If 6=0 then a«+5b \ﬂz ¥® is a square in Q(\/;), which is

impossible. Thus 6 #0, y =0, and so \/a+b \/=(5 {Vctz. Squaring, and
taking norms, we obtain @’ —b*c= —(Ngy /0(6))° 1’c= —ck? where
ke Q. As ¢ 1s squarefree, & must be an integer.

Conversely suppose that (4) holds. As ¢ is squarefree there is an integer
1 such that

a=cu, b —k* = cu?

We can express ¢ in the form ¢ = ¢, ¢,, where ¢, divides b — & and ¢, divides

b+ k. Set
<h—k b+k>
d= s

¢ ¢
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<b fk> <h + k> _ <u>3

cd crd ) \d)

The integers (b —4k)/c,d and (b + k)/c,d are coprime so there exist integers
e{=41) 2 (==+1), g and s such that

so that

b—k 5 b+k R uo
=g, 2 -=/gh
¢sd d

o d

Then we have
a = Acdgh, b=1ted(c,g* +c h7).

We define rationals X, Y and an integer R by

elg h
= - = 2ecd.
5 Y e R=2¢ec¢

X

Then we have
20XYR=u, (X*+c¢Y*)R=b,
so that
(X+Y /PR Se=((X+cY)+2XY Je)R Je=a+bh Je

Hence L = Q(/c (X + Y. /) YeR?) = QUYcR?) = Q(Ydeld?) =
Q(Yade(b—k)?) is a pure field of the specified form. ]

Funakura [1] has shown that there are infinitely many pure quartic
fields with a power basis. Using Theorem 1 and Proposition 2 we prove

THEOREM 2. For each squarefree integer ¢ ( #1) there exist infinitely
many non-pure, dihedral quartic fields Q| \/: \/ a+b\/;) with a power
basis.

Proof. Let ¢ be a fixed squarefree integer ( #1). We define the quad-
ratic polynomial f (k) for ke Z by

16k 2 + 24k + (9 —4¢), if ¢=1 (mod4),

Jolky = 4P+ dce+ Dk +(P+ce+ 1), if ¢=2,3 (mod4)

Clearly f,(k) is primitive and has nonzero discriminant and no fixed
divisors > 1. Hence, by a theorem of Nagel [9]

S.=lkeZ|k>|cl|,f.(k) squarefree}
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is an infinite set. For each kK € S, we note that f, (k) > |c| and set

a,=4k+3.b,=2, if
a,=2k+c+1,b,=1. if

¢=1 (mod4),

c=2,3 (mod4),

so that a,eZ* and a;—bic=f.(k). Thus a; -bic is squarefree
and greater than |[¢| for all k€S, Hence for each keS, the field
Lsz(\/aA+hk \ﬂ) is a quartic extension of @ which, by (1) and
Proposition 2, must be a non-pure dihedral field. Moreover L, is of type
A3, B1, C2, or D3 so by Theorem 1

(a; —4de) e, if

‘=1 (mod 4),
L= {0 ‘
diLe) [2%a; —¢) 2, if ¢=2.3 (mod4),

showing that for each fixed ¢ the L, (k€ S,) are distinct. Finally, set

)“%étl—k\/a,\#—?_—\ﬂ'), it c=1 (mod 4).

), =
* v\/(l,\+\/(“. ife=2.3 (mod4).

), 1s an integer of L, with

@ —da e 4.
(”1»(&-0?()2):%(“/\ €) ¢ it ¢ (mod 4)

1
[2%a; —¢) 2, if ¢=2.3 (mod4)

Hence each of the infinitely many non-pure, dihedral, quartic fields L,
(k€ S,) possesses a power basis, namely {1, 6,,0;,0;}. |
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