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ABSTRACT. Let D denote a positive nonsquare integer such that D = 1
(mod4). Let /(vD) (resp. I(1(1+ vD))) denote the length of the period
of the continued fraction expansion of vD (resp. (1 + vD)). Recently
Ishii, Kaplan, and Williams (On Eisenstein’s problem, Acta Arith. 54 (1990),
323-345) established inequalities between /(v/D) and l(%(l +v/D)). In this
note it is shown that these inequalities are best possible in a strong sense.

Throughout this note D denotes a positive nonsquare integer > 16 such
that D = 1 (mod4). Let [ = I(VD) (resp. I’ = [(3(1 + VD))) denote
the length of the period of the continued fraction expansion of vD (resp.
$(1+ VD)) . In their work on Eisenstein’s problem, Ishii, Kaplan, and Williams
[3] established a number of inequalities relating /(vD) and I/(1(1 + vD)).
These are summarized as Theorems A, B, and C.

Theorem A. If there exist odd integers T and U such that T?> — DU? = 4 (so
that D = 5(mod 8)) then

I(A(1+ VD)) +4 < I(VD) < 5I(1(1+ VD)).

Theorem B. Ifthere do not exist odd integers T and U such that T>*—DU? = 4
but there do exist integers V. and W such that V> — DW?2 = —1 then

Lik(1+ VD)) < I(VD) < 31(3(1 + VD)) — 4.

Theorem C. If there do not exist odd integers T and U such that T>—DU? = 4
and there do not exist integers V. and W such that V2 — DW? = —1 then

LId(1+ VD)) < 1(vD) < 31(1(1 + VD)) - 8.

We show that all of the six inequalities in Theorems A, B, and C are best
possible in a strong sense (see Theorems 1-6).

We begin by giving a few basic facts about the continued fractions of /D
and 1(1+ v/D), all of which can be found, for example, in [6].
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The continued fraction of vD is
(1) VD =[ap; ar; @5, -5 al, [=1(VD),

where the positive integers a; are given by

1 .
2  a=[xl, Xm=—— (i=0,1,2,...), x=vD.

i i
Moreover, we have
(3) xi=(P;+VvD)/Q; (i=0,1,2,...),
where the integers P; and Q, are given by
4  Pp=aQ-P, Qu=D-Pi)/Q (i=0,1,2,...),

(5) P, =0, Qo= 1.
From (4) we deduce
(6) Qini=ai(P—Py)+ Qi1 (i=1,2,...).

The integers a;, P;, Q; have the properties

(1) a=[VD], a_i=a; (i=1,2,...,1-1),  a =2ao,
(8) Pi=Py_; (i=1,2,...,10),

9) Qi=0Q_; (i=0,1,2,...,1].

The equation V2 —DW?2 = —1 is solvable in integers V and W if and only
if I =1(v/D) is odd, and the equation 72— DU? = 4 is solvable in odd integers
T and U if and only if Q; =4 for some even integer i satisfying 0 < i </.

The continued fraction of 1(1+ v/D) is

(10) 10 +VD)=1[bo; b, b2, ..., brl,  I'=1(3(1+VD)),

where the positive integers b; are given by

(11) b; =1[x]], x§+l=+ (i=0,1,2,...), x6=l(1+\/_D_).
x,.—bi 2

Moreover, we have
(12) x'=(P +vD)/Q,, (i=0,1,2,...),
where the integers P/ and Q; are given by

(13) P =biQi-P, Qu={D-P)/Q (i=0,1,2,...),

(14) Py=1, 0y =2.
From (13) we deduce
(15) Q§+l=bi(Pil_Pi/+l)+Q;—l (i=1>2>°-°)°
The integers b;, P/, Q; have the properties
(16)
bo=[31+VD), by_j=b (i=1,2,...,I'=1), by=2bh-1,
(17) Pl=P (i=1,2,...,10),

(18) Ql/'=Q;’—i (l=03 1>""1/)'
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We are now ready to prove Theorems 1-6. All of the families of D used in
the proofs of Theorems 1-6 were suggested on the basis of numerical evidence
found by the second author by means of an extensive computer search. Some
(but not all) of the continued fractions expansions of vD and s+ VD) for
these families of D were located in the literature.

Theorem 1. There exist infinitely many nonsquare positive integers D = 1
(mod 4) such that:
(i) {($(1+vD))+4=1(D),
(i) T? - DU?* =4 is solvable in odd integers T and U,
(iii) /(vV'D) is unbounded.
Proof. We let F, denote the nth Fibonacci number so that
Fhb=0,Fi=1,FK=1,FK=2,F,=3,Fs=5,F,=8, ...
and generally
F,=F,_+F,_, (n=2,3,...).
We choose
D= (2Fgp 1+ 1)+ 8F, +4) (n=1,2,...).
As .
F = { 0(mod2) if n=0(mod3),
g 1(mod2) if n# 0(mod3),

we see that D = 5 (mod 8) so that D is not a square.
By a straightforward induction argument, we find, making use of the identity

FopiFy = FFy = (1) 'FFoy  (r2520,120),

the continued fraction expansions of vD and 1(1 + VD) given in Tables 1
and 2 on the next page.

Thus /(vD) = 6n+5 and I(}(1+VD)) =6n+1 sothat /(3(1+vD))+4=
[(v/D) and I(v/D) is unbounded. The equation T2 — DU? = 4 is solvable in
odd integers T and U as .Q4,.4 = 4. As far as the authors are aware this is the
first example of a continued fraction expansion of vD or 1(1+ v/D), where
D involves the Fibonacci numbers F, and their squares. Presumably the D’s
used here are a special case of an infinite family of D’s involving Fibonacci
numbers for which the continued fractions of vD and 1(1++/D) can be given
explicitly.

Theorem 2. There exist infinitely many nonsquare positive integers D = 1
(mod 4) such that:

(i) /(vD)=35I(1(1+VD)),
(ii) T? — DU? = 4 is solvable in odd integers T and U,
(iii) /(v/D) is unbounded.

Proof. We take
D=165"+125"+1 (n=1,2,3,...).

Clearly D = 5(mod8) so that D is not a square. The continued fraction
expansion of /D was considered by Williams [7, Table 4(A) with ¢ = 4,
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TaBLE 1. Continued fraction expansion of vVD: D = (2Fgns1 + 1)* + (8Fg, +4)
(n>1)

! L O a
0 0 1 2Fsn1 +2
k 4F3 Fon—3k+1
(1<k<n) —2(—1)*Fay_ a1 +2 2F3 Fop—3k1 + 1 4
k 4F3 Fon—3kc11
(m+1<k<2n—1) | =2(=D*Fg_gn_1+2 2F3 Fon—3pq1 + 1 4
2n 4Fg, — 2Fgp_1 +2 2F¢, +1 3
2n +1 2Fgp41 + 1 4 Feni1
n+2 3Fgnst — 1 2Fgnez + 1 1
2n + k + 2 4F3k—lF6n—3k+2
(1<k<n) +2(= 1)k Fgp_gi43 + 2 2F3_1Fen—3k42 + 1 4
2n+k+2 4F3k—lF6n—3k+2
(n+1<k<2n) +2(= 1) Fgp_gn_3 +2 2F3 1 Fon—3k42 + 1 4
an+3 2Fgy + 2 2Fgnez + 1 1
4n + 4 2Fgny1 — 1 4 Font1
n+s 2Fgpi + 1 2y + 1 3
dn+k+6 4F 1 Fen_si — 2(=1)k
0<k<n—-1) F6n—”6k—l +2 2F3+4Fen—3k-3 + 1 4
dn+k+6 4F3pcp1 Fon—3 — 2(=1)F
(n<k<2n-2) Fep—gnot +2 2F3icsaFen—3k-3 + 1 4
6n+5 2F6n+1 +2 1 4F6n+1 +4

TaBLE 2. Continued fraction expansion of (1 + vD): D = (2Fens1 + 1)% +
8F, +4 (n>1)

d P/ 7} b,
0 1 2 F6n+1 +1
K 1+ 2Fgn41
(1 <k <6n) | —4F_ Fon oy | 2T HoFonrns 1
6n+1 2Fg,1 + 1 2 2Fensy + 1

k=1, A=15] and that of %(1 + /D) by deMille [1, p. 32, Table with g = 4,
k =1, A=15]. From these tables we have

IW¥D)y=10n+5, I3(1+VD)=2n+1,
so (i) and (iii) hold. In addition, Qg,4+4 = 4, so (ii) holds.

Theorem 3. There exist infinitely many nonsquare positive integers D = 1
(mod 4) such that:

(i) ((1+VD)) =1(VD),

(ii) T? — DU? =4 has no solution in odd integers T and U,
(iii) V2 —DW?2 = —1 is solvable in integers V and W,
(iv) [(v/D) is unbounded.

Proof. We take
D=417"+9.17"+4 (n=1,2,3,...).

Clearly D = 1(mod8). Further D = 2(mod3), so D is not a square. The
continued fraction expansion of v/D was treated by Williams [7, Table 2 with
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=2, A=17] and that of 1(1+ vD) by deMille [1, p. 21, Table with
=2, A= 17]. From these tables we have

IVD)y=2n+1, I(i(1+VD))=6n+3,
so (i) and (iv) hold. Also

Q1 =17"F (0<k<n-1),  Quip=17"" (0<k<n-1),
so Q;#4 (¢t=1,2,...,2n), which show that (ii) holds. As /(vD) is odd,
the equation V2 — DW?2 = —1 is solvable.

Theorem 4. There exist infinitely many nonsquare integers D = 1 (mod4) for
which:
) I(vVD)=3l((1+ VD)) -4,
(ii) T? - DU? = 4 has no solutions in odd integers T and U,
) V?—DW? = —1 is solvable in integers V and W,
) (VD) is unbounded.
Proof. We take
D=94"4+104"+1 (n=1,2,...).

Clearly D = 1(mod4). Also D = 2(mod3), so D is not a square. The
continued fraction expansion of v/D was treated by Williams [7, Table 4(A)
with ¢ =3, k=1, 4= 4] and that of 1(1++vD) by deMille [1, p. 32, Table
with ¢ =3, k=1, A =4]. From these tables we see that

IVDy=6n—-1, Ii(1+VD)=2n+1,
so (i) and (iv) hold. As /(v/D) is odd, (iii) holds. Finally, as
Q1 =4 Quea=34"—4"F 144 1 (0<k<n-1),
Qeksz =341 +4" 4+l _ 1 (0<k<n-1),
Qsksa =42 (0<k<n-2),
Qekss =347+ 4" k-1 _g4k+l 1 (0<k<n-2),
Qokig=3.4"—4" k-1 g+l 1 (0<k<n-2),
Qo7 =4"% (0<k<n-2), Qumo=4"",
we see that Q; #4 (1 <i<6n—2), so that (ii) holds.

Theorem 5. There exist infinitely many nonsquare integers D = 1 (mod4) for
which
(i) $G(1+vD))=I(VD),
(ii) T? - DU? = 4 has no solutions in odd integers T and U,
(iii) V% — DW?2 = —1 has no solutions in integers V and W,
(iv) (VD) is unbounded.

Proof. We take
D =225.61*"+155.61"+25 (n=1,2,...).

Clearly D = 1(mod4). Also D = 0(mod5), D # 0(mod5?), so D is a
nonsquare integer. The continued fraction expansions of vD and i(1+ vD)
are given in Tables 3 and 4.
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TaBLE 3. Continued fraction expansion of vD: D = 225.612" + 155.61" + 25

(n21)

t P QO a;
0 0 1 15.617 + 5
2k +1 15.61" +5 | 5.61n—k 6.61%
0<k<n-1)
2k +2 15.617 — 5| 61%k+1 | 30.617—k~1
0<k<n-1)
2n + 1 15.617 + 5 5 6.617 +2
2n+2k+2 |15.61" +5]| 61—k 30.61%
0<k<n-1)
2n+2k+3 |15.61" =5 5.61%+! | 6.61n—k-1
0<k<n-1)
4n + 2 15.61" + 5 1 30.61" + 10

Note. This table is the special case A=u=1t=1, /=3, g=c=5, p=61 of [2, §4.2].

TABLE 4. Continued fraction expansion of 1(1 + vD): D = 225.61%" +
155.617+25 (n> 1)

! F 7 by
0 1 2 L(15.61" + 5)
© ik,:’sl n) 15.61" — 61k +5 15.61" + 1(5.61"kK — 61%) + 5 1
© (;kk+§2 n) (61K +5.61"=K) 15.61" — 1(5.61"~k —61%) + 5 1
© g6kk5+3- ) | 15617 = 5617k 45 10,617k 361k — 1
(osik;:_ py | 15617 —5.61"7k — 5| 15.61" — 1(5.61"7k — 61k+1) — 5 1
0< 2";’5_ 1 $(61%+1 4+ 5.617=F) | 15.61" + 1(5.61"K — 61k+1) — 5 1
© §6kks+rf— py | 15617 - 61kt =5 2.61k+!1 15.61n—k=1 _ 1
6n+3 15.61" 10 36T
?g;gkstl‘; 15.61" — 5.61%k + 5 15.617 —%(5.61k—6l”—k)+5 |
?3;2?5 361k 4 5.61k) 15.617 + 1(5.61% — 61"~) + 5 1
(06;' ,t;k;’_ﬂ) 15.617 — 617 + 5 2.61n—k 15.61% — 1
(06;’ P gkn+_71) 15.617 — 617~k — 5 | 15,617 + L(5.61k+1 — 617—k) 5 1
(06;’ i gknJ“_sl) 1617k + 5.61k+1) | 15.617 — L(5.61%+1 — 617F) — 5 )
(062 Iik,f_gl) 15.617 — 5.61K+! — 5 10,615+ 3.61n—Kk=1 _ 1
12n + 6 15.61" + 4 2 15.61" + 4

Note. This table is not included in either [1] or [2]. Presumably there is an infinite family of
D s for which the continued fraction expansion of %(1 + /D) has a similar structure.
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TABLE 5. Continued fraction expansion of vD: D = 81.102" + 66.10" + 9
(n>1)

t P, O ar
0 0 1 9.10" + 3
] 510"+ 3 12.107 T
o Skx2 | 91076107 =3 | 9,107~ 3107k 4 104+ - 3 1
" <6kk<+3_ | B0TE106 ] 01074 3107K — 10k -3 1
© <6kk<+:_ 2 | 9107 —2.1051 -3 4.10k+1 45.10"k-2 _ |
o Sk p | 91072106143 (9,107 3107k — 10k 4 3 1
© <6kk<+f_ 2) 3.10"k=1 4 10k+1 | 9,107 — 3.10"~k—1 4 10k+! + 3 1
6k +7 —k—1 —k—1 K
O<ken_2 |10 -610F1+3 12.107 15.10€ — 1
6n—2 710" =3 2,107 3
6n—1 9.10" + 3 , 3 6.10" + 2
6n 9.10" + 3 2,107 2
(062’ ,t gk;_ll) 9.10" — 2.10"~*k —3 | 9.10" + 3.10k+! — 107~* -3 1
(06;’ . an+_21) 300K+ 4 107F | 9,107 — 3.10k+1 1 107~k — 3 1
or ,’gikn+_32) 9.10" — 6,106+ — 3 12.10k+1 15.10n—k=2 _ |
(06;‘ : ikn”f_“z) 9.10" — 61051 +-3 | 9.10" — 3.10k+! 4 107—k~1 4 3 1
oCr i"n*_(’z) 300K+ 4 107k=1 | 9,107 + 3.10k+! — 107—K~1 43 1
(062 . ikn+_62) 9.10" — 2.107—k=1 43 4.10n—k-1 45.10% — 1
12n—3 3.10" -3 12.10" 1
2n—2 5.10" + 3 ] 18.10" + 6

Note. This table is not a special case of any of the continued fraction expansions considered in
[2,4,5,7].

TABLE 6. Continued fraction expansion of 1(1+vD): D = 81.10%" +66.10" +9
(n>1)

t i o b,
0 1 2 | 1(9.10" + 4)
2k +1 —k k
O<rxan_y |910m+3 610" 3.10
2k +2 k1 —k—1
O<k<n—1) 9.10" — 3 | 2.10%+ 9.10"

2n+1 9.10" +3 6 3.10" + 1

2n+2k+2 i, 3
2n+2k +3 ) o
(Osksn_l) 9.10" — 3 | 6.10%+ 3.10"

4n 42 9.10" + 3 2 9.10" 4+ 3

Note. This table is the special case A=p=1,p=10, c=1=¢g=3 of [2, §4.1).
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We have

IWD)y=4n+2, I(3(1+VD))=12n+6,

so (i) and (iv) hold. As /(v/D) is even, (iii) holds. It is also clear that Q, # 4
(t=1,2,...,4n+1), so (i) holds.

Theorem 6. There exist infinitely many nonsquare positive integers D = 1
(mod4) such that:

(i) {(vVD)=3I(}(1+vD)) -8,
(i) T? - DU? =4 is not solvable in odd integers T and U,

(ili) V? - DW? = —1 is not solvable in integers V and W,
(iv) I(vV'D) is unbounded.

Proof. We take

D=81.10"+66.10"+9 (n=1,2,3,...).

Clearly D = 1 (mod8). Further D = 0(mod3), D # 0(mod3?), so D is not
a square. The continued fraction expansions of vD and 1(1 + VD) are given
in Tables 5 and 6. We have

IWVD)=12n-2, I(3(1+VD))=4n+2,

so (i) and (iv) hold. Further, as /(v/D) is even, (iii) holds. Finally we note that
Q:#4, (1<t<12n-3),s0 T?—DU? = 4 is not solvable in odd integers T
and U.
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