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1. INTRODUCTION

We denote the strict class group of primitive integral binary quadratic
forms of fixed nonsquare discriminant D under composition by H(D).
A genus G of H(D) is a subset which consists of all the classes giving the
same values to the generic characters of H(D). Composition induces a
group structure on the set of genera of H(D). The reader will find the
basic properties of the genera of binary quadratic forms in [ 1, Chap. 4].

Let 4 and B be coprime integers. We are interested in the represen-
tability of the odd primes of an arithmetic progression {4n+ B:neZ} by
the genera and classes of H(D). We prove

THEOREM 1. Let A and B be coprime integers. Suppose that G is a genus
of classes in H(D) having the property

Each prime p= B (mod A) with p} 2D is
represented by a class from the genus G. (1.1)
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Let k be an integer coprime with 2D which is represented by a class from the
genus G' of H(D). Then each prime g = kB (mod A) is represented by a class
from the genus GG'.

THEOREM 2. Let A and B be coprime integers. Suppose that C is a class
of H(D) having the property

Each prime p= B (mod A) with p}2D is
represented by the class C. (1.2)

Then each genus of H(D) contains exactly one class if C=C "'

two classes if C+# C 1. Moreover

and exactly

ZoXZyx o X2y, if C=C,

1.
Z4X22X"'XZ2’ !f C%C‘l. ( 3)

H(D)~ {
Further, if k is an integer coprime with 2D which is represented by the class
K of H(D), then each prime q=kB (mod A) is represented by

the class CK, if C=C,
both the classes CK and C~ 'K, if C£C ', K=K,
exactly one of the classes CK and C™'K, if C£C Y, K#£K

The theorem of Kusaba [3, Théoréme], proved using class field
theory, is essentially the first part of Theorem 2 when D is a fundamental
discriminant.

An immediate corollary of Theorem 2 is the following generalization of
the theorem of Ramanujan first proved by Williams in [5], and its
generalization proved by Halter-Koch in [27] using class field theory.

COROLLARY. Let C be a class of H(D) having the property (1.2). Let k
be an integer coprime with 2D which is represented by an ambiguous (= self-
inverse) class of H(D). Then each prime q=kB (mod A) is represented by
the class CK.

In the proofs of Theorem 1 and Theorem 2, we suppose that A4 is even
and B is odd. There is no loss of generality in doing this as, for odd primes
p, we have

p=B(mod A4)< {1’ = B (mod 24), if A4 odd, B odd,

p=A+ B (mod2A4), if A odd, B even.

We conclude this introduction with a simple example.

ExaMmpLE. The form class group H(—768) comprises 8 classes

I, A, A, A>, B, AB, A*B, A*B,
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TABLE 1

Generic characters

-0 @ 0

1 A4? + + +
A4, 43 + + -~
B, A'B + - -
AB, A’B + - +

which are the classes of the forms

X1+192Y2% 13X+ 8XY +16Y%, 4X? +4XY +49Y2 13X° - 8XY + 1677,
12X2+ 12XY+19Y% 7X? —4XY +28Y?, 3X? + 6472, TX? +4XY + 2877,

respectively. These classes fall into 4 genera as shown in Table 1.

Each prime p=13 (mod 24) satisfies (p/3)=(—1/p)=1, (2/p)= —1 so
that p is represented by the class 4. The integer 31 is represented by the
class AB, so that by Theorem 2 each prime p=(13)(31)=19 (mod 24) is
represented by exactly one of the classes 4(AB)= A?B and A '(4B)=B.
Table I indicates which of 4°B and B represents p for p (prime)= 19
(mod 24), p < 1000.

Numerical data suggest that for primes p =19 (mod 24) we have

p=3x"+ 64y if ¥V, .14=2 (mod p),
p=12x2+12xy + 19y%, if Vi, 1= —2 (mod p),

TABLE II
A’B B
p=19 (mod 24) p=3x"+ 647 p=19 (mod 24) p=12x*+12xy + 19p?

67 1,1 19 0,1
139 5.1 43 1,1
211 7.1 163 3,1
283 3,2 379 51
307 9,1 523 6,1
331 5.2 547 1,5
499 9,2 643 2,5
571 13,1 691 7,1
619 11,2 787 —3,7
739 15,1 811 -2,7
859 —1,7

883 8,1

907 45

641,45:1-5
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where

v,

n

+2=—'4Vn+1_Vn ("Z:O, 1,2’)
VO = 2, Vl = —4
In addition to the basic theory of binary quadratic forms, our proof of
Theorem | uses Dirichlet’s theorem on primes in an arithmetic progression,
and our proof of Theorem 2 uses Meyer’s theorem [4] which asserts that
a primitive integral binary quadratic form represents infinitely many primes

in any arithmetic progression consistent with the generic characters of the
form,

2. A PROPERTY OF LEGENDRE SYMBOLS

The following lemma is a consequence of Dirichlet’s theorem on primes
in an arithmetic progression and will be used in the proof of Theorem 1.

LEMMA. Let e= +1 and let A and B be coprime integers. Let S be a
given finite set of primes.

(i) Let r be an odd prime. If the Legendre symbol ((An + B)/r) has the
value ¢ for all ne Z for which An+ B is a prime #r and not belonging to S
then r| A.

(i1) Suppose A is even and B is odd. If (—1/(An+ B))=¢ (resp.
(2/(An+ B))=¢, (—2/{An+ B))=¢) for all ne Z for which An+ B is an
odd prime not belonging to S then 4| A (resp. 8| A4, 8| A).

Proof. (1) Suppose rf A. Let k be an integer such that (k/r)= —e.
Then by Dirichlet’s theorem there is a prime g ¢ .S such that

g=B8h (mod A),
g=k (mod r).

Then we have
s=<%> (as g= B (mod A4))
=(§> (as g=k (mod r))

= —¢ (choice of k),

which is a contradiction, and so r divides A.
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(il) We just treat the case (2/(An+ B))=c¢ as the other two cases are
similar. Suppose 8 | 4. As 4 is even we have (a) 4=2 (mod 4)jor (b) 4=4
(mod 8).

(a) By Dirichlet’s theorem there is a prime g ¢ S such that

g=8B {mod 4/2),

(-

As g, A/2, and B are odd, we see that g= B (mod A) so that (2/q)=¢,
which is a contradiction.

(b) By Dirichlet’s theorem there is a prime ¢ ¢ .S such that
g=B (mod 4/4}) (2.1)
and

 (mod8), if B=1 (mod4), e= —1,
_ )3 (mod B), if B=3(mod4), ¢=1, (2.2)
7915 (mod8), if B=1(mod4), e=1, '

7 (mod8), if B=3(mod4), e= —1.

Then, by (2.1) and (2.2), we have g= B (mod A4), so that (2/¢)=¢. But
from (2.2) we see that (2/q) = —e¢, which is a contradiction. J

3. PrROOF OF THEOREM 1

Associated with the discriminant D is the fundamental discriminant D,
defined by D= D, f2 where f? is the largest square dividing D such that
Dy=0or ] (mod 4). We also let D* denote the product of the distinct odd
primes dividing D, and we set

2D*, if D=1 (mod4)or D=4 (mod 16),
M = {4D*, if D=12 (mod 16) or D=16 (mod 32),
8D*, if D=0, 8, or 24 (mod 32),

and observe that D, | M.

Now let r be an odd prime divisor of D, so that the Legendre symbol
( /r) is a generic character for the discriminant D [1, p. 52]. From (1.1) we
see that (p/r) has a fixed value for all primes p= B (mod A) with p}2D,
so that, by Lemma 1(i), r| 4. In addition each supplementary generic
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character [1, p. 527 has a fixed value for all primes p= B {mod 4) with
p 12D so, by Lemma 1(ii), as A4 is assumed even and B odd, we have

4| A4, if D=12 (mod 16) or D= 16 (mod 32),
814, if D=0, 8, or 24 (mod 32).
Hence M| A. As a consequence of this we see that any prime p=B
(mod A4) does not divide 2D.
Let p be a prime = B (mod A). Thus p is represented by some class of the

genus G and so (D/p)=1. Similarly we have (D/k)=1. Now, as D, |M| A,
we have for any prime g = kB (mod 4)

g=kB=kp  (mod D,),

so that as D =D, f* we have

(0)-(3)-(&)-(2)5)-()G) -
q q kp kJ\ p k)\p/
and thus g is represented by some class K of H(D). We now determine the
genus to which the class K belongs.
Let y denote any one of the generic characters for the discriminant D.

Then, for any prime p= B (mod A) and any prime ¢=4B (mod A), we
have

x(g)=x(kB)  (as g=kB (mod M))
= x(k) x(B)
=y(k) x(p)  (as p=B (mod M))

so that the genus of K is GG'.
We observe that in the example in Section 1 we have

D=-768, Dy=-3, f=16, D*=3,
M=24, A=24  B=13.

4. PROOF OF THEOREM 2

Suppose the genus G of the class C contains a class J# C, C~'. In view
of the property (1.2) we have M | 4, as in the proof of Theorem 1, and so
the arithmetic progression {An+ B:ne Z} is consistent with the generic
characters of K. Hence, by Meyer’s theorem [4], J represents infinitely
many primes g=B (mod A). But each such prime ¢ with ¢}2D is
represented by C, and thus only by C and C ', which is a contradiction.
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This proves that each genus contains exactly one class if C=C"' and
exactly two classes if C3 C ™', In particular the subgroup H(D)? of H(D)
(which is the principal genus of H(D)) contains exactly one class if
C=C"" and exactly two classes if C# C~'. This proves (1.3).

Finally, if & is an integer coprime with 2D which is represented by the
class K, and ¢ is a prime=kB (mod A4), then by Theorem 1, g is repre-
sented by a class in the genus of CK. This genus contains the four classes
CK, C7'K, CK~',and C~'K~'. If C = C~! these four classes coincide and
q is represented by CK. If C# C~' and K=K ! the genus of CK contains
the two distinct inverse classes CK(=CK ') and C~'K (=C'K™'), and
q is represented by both classes. If C# C ! and K# K ' the genus of CK
contains the two distinct non-inverse classes CK (=C~ 'K~ ") and C~'K
(=CK™"), and q is represented by exactly one of these two classes.
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