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The study of integral binary quadratic forms
f(x,y) = ax?+ bxy + cy* (a, b, ¢ integers)

has its origins in the work of Fermat, Euler, Lagrange, and Legendre (see for
example [5, Chapter 1]). An integer n is said to be represented by f if there exist
integers x and y such that n = f(x, y). An important problem in the theory of
binary quadratic forms is to determine the set of positive primes represented by
f(x, y). For this problem we restrict ourselves to those f which are (i) primitive,
that is GCD(a, b, ¢) = 1; (ii) irreducible, that is the discriminant D = b? — 4ac is
not a square; and (iii) positive-definite if D < 0. This avoids those f which
represent at most one prime or for which the representation problem can be
solved by factoring f. If f satisfies (i), (ii), (iii) it will be called a form for short.
Dirichlet in 1840 (see [7, Vol. I, pp. 497-502]) was the first to show that a form
ax? + bxy + cy? represents infinitely many primes for a certain class of discrimi-
nants and Weber [10] in 1882 was the first to give a proof valid for any discrimi-
nant.

In the seventeenth century Fermat characterized the set of primes represented
by the form x? + y2. He showed that this set consists of the prime 2 together with
all primes p = 1 (mod 4). If we exclude the prime 2, which divides the discriminant
—4 of the form x2 + y?, Fermat’s theorem can be stated: for a prime p # 2 we
have

p =x2+y?%(x,y integers) if and onlyif p = 1 (mod4).

Fermat also stated, and Euler proved, the following similar results: for a prime
p #* 2 we have

p=x%+2y? ifandonlyif p =1,3 (mod8),
and for a prime p # 2,3
p =x%+3y? ifandonlyif p = 1 (mod3).
These and other similar results suggest a theorem of the following type: if
ax? + bxy + cy? is a form of discriminant D then there exist positive integers

s,a,,...,a,m (depending on a, b and c) such that for an odd prime p not
dividing D we have

p =ax?+ bxy + cy? ifandonlyif p =a,,...,a, (mod m). €))

However such a result does not hold for every form ax? + bxy + cy?. This fact is
often stated in number theory textbooks [1, p. 345], [2, p. 242], [4, p. 2], [5, p. 62,
[6, p. 145] but when this claim is addressed [2, p. 242], [4, §1] reference is usually
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made to class field theory. It seems desirable to give a more transparent justifica-
tion of this assertion. We will do this by appealing to the following generalization
of Weber’s theorem to quadratic polynomials ax? + bxy + cy? + dx + ey + f in
two variables, where a, b, ..., f are integers: the polynomial g(x, y) = ax? + bxy
+ cy? +dx + ey + f represents infinitely many primes provided deg g = 2,
GCD(a, b,c,d,e, f) =1, g(x,y) is irreducible in Qlx, yl, g(x,y) represents
arbitrarily large odd integers, and g(x, y) is genuinely a function of two variables.
This result follows from a theorem of Iwaniec [9], which can be proved without
class field theory. The failure of a result of type (1) will be demonstrated for the
particular form x2 + 14y?2. Other forms for which (1) also fails can be treated in a
similar manner. We prove

Theorem. There do not exist positive integers s, a, ..., a,, m with GCD(a;, m) = 1
(i =1,...,s) such that for primes p # 2,7

p =x>+ 14y? ifandonlyif p = a,,...,a, (mod m). (2)

We will also need the concept of a genus (plural genera) of form classes (see for
example [3, Chapter 4], [5, Chapter 1]). The theory of genera was Gauss’ major
contribution to the study of binary quadratic forms. Two forms ax? + bxy + cy?
and a’x? + b'xy + ¢'y? are said to be equivalent if there exist integers r,s, ¢, u
with ru — st = 1 such that

ax? + bxy + ey = a'(rx + sy)> + b'(rx + sy) (tx + uy) + ¢ (tx + uy)”.

Equivalent forms have the same discriminant. It is a classical result that the set of
equivalence classes (called form classes) for a given discriminant is finite. It is clear
that forms in the same class represent the same integers and hence represent the
same primes. Gauss partitioned the set of form classes for a given discriminant into
genera in such a way that the primes represented by the forms in the form classes
in each genus could be characterized by means of congruences. Two form classes
with representatives f,(x,y) and f,(x,y) are in the same genus if and only if
fi(x,y) and f,(x, y) are equivalent modulo m for all nonzero integers m, that is,
there are integers r, s, ¢, u (depending on f;, f, and m) with GCD(ru — st,m) = 1
such that

fi(x,y) = fo(rx + sy, &x + uy) (mod m)

for all x and y. For those discriminants possessing only one form class per genus
Gauss could therefore say which forms represented which primes. Euler knew of
discriminants with this property. It is known that there are only finitely many such
discriminants with D < 0. An example of such a discriminant is D = —24. There
are 2 form classes with representatives x> + 6y? and 2x2 + 3y2. Each form class
belongs to a different genus, and by Gauss’ theory of genera we can deduce: if p is
a prime # 2,3 we have

p=x%+ 6y? ifandonlyif p = 1,7 (mod 24)
and
p =2x*+3y? ifandonlyif p = 5,11 (mod 24).

In this article we are concerned with the other situation where there are at least
2 form classes in the same genus. This occurs for example when D = —56. Here
there are 4 form classes but only 2 genera. The classes of the forms x> + 14y? and
2x2 + 7y? belong to the same genus, and Gauss’ theory of genera tells us only that
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for primes p # 2,7 we have
p=x%+14y?or2x? + 7y? ifandonlyif p = 1,9, 15,23, 25,39 (mod 56)
[4, p.2].

Proof of Theorem. If positive integers s, ay,...,a,, m exist for which (2) holds,
then m may be taken to be even, since for m odd the congruence p = a ; (mod m)
is equivalent to p = b; (mod 2m), where b, = a;, if a; is odd, b; = a, + m, if a, is
even, as p is odd.

We prove the theorem by showing that any arithmetic progression A(a, m) =
{a + km: k =0,1,2,...}, where m = 0 (mod 2) and GCD(a, m) = 1, either con-
tains no primes of the form x2? + 14y? or it contains primes of both forms
x% + 14y? and 2x2 + 7y2.

Suppose that A(a, m) contains a prime p of the form x2 + 14y2. As the two
forms x* + 14y? and 2x2 + 7y? are in the same genus of discriminant — 56, they
are equivalent modulo every positive integer and thus in particular equivalent
modulo m. Hence there exist integers r, s, t, u such that

p=x2+14y2 = 2(rx + sy)> + 7(1x + uy)® (mod m),

where GCD(ru — st, m) = 1[5, Theorem 3.21] [8, §12.5]. Let X and Y be integral
variables and let Q(X,Y) be the quadratic function

Q(X,Y) =2m?’X? + Tm?*Y? + 4mAX + 14mBY + (2A4% + 7B?),
where
A=m+sy, B=tx+uy.
Clearly we have
O(X,Y)=2(A+mX)’ +7(B+mY)’
= 2A4% + 7B* (mod m)
= g (mod m).

It is easily checked that Q(X,Y) is primitive, irreducible, represents arbitrarily
large odd integers as m is even, and depends genuinely on the two variables X and
Y. By Iwaniec’s theorem [9] Q(X,Y) represents infinitely many primes. Choosing
X and Y so that Q(X,Y) = q is prime, we see that A(a, m) contains a prime of
the form 2x2 + 7y2. (]

We have shown that every such arithmetic progression either contains no primes
of the form x2+ 14y? or it contains primes of both forms x2+ 14y2? and
2x2? + 7y2%. Thus congruenées cannot be used to distinguish the representability of
a prime by x? + 14y? from that by 2x2 + 7y2.
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The fundamental theorem can be stated in the following manner: every
polynomial P(z) of positive degree having complex coefficients is a surjective
map from C to C. The proof involves examining the boundary of the image of
C under P. First, note that the image is closed. One way this can be seen is
by extending P continuously to the Riemann sphere, and noting that the
continuous image of a compact set is compact. Identifying C with R?, the
Jacobian of P(z) is non-singular precisely when P'(z) # 0. The inverse
function theorem implies that P(z) is a homeomorphism in a neighborhood
of z whenever P'(z) # 0. Thus, if w is in the boundary of P(C), then
w = P(z) and P'(z) = 0 for some z in C. However, the number of zeroes of
P’(z) is at most the degree of P’. This shows that P(C) has non-empty
interior, and that its boundary consists of at most finitely many points. But
the boundary of a proper subset of R? with non-empty interior cannot consist
of only a finite set of points.
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