Solving n= au? + buv + cv? using the Euclidean algorithm

Kenneth Hardy!, Joseph B. Muskat?, Kenneth S. Williams3

1. 3 Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario
CANADA KI1S 5B6

2 Department of Mathematics and Computer Science
Bar-Ilan University
52 100 Ramat-Gan
ISRAEL

Abstract. It is shown how all the primitive representations of a positive integer n by
an integral, primitive, positive-definite, binary quadratic form can be determined using
the Euclidean algorithm. The method works when the central coefficient of the form is
small compared to the size of the discriminant of the form.

1. Introduction.

We begin by recalling briefly the algorithm given by the authors in [1] to deter-
mine all primitive representations of a positive integer n by the form fu? + gv?,
where f and g are positive coprime integers. We suppose that n > f + g and that
nis coprime to both f and g. For each solution y of the congruence fy® + g=0
(mod m) with 0 < y < n/2, the Euclidean algorithm is applied to yand n
(in that order) to obtain the first remainder r, < +/n/f. Then all the solu-
tions (u,v) of n = fu? + gv? in positive coprime integers lie among the pairs
(ry,1/(n— fr2)/g) . If fy?+g =0 (mod m) isinsolvable then n= fu? + gv?
has no solutions. The following example illustrates the algorithm.

Example 1: We seek all solutions in integers v and v of

69=u2+5v2, u>1, v>1, (u,v)=1.

Heren= 69, f = 1,9 = 5. The solutions y of y> + 5 = 0 (mod 69) with
0 <y<69/2arey; =8 andy, = 31. Applying the Euclidean algorithm to
each value of y and n, we obtain successive remainders as follows:

v=8 8,53,2,1,0,
v =31: 31,7,3,1,0.
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Since \/n/f & 8.3, we have that rg = 8 and r3; = 7. These values of r, give
all the solutions, namely (u,v) = (8,1),(7,2).

The aim of this note is to extend the algorithm in [1] to determine all coprime
integers u, v (if any) for which n= au? + buv + cv?, where nis a positive integer
and au? + buv + cv? is an integral, primitive, positive-definite, binary quadratic
form with discriminant b — 4ac = —A < 0. We suppose that

n> 2 max(a,c) and (n,ac) = 1.
The natural extension of the algorithm described above is as follows: for each
solution y of ay? + by + c = 0 (mod n) with 0 < y < n, apply the Euclidean

algorithm to y and n to obtain the first remainder r, < y/4cn/A and then look
for solutions of

n=au? + buv + cv?, u>1, (u,v)=1

among the pairs (r,,, (—=bry+4/4cn— A'rf,) /2 c). Note that we use the range

0 <y<nforyandnotO < y < n/2. The congruence fy> + g =0 (mod n)

has its solutions equally distributed between the two intervals 0 < y < n/2 and
n/2 < y < nbutthis is not generally the case for the congruence ay?+by+c=0
(mod m). Unfortunately, this extension of the algorithm in [1] does not work in
general as the following example shows.

Example 2: We seek all solutions in integers u and v of
577=3u? + Mduv+ 17v*, u>1, (u,v)=1.
Here n = 577 (aprime),a = 3 ,b = 14,c = 17 and A = 8. There are two
solutions y of
3y +14y+17 =0 (mod 577), 0 <y< 577,
namely,
y1 =462, yp =495.

Applying the Euclidean algorithm to each value of y and n, we obtain successive
remainders as follows:

y1 = 462: 462,115,2,1,0,
y2 = 495: 495,82,3,1,0.
There are two solutions (u,v) = (2,5), (70,—29). The method finds the first

solution. However, 70 is not a remainder and thus the algorithm does not find both
solutions.

It is therefore necessary to put conditions on a, b, and c in such a way that the
algorithm will find all the solutions. We will show that this occurs at least when
[b] is sufficiently small with respect to A. In Section 2 we prove the following
theorem.
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Theorem. Leta, b, c be integers such that

(a,b,c) =1, a>0, ¢>0,
with (1.1)
A=4ac—b*>16 and |b| < (A —16)/8.

Letn be a positive integer such that
n>2max(a,c), (m,ac)=1. (1.2)
For each solution y of
ay’ +by+c=0 (mod n), 0<y<n, (1.3)

letr be the first remainder obtained by applying the Euclidean algorithm toy and
n (in that order) which is less than or equal to \/4 cn/A . Then all the integral
solutions (if any) of

n=au2+buv+cv2, u>1, (u,v) =1, (14)

are found among the pairs

(’ry,(—bryj:‘/4cn—A'r5)/2c), (1.5)

where y runs through solutions of (1.3).

We close this introduction with a few remarks. First we observe that the condi-
tion |b] < (A — 16) /8 is equivalent to

2\/ac—[b| > 4. (16)

Next we note that the assumption (n, ac) = 1 ensures that any solution y of (1.3)
satisfies

(y,m) =1, 1.7

and that any solution (u, v) of (1.4) satisfies
(u,m) = (v,m) = 1. (1.8)
From (1.8) we see that any solution (u, v) of (1.4) satisfies

v#0. (1.9)
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Finally, multiplying the equation in (1.4) by 4 a and 4 ¢, and completing the square,
we obtain respectively

4an=(2au+ bv)? + Av? > Av?

and
4cn=Au? + (bu+ 2cv)? > Au?,

so that
1<u<Véden/A, 1< || < V4an/A. (1.10)

We now give an example to illustrate the algorithm.
Example 3: We seek all solutions in integers v and v of

18392 =7u? — 6uv+7v%, u>1, (u,v)=1.

Heren= 18392 andA = 160. Thesolutions y of 7y>—6y+7 =0 (mod 18392)
are y = 745,3197,4165,8973,9941,12393 13361, 18169. Applying the Eu-
clidean algorithm to each value of y and n, we obtain successive remainders as
follows:

y=745.  745,512,233,46*3,1,0,

y=3197:  3197,2407,790,37*,13,11,2,1,0,

y=4165: 4165,1732,701,330,41%,2,1,0,

y=8973: 8973,446,53*22,9,4,1,0,

y=9941: 9941,8451,1490,1001,489,23*6,5,1,0,
= 12393: 12393,395,74,25*,24,1,0,

y=13361: 13361, 5031,3299,1732,1567,165,82,1*,0,

y = 18169: 18169,223,106,11*,4,3,1,0,

where the asterisk indicates the first remainder less than \/4 cn/A = 56.7 . There
are four solutions, namely (u,v) = (23,-37), (37,-23), (53,41), (41,53),
and these are all obtained from some value of y.

2. Proof of the theorem: If (1.3) is insolvable so is (1.4). Thus we may suppose
that (1.3 ) is solvable. For y a solution of (1.3), we define the (possibly empty) set
U(a,b,c,n, y) to be the set of pairs of integers (u,v) satisfying:

n=au? +buv+cv?, (u,v) =1,
2.1

wl=y (mod n), u>l.
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We show first that either U(a, b, ¢, n, y) is empty or contains exactly one pair of
integers. Suppose that U(a, b, c, n,y) is nonempty and (u,v), (u;, v;) are two
solutions of (2.1). We will show that u; = u, v; = v. We have
4n? = (2m)(2m) = (2au? + 2buv + 2cv2)(20u% + 2bujv; + 20v12),
so that
4n? = (2auu; + buvy + bvu; + 26uv1)2 + A(uv; — vul)z. 2.2)
Now uv™! = ujvy! (= y) (mod n) so that

uvy —u3v=0 (mod n). 2.3)

Hence, from (2.2) and (2.3), we see that there exist integers X and Y such that

2auuy + buvy + bvuy + 2cvv; = nX, 2.4)
uv] — u1v = nY, (2.5)
X2+AY?2=4. (2.6)

As A > 16 > 4 wesee that (X,Y) = (42,0) are the only solutions of (2.6).
Then, from (2.5), we deduce that

uv] = UV, 2.7

Sinceu > 1,u; > 1, (u,v) = 1 we see from (2.7) that there is a positive integer
t such that
u; =tu, v =tv.

Moreover we have
t=1t(u,v) = (tu,tv) = (u;,v1) = 1.

Hence, we have u; = u, v; = v as claimed.
If U(a,b,c,n,y) is nonempty, we let (u,v) be the unique pair of integers sat-
isfying (2.1). Applying the Euclidean algorithm to y and n, we obtain

y= qo'n.+ To,
n=qro+ 1, 2.8)
ri2=grici+n (1=2,...,9),
where
s>1, (2.9)
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ro(=y) > >mn>...>11(=1) >1(=0), (2.10)

{90=[y/n]=0, q = [n/rol = [n/y] 2 1, (2.11)

g=I[ria/rial>1, (i=2,...,9).

We show that
u=ry, v=(-1FB,

where 7 is the first remainder < /4 cn/A . Clearly, replacing u by r in the
equation (1.4), and solving the resulting quadratic equation for v, we obtain

v= (—brk:{: 1/4cn—Ar%> /2c.

The continued fraction for y/n is
y
;=[q0,q1,qz,.--,qs]. (2.12)

The 4 th convergent to y/nis

A; )
§=[QO,QI,QZ,-~1‘]£] (1'=0;17"')S)) (213)

so that, in particular, we have

Ap=0, Bop=1,
A1=1, B1=Q1,
Ay =q, By=qq +1, (2.14)

As =y, B;=n

Moreover we have

A; = ;A + A;_ '=2,‘.., ,
{ giAi—1 2 (7- s) 2.15)
Bi=¢Bi_1+Bi, (1=2,...,s).
An easy induction argument on 7 shows that
1iBis1 + Tis1Bi=n (1=0,1,...,s—1) (2.16)

and
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ri=(=1D"(Biy—Am)  (i=0,1,...,s). (2.17)

(See [1, Section 2]). From (2.17) we see that

r; = (—=1)'B;y (mod n) (i=0,1,...,5) (2.18)
and so, using (2.1), fori = 0,1,..., s we have
ri(au+ 2v)+(=1)’B;i(Lu+cv) =0 (mod n), (b even),
{ ri(au+ S0y + (1) By( &L u+cv) =0 (mod n), (b odd), w5
as well as _
riv—(=1))B;u=0 (mod n). (2.20)
Hence we may define integers ¢;and d; (i=0,1,...,s) by
(r;(au+ ziv)+(—1)‘B,-(2§u+cv)) /n, (beven),
&= { (T;(au+ (b;—l)v)+ (1) By( g%)-uﬁ cv)) /n, (bodd) @21
and ‘
di = (riv — (—=1)'B;u) /n. (2.22)
A simple consequence of (2.16) and (2.22) is the relation
u=(—=1)"(dir17i — diTis1) (i=0,1,...,8s—1). (2.23)
A straightforward calculation shows that fori = 0,1, ... , s we have
cf " %df - ar?+b(—1)rL‘T;B,-+cB.2’ (b even), .
{ G adpr G < wdusal o O
and '
cidiv1 — ci1d; = (—1)° (1=0,1,...,s=1). (2.25)
Next set

8a

From (1.1) we have A — 8|b| — 16 > 0 and it is easy to check that « is a positive
real number. Moreover we have

o~ \/(A —4b)) — /A(A =8B = 16)

2 c A
bl+ = = — 2.26
aq +||+Q’2 7 (2.26)

4c A
VX<Q<VE' 2.27)

Letr; (0 < I < s) be the largest remainder < ay/n. We consider two cases
accordingas! > 1lorl=0.

from which we deduce
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Case (i) [ > 1. We have

n< Ot\/’;l._ <71 (2.28)
Now, from (2.16) and (2.28), we have

avnB < m1Bi<r 1B+ By =,
so that
B < \/n/a. (2.29)

Hence, using (2.26), (2.28) and (2.29), we have (recalling that az? + bzy + cy? is
a positive-definite form)

ar? + b(—=1)!nB; + cB}

0< <aa’ +|b|+c/a® =A/4. (2.30)
n
Thus, appealing to (2.24) and (2.30), we have
{ 0<d+4d? <4, (b even), _——
0<c+adi+L0d <4, (bodd), ’

so that for any b we have
d=0. (2.32)

From (2.22) and (2.32), we deduce
rw = (—1)'Bu, (2.33)

which implies r;-# 0 showing that [ < s — 1. Hence, we have r; > 1, and as
u > 1 and B; > 1, we see from (2.33) that

|v] = (—l)lv, rilv| = Bu.
Next, appealing to (2.25) and (2.32), we have
adi.1 = adi — cady = (=)},

so that
a=¢€ d_=e-1)} e==£l1. (2.34)

From (2.23), (2.32) and (2.34), we obtain v = er;. Now r; > 1 and u > 1, so we
must have € = 1, and thus

u=r7, v= (—l)l|'u| =(-1)'B,.
We now define r, (0 < k < s) to be the largest remainder < /4 cn/A . Then,

from (1.10), we have r, = u < \/4cn/A, so that [ > k. On the other hand,

appealing to (2.27), we obtain r, < y/4cn/A < ay/n, showing that k& > .
Hence, we have k = [ and

u=rg, v=(=1FBy,

as asserted.
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Case (ii) [= 0. In this case we have

0<y=r19 < an/n.

(2.35)

Since (u,v) is a solution of (2.1), (u,—v) is a solution of (2.1) with b replaced

by —b and y replaced by n — y. Hence, we have

U(a,=b,e,n,n—y) # 0.

Applying the Euclidean algorithm to n— y and n, we obtain analogously to (2.8)

— /
n—y —q0n+'r0,

n=gnen

Ti, =qri_+T (1i=2,...,5),
where

q{):[n;y]=0, TH =n—y.

We now consider two cases according as n > 4 o? or n < 4 . First we treat

the case n > 4 . This inequality implies that

y < av/n<nf2,
so that "
1< < 2.
and thus
" n n
Q== =]’
’ro n—y
and

/ /. | /
rm=n—qro=n—ro=n—(n—-y)=y.

Next, by (2.36) and (2.37), we note that

To=n—y>n/2 >a/n>y=r1],

(2.36)

(2.37)

so that the first remainder less than ay/7 is r{. Hence, by the argument of Case

(i) applied to a, —b, ¢, n, n — y rather than aq, b, c, n, y, we deduce that

T = u, Bl =(=1)(-v) = v.
Thus we have

u:ri:y:ro’ U=Bi=qi=1=B0)
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as asserted. This completes the treatment of the case n > 4 2.
Next we treat the case n < 4 o2. From (1.10) and (2.27), we have

1< vl < V4dan/A </nja<?2,

so that
v=+l1.

Also from (1.10) and (2.27), we have

0 <u<Vicen/A < av/n. (2.38)
Adding (2.35) and (2.38) we deduce
0<y+u<2a/n.
Next we observe, from (2.27) and n > 2 max(a, c), that
[A 4
a<f— <1/ 2E =< V2c< /m,
4q 4a
so that
O<y+u<2n (2.39)
We now show that v # —1. Suppose on the contrary that v = —1. Then, as
y=uv~! = —u (mod n), we have
y+u=0 (mod n). (2.40)

From (2.39) and (2.40) we deduce that
y+u=n
Hence, we have (u,v) = (n— y,—1), and so from (1.4), we obtain
n=a(n—y)* —b(n—y) +c,
which gives

ay? + by+c

2ay—an+ b= 1>0,

n

as (ay® + by + c) /nis a positive integer. Thus, we have

> b
vy= 2a’

NS
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But, as y < ay/n, we must have

a\/ﬁ>;~i,

from which we deduce that

(\/T—L—a)2<a2+é,
a

\/'r_1<c>z+1/az+2
a
gc;v+V¢:1z:"+M
a

_ \/(A _4pb)) — /A(A —8]B[=16)

SO

8a

\/(A +4]b) — /A(A — 8] 16)
+ 8a

A — \/A(A —8[b[— 16)

<2

8a
A A
gzw/—=1/—g\/2c<\/£,
8a 2a
which is impossible.
Hence,we havev = 1,and y = uv~! = u (mod n). As

0 < |y—u| <max(y,u) < ayv/n < mn,
we deduce that
u=y=ry, v=1=B,,

as required. This completes the treatment of the case n < 4 a?.
Finally, as any solution (u, v) of (1.4) gives rise toa solutiony = wv~! (mod n)
of (1.3), this completes the proof of the theorem.
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3. Concluding remarks.

Numerical calculations indicate that the algorithm described in our theorem ap-
plies to certain forms au? + buv + cv? not satisfying (1.1) and to some positive
integers n not satisfying (1.2). However, our method of proof relies heavily on
the condition |b| < (A — 16) /8 which is required to define . What further or
different conditions are needed to encompass other cases for which the algorithm
is seen to work remain to be discovered.
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