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0. Notation

The following notation will be used throughout this paper: p is an odd
prime, m is an integer > 2 coprime with p, and f is a positive integer
such that pf—1 is divisible by m.

1. Introduction
The finite field with ¢ = pf elements is denoted by F,.  The prime

subfield of F,is F, = {0,1,2,...,p-1}. The trace of an element « € Fyis
defined by

o) = a+ P + & + .. + & ¢ F, . (1.1)

The trace function has the following properties:
tn(atp) = tr(e) + t(f), Ve feF, (1.2)
trlka) = ktr(a), Va € Fj, k=101.2,., (1.3)
tr(d®) = tr(a), Va € F,, (1.4)
tr(k) = kf, E=0,12.. . (1.5)
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* *
We also set F, = F, — {0}. With respect to multiplication, F is a cyclic
*
group of order ¢—1. We fix once and for all a generator 7y of Fy. For

* *
o € Fq. For a € F, the unique integer 7 such that a = v ", where
0 <7< q-—2, is called the indez of a with respect to 7y anqk is denoted by
ind,y(a). We have ind,y(—l) = (¢-1)/2. Since 7 generates F,

g = 7(‘1—1)/(P“1) € Fp (1.6)

* *
generates F,. For k € F, the unique integer s such that k = ¢, where
0 ¢ s < p—2,is called the indez of k with respect to g and is denoted by
indg(k). The relationship between ind,y(k) and ind,(k) is given by

ind_(¥) = %1;_3 ind () (mod ¢-1). (1.7)

For m a positive integer (> 2) dividing ¢ —1 and any integer 7, the
Eisenstein sum E (wp) is defined by

Ey(wp) = 2 * w;ind,‘(a) (1.8)
a€ I, ’
tna)=1

where w, = exp(2mi/m). Clearly E (uwy) is an integer of the cyclotomic

field Q(w,). We remark that if n = n’ (mod m) then

’

E(uf) = Efun). (L9)

In particular, if » = 0 (mod m), we have

f—1
B(uf) = B(1) = & ,1=p".
a€ Fy
tr{a)=1
We also note that if GCD (m,n) = d > 1, say m = m,d, n = n,d, where
GCD (myn,) = 1, then m,/¢-1 and

E(wp) = E‘q(wgi). (1.10)
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Thus it suffices to consider only those E(wp) for which 1 < n < m, GCD
(n,m) = 1. Further, if o, is the automorphism of Q(w,) such that o (w,)

= u? (GCD (n,m) = 1), then o,(E(w,)) = Ey(wy), and we can further

restrict our attention to B (wp).

It is the purpose of this paper to evaluate explicitly the Eisenstein sums
E‘q(wm) for m = 2,3,...,8. The evaluation of Eq(wm) for m = 2,3,4,5,6,7,8 is
given in Theorem 1, 2, 3, 4, 5, 6, 7, respectively. Examples are given in
Tables 1-29 (§11). It is planned to treat additional values of m in
another paper, as well as to apply the results of this paper to the
determination of cyclotomic numbers over Fy; and the determination
of binomial coefficients modulo p.

These evaluations are accomplished by using the basic facts about
Eisenstein sums established by Stickelberger [19] together with the theory of
Gauss sums, including the important results on Gauss sums established by
Davenport and Hasse in [4]. Our results include and extend those of
Berndt and Evans in [2] in the case f = 2.

We make use of the Gauss sums G (wy), 9o(wp), and g,(wy) defined for
any integer n by

Gut) = B v exp(2ni tr(a)/p), (1.11)
Q€ Fq
9o(wa) = kZE—J‘F* wEind“i(k) exp(2mik/p), (1.12)
p

gplum) = 2 « w&indg(k) exp(2mik/p), provided p = 1 (mod m), (1.13)
ke F
p

as well as the Jacobi sum J (wf,wy) defined for any integers r and s by

p—1 : .
J(wpws) = % wéllndg(k)+31ndg(l—k), provided p = 1 (mod m). (1.14)
k=2

It is well-known (see for example [17: Chapter 5]) that
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Go(ul) Go(wz®) = wp& 2 it myn, (1.15)
o(uag(wg”) = vi %, it min (L], (116)

and if p = 1 (mod m)

gp(uB)gp(wi™) = P2, it mfn, (1.17)
o aun)ew)
Jo(wnyuwy) = R m{r, m{s, m{r+s. (1.18)
9p(wp"®)

We close this section by emphasizing that the Eisenstein sum Eq(wfl‘l)

depends upon the generator v as well as upon m, n and ¢ On the few

occasions when we wish to indicate this dependence, we write Ey(wp, 7) for
*
Ey(uwg). If 7° is another generator of F we have

Ey(uh) = By[up™7y), (1.19)

as ind,y(a) = indy(v") ind,y,(a) (mod ¢ -1), and so

E(vp,7) = Ey(wpy), if ind7(7’) z1 (mod m/GCD(m,n)). (1.20)

2. Eisenstein sums

The following basic results concerning Eisenstein sums are implicit in the
work of Stickelberger [19].

Theorem A. (Stickelberger)

(a) [19: p. 338] B (ul) = E(wlP).

m

(b) [19: p. 339] E(u}) =
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f—1 . 1
P, if m { n[fll] ,
(©) [19: p. 339) E(wDE(wp) = ¢ oo n
s (a2, it mia[ £, mf n

(d) [19: p. 361] For i = 0,1,2,...,f—1 set

a; = least positive residue of p' (mod m). (2.1)

Let
A, = least nonnegative residue of tfl (mod m). (2.2)
0 —

Define the integer B, by

=1
B, = 'EO a;— Ag|/ m. (23)
1=

Then, for some prime ideal P of Yw,) dividing p, we have

m

[M]l[i’M]l

Ey(uy) = (1)1 750 [&] (mod #759). (2.4)

m

Next we relate E(wp) to Epl(w"

), where { is the least positive integer

such that m divides pl —1, so that £ is a divisor of f. The sum Epz(wg)

(a-1)/(pt-1)

is taken with respect to the generator 7y = v We prove

Theorem B. Let £ denote the least positive integer such that p! —1 is
divisible by m, so that { is a divisor of f. Then

f £/1

71 9, ¢(ug) .
() ey (B i mp a2,

gpi Uy o
B(uf) = y
(9,1(w3)) ‘ :

()t L2 (g ), if m a2 mla[2],
L, t
P (e, ', if mln[2ZF], mo n.
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Proof. From the Davenport-Hasse theorem [4: p. 153] (see also [17:
p. 197]), we have
f
7! £/1
Golwt) = (1) (G, (um)*. (25)

Also, as

ind (¥) = [5?:_}] ind,,(¥) (mod ¢-1),

= 1
where 7 = 7(q /(e D we have appealing to (1.12)

(2.6)

Go(wh)
E(wp) = R (by Theorem A(b))

IS YIE £/t
_ (Gl (by (2.5) and (2.6))

9,0 [wg(q-l ) /(p‘—l)]

£/1
gpt(ug) f/1

£/4-1
= (-1 E ,(wg
(-1) 9. [wg(q—l)/(p’—l)] (Bpe(wp)

by Theorem A(b).

(b): m[n(g:—%], m { n[%] We have
Gq(ug)
E(ug) = - 7 (by Theorem A(b))

£/t
_ (_1)f/”[c (w;;)] /o (by (2.5))

pl
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£/
=(4W‘B%ﬁm-[axﬁﬂm,

by Theorem A(b).
4=
(c): m|n(Lp_—i], m { n (so that m|n [1;%]) We have

Ol vn) (by Theorem A(b))

7 ()"

= - (by (2.5)

0 [pE )

5 (by Theorem A(b))

= pf/‘_l[Ept(WE)]f/l :

The special case of Theorem B when p = 1 (mod m), so that £ = 1, gives

the following corollary.

Corollary 1. If p = 1 (mod m) then

(Afdﬁggf ifmf f

EQ(wm) = gp(w; ,
wy))f

(—1)fM, if mlf .

Proof. As p = 1 (mod m) we have £ = 1. By Theorem B with n = 1

we obtain
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'_ 1 9p(wa)’ £ pi-1
( 1) £ Ep(wm))) if m* p_]_’
9, | w7
Eq(wm) = <

The required result now follows as

zl,Ll

p—1

f—1

-7

+ ...+ p+1 = f(mod m),

=]
BT =

and =g

The next theorem gives the value of Eq(wm) when there is an integer r

such that p" = -1 (mod m).

Theorem C.
p' = -1 (mod m).

Let p be a prime for which there is an integer r such that
Let £ be the least positive integer such that

pe = -1 (mod m).

Then, for f= 0 (mod 2{), we have

"=
24 f/2—1
ACRESC I
Proof. By Theorem A(a) we have
2 1
Eq(wy) = E(uwf) = E(wy) = ... = E(u},),
that is
E(wy) = E(ugp™), (2.7)

showing that E (w,) is real. Next set

=2 120, sodd, (2.8)
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so that
pIZ o e = [#* ] (1) = 1 (mod m). (2.9)

Then we have

p——l [’L——] [pf/zm+ 1] (pf/2r+ 1] [pf/2 + 1] = 0 (mod m),

f/z“1
(g-1)/ [—2—1 [pf/znl f/2r+1J [pf/2+1] = 0 (mod m),

so, by Theorem A(c), we have

By(wp)E(un™) = p2 . (2.10)
From (2.7) and (2.10), we deduce that
Ey(u,) = 8777, (2.11)
where 4 = 1.

Next, since p! = -1 (mod m), for k¥ = 0,1,2,..., we have (with the notation

of (2.1))
Sy (/1) if [k/f = 0 (mod 2),

™= G e if [k/4 =1 (mod 2).

S

r+1
n’ e {p“(i—l)ﬂﬂ }!

m
i=1 =0

b = (2.12)

Thus we have
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=2r1-_+lls [ﬁl [Ei}! oftlg lﬁl p(m—aj)J!
m m
i=1 =0 =1 j=0
1 odd 1 even
—1 [pa. 2's —1 pa. 2's
- (7 ) (7 b -
=0 =0
—1 [pa. pa. f/2t
=0
—1 [pa. pa. ff2
(5 Bl )
o
1 2]y
- T (—1)[’"]+] (mod 7)
=0
—1 pa;
72l [W]H
= (_1) ]=O (mOd p))
that is )
TN [ I
~1 [pa ~ |"m
kgo [Tk}' = (-1) J=0 (mod p).
Clearly we have
o = p* - mp*/m] (k= 1012,.)

so that

pa, k +1

k

2] = [ - s

(2.13)
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and thus

I
—
[ s~
<
S}
-
—_
|
—
3
[ S —
—~~
B
o
[o%
5
-~

that is

{—1 [pa ! .

Z [mk} 2 =D (mog 2). (2.14)
=0

From (2.13) and (2.14), we obtain

e
fﬁl [ﬂ]; - ) e

A= (mod p). (2.15)

Next, with the notation of (2.3), we have A, = 0 and

f-1
mB, = § &
k=0
oty
= % )Y Bi1)t 4
i=1  j=0
s 1 2t -1
=T T4+ T X (ma
=1 =0 =1 =0
1 odd 1 even
-1 1
= 2% ) ¢ +27s Y (m—aj)
J=0 J=0
= 2'smd,
so that
By = Zsl = Jj2. (2.16)

Hence, by Stickelberger’s congruence (2.4), we have
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(£/21) [ﬁ‘—éim—‘ll] f

2 f/2-1 £/2
E (wy) = (-1) /271 (mod p7?). (2.17)

From (2.11) and (2.17), we deduce that

(720 [2=im)

g = (-1) ,
so that
{_(m-1
(£/21) pi—(m-1) g
By(wg) = (-1) = )pf” %

This completes the proof of Theorem C.
We conclude this section with two lemmas which we will need later.

Lemma 1. For k = 0,1,2,...,m-1 we have

¥ oK@ )/m _ o, & m g_:_} .
aeF,
tr(a)=1

Proof. Let
Fy = {B € Fj|trn(B) = 0}.

It is easily checked that Ff; is a ( f-1)-dimensional subspace of the vector
space Fy over F. We let f,,...,0;.; be a basis for FZ over Fy, and let q
be a fixed element of Fy with ¢n(a;) = 1. Let a be any element of Fj
with ¢f(@) = 1. Then we have t{a-a) = 0, and so a—aq, € F:, and
thus @ = o, + f, for some f ¢ Fz. Hence every element of F having
trace 1 is given uniquely by

a = al + blﬂl = e bf'l ﬁf'l ,

where b,,b,,...,b;¢F, . Then we have, for k¥ = 0,1,2,..,m-1, by the

Multinomial theorem,
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2 ak(q—l)/m
o€ Fq
tT(a):l
- E (al + b, ﬂl + ...+ b, 'Bf-l )k(q—l)/m
bl""ybf-lpr
n, i
o 2 [, s Yo,
Mgy Myseeey Mgy

y bey€F,  mgt..t ng =kg-1)/m

(besfpt)

-z [, otim a g g fﬁl 3, 0]

Bgt...+ne =k(g-1)/m Ty Tgyeey Mgy

= » [
ngt...+n 5 =k(g-1)/m
plin,, . ..,p-1]ng

k(g1)/m ]a’:o ﬁ? ) ﬁ’f‘fll

Mgy Tgy-n ey Mgy

As m|EL  we have p-1 s , and so p-1|n,. Now Genocchi [9] has
= m 0

shown that
[al * 0y % owen # ar] = 0 (mod p),
Q4,895 ---50;
provided the nonnegative integers a,, a,, ..., a, satisfy

p-1la,..,p-1la, , a+a,+...4+a < p"-1

Thus we have

[ k(g1)/m ]

= 0 (mod
Toyye . s Ty (mod p)

for
1| ng.,p-1|ney , ng+ 0+ ...+ 0., = Kg-1)/m.

This completes the proof of Lemma 1.
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Lemma 2. Let h and k be integers such that
htk=g(p1), h20, k20

Then we have

ko 2k 1
h' = 12 k![%—]! (mod p).
(2k)!

Proof. Modulo p we have

() ()

[%] 2-4-6...(p-1)

11}

[%] 2-4...(2h)(2h+2)...(p-1)

- [%]2%! (2h+2)...(p-1)

= N
B2 ?  o-er2)- (o= (1)

%] M h 1 (-1)5(2k-1)(2k-3)...1

11

2k k!
p-1
2, 2 k (2k)!
= |=|2 '(=
P] ht) 22k p
Kk h!(2Kk)!
= (=1 ;
92Kk

completing the proof of Lemma 2.

3. Evaluation of Eisenstein sums: m = 2.

We prove the following theorem.
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Theorem 1.
pl £ 1,
1) 2 2 p? , if f= 0 (mod 2),
B =1 pmoo

(-1) 4 & pz_, if f=1 (mod 2).

Proof. The theorem follows immediately from Corollary 1 (with m = 2)
and the classical result

g (wy) = T2 (3.1)

see for example [17: p. 199]. We remark that for f= 0 (mod 2) the result
also follows from Theorem C.

4. Evaluation of Eisenstein sums: m = 3

In this case the condition mlpf—l holds if and only if

{(a) p
(b) p

Case (a): p = 1 (mod 3). By Corollary 1 with m = 3 we have

1 (mod 3), or (4.1)
2 (mod 3), f=0 (mod 2).

f

(=1 g_"i% , if f# 0 (mod 3),
Ey(wy) = Ip ; (4.2)
(—1)f gp}(}"”:&) : if f=0 (mod 3).

As p = 1 (mod 3) there are integers L and M such that

4p = L2+ 2TMA (4.3)

The positive integers |L| and |M| are determined uniquely by (4.3). We
specify L uniquely by choosing between L and —L so that
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L = -1 (mod 3). (4.4)

The two non-trivial cube roots of unity modulo p are %;g% and % .

-1
As gRT is a non-trivial cube root of unity (mod p), we can distinguish
between M and —M by choosing M so that

gp_fi—1 = % (mod p). (4.5)

The integers L and M are uniquely determined by (4.3), (4.4) and (4.5).
It is a classical result (see for example [10: pp. 443—444]) that

(Tp(wpw;) == (L + 3M[3),
w)? = — S (L+3M[=

gp(w3)® = —5(L-3M{=3) p,

~gp(w3)9p(W§) = p.

Subcase (i): f= 0 (mod 3). From (4.2) and (4.6), we have

£/3
By(w) = ()'g,(w)/p = 74 (LA

Subcase (ii): f= 1 (mod 3). From (4.2) and (4.6), we have

f-1
f-1 £-1 B (L+3M[=3) 7%
By(w) = (<) g™ = p7 (REHS T

Subcase (iii): f= 2 (mod 3). From (4.2) and (4.6), we have

g (ws)f
z ()t P
52 0(22)
_ (—l)f_l gp(w3)f+1

p



Eisenstein sums 569

£23 (F 4 3M[=3 ff’”
— 3

Case (b): p = 2 (mod 3), f= 0 (mod 2). Taking m = 3 and £ = 1 in
Theorem C, we obtain

Euy) = (1) §7 = ()t gt

This completes the proof of the following theorem.

Theorem 2. (a) If p = 1 (mod 3) let (L,M) be the unique solution of

4p = L* + 27TM?, L = -1 (mod 3),

S
F
ot~

* (mod p).
9T +1

Then we have

g
By(w;) = p°{3(L +3M3)

where

fl3 -1, tf f=0 (mod 3),
(f-1)/3, if f=1 (mod 3),
(f-2)/3, if f= 2 (mod 3),

13, if f= 0 (mod 3),
B =1 (/1)/3, if f=1 (mod 3),
(f+1)/3, if f= 2 (mod 3).

Q
I

(b) Ifp =2 (mod 3) then we have

By(wy) = (-1)7%"*L,

For some numerical examples illustrating Theorem 2(a) see Tables 1-5 at
the end of the paper.
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5. Evaluation of Eisenstein sums: m = 4.

In this case the condition m|pf—-1 holds if and only if

{(a) p =1 (mod 4) or
(5.1)
(b) p =3 (mod 4), f=0 (mod 2).

Case (a): p =1 (mod 4). As p =1 (mod 4) there are integers A and B
such that
p = A? + B~ (5.2)

If A is chosen to be odd and B even, the relation (5.2) determines |A|
and |B| uniquely. Replacing A by -A, if necessary, we may specify A
uniquely by requiring

A =1 (mod 4). (5.3)
As (¢B/A)* = 1 (mod p), (#B/A)? = -1, we may choose between B and —B
by requiring
-1
B/A = g%— (mod p). (5.4)

Thus A and B are determined uniquely by (5.2), (5.3) and (5.4). With
this normalization we have [10: p. 443]

gp(wy)? = (4+Bi)p'?
go(ud)? = H(4—Bi)p'/? (5.5)

go(wg, (wd) = (()ED

Next, by Corollary 1 (with m = 4), we have

w f
(-1)™ %‘i , if f# 0 (mod 4),
E(w,) = . 9p(w) (5.6)
g"(j") , if f=0 (mod 4).

Subcase (i): f= 0 (mod 4). From (5.5) and (5.6), we have
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Subcase (ii): f= 1 (mod 4).

Eq( w,) = .Qp( Wy

Subcase (iii): f= 2 (mod 4).
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A+ B 1p
£

4
p

=1
(A + Bi)/%.

From (5.5) and (5.6), we have

)f—l

= ((4+Bp/HT
f-1 f-1

= pi(A+Bi)T.

From (5.5), (5.6) and (3.1), we have

gp( w4)f

Ey(w,) = (-1) IACAE

Subcase (iv): f= 3 (mod 4).

£/2
(14 + Bip'Y) " o2
p (4 + B2

From (5.5) and (5.6), we have

P gp(w)’
T glud)
gp(w)™
(1)
= (4 +BYE ()T
= (-1)}5‘1 pf*il (A+ Bi)%‘l.
Case (b): p = 3 (mod 4), f=0 (mod 2). Taking m = 4 and £ =1 1in

Theorem C, we obtain
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f.p-3 f
p_4_ 1
E(uw,) = (-1)7 T p7 .
This completes the proof of the following theorem.

Theorem 3. (a) If p = 1 (mod 4) let (4,B) be the unique solution of
{p = A? + B?, A =1 (mod 4),
-1
= gp7— A (mod p).

Then we have

E(uw,) = ep®A + Bi)’,

q
where
{f/4 -1, if f= 0 (mod 4),
o

[f74], if f#0 (mod 4),

e {f/2, if £ 0 (mod 2),

2, if f=1 (mod 2),

1, if f# 3 (mod 4),

‘ {( 1)P1/4 if f= 3 (mod 4).

(b) Ifp =3 (mod4) and f= 0 (mod 2) then we have

Eyfw,) = ()5 gt

Some numerical examples illustrating Theorem 3(a) are given in Tables
6-10.

6. Evaluation of Eisenstein sums: m = 5

The condition m|pf~1 in this case holds if and only if
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(a) p = 1(mod 5), or
(b) p =23 (mod5), f=0 (mod 4), or (6.1)
(c) p=4(mod 5), f=0 (mod 2).

Case (a): p =1 (mod 5). As p = 1 (mod 5) there are integers z,u,v,w,
(see [5]) such that

16p = 22 + 50u? + 50v% + 125v7, (6.2)
zw = v¥— 4uv - ul.

If (z,u,v,w) is a solution of (6.2), all solutions are given by

i(z,u,v,'w), i(Z,—’l},’U,,—’U)), :t(z,—'u,,—v,'w), i(z,v,—u,—w). (63)

Thus the diophantine equation system (6.2) determines |z| uniquely. We
distinguish between z and —z by choosing

z = 1 (mod 5). (6.4)
Set
R=R(zyw) = z? - 125w?,
S = S(zu,v,w) = 2zu — zv — 25w, (6.5)
_ R—10S
e(z,u,vw) = RTT103 (mod p).
Then (see for example [14: p. 72]) e(z,u,v,w), e(z,—vu-—w) = e(z,uv,w)’
(mod p), e(zv,~u—w) = e(z,u,v,w)® (mod p), ez-u-vw) = e(z,uvw)

(mod p) are the four primitive fifth roots of unity modulo p. Of the four
solutions of (6.2) and (6.4), we choose (z,u,v,w) to be the one such that

¢ = dnuanl (mod 7 (6.6)

Then (6.2), (6.4) and (6.6) determine z,u,,w uniquely. For this solution

we set
1(z,u,v,w) = ;11[2:+ (ut2v) z',J10+2(5 + (2u-v) iJlO—2E + SwEJ. (6.7)

Then we have [14: Theorem 1]
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(T, (ws,w) = J(ws,w3) = 7(zu,v,u),

‘ J(w,wi) = I(wgwi) = 7(z,v,~u,-w), -
Jp(wg’wg) = Jp(wg)wg) = 'r(z,—v,u,—w),

LT (wh,wi) = Jp(wg,wg) = 7(z,~u,—v,w).
Now [12: Prop. 8.3.3]

-qp(w5)5 = p‘]p(w57w5)‘]p(w57w§)‘]p(w57wg)’ (6.9)
so that

gp(ws)® = p7(z,u,v, w) 2 7(z,v,~u,~Ww),

gp(wd)® = pr(z,0,~u,-w)r(z,~u,~v,uw), £5:10]

gp(wd)’ = pr(z—v,u,-w)*r(z,u,v,v),

gp(wg)® = pr(z~u,~v,w)*r(z,~v,u,-w).
Next, from (1.17), we have

95(w5)g,(ws) = gp(wd)gy(wi) = p. (6.11)

Appealing to Corollary 1, we obtain

f
(=1} f’% , if f# 0 (mod 5),
E_(wy) = (1) (6.12)

gp(ws) "
f 220 i £z 0 (mod 5).

Subcase (i): f= 0 (mod 5). From (6.10) and (6.12), we obtain

]fls/p

Eq(ws) = (—1)f[pr(z,u,'u,w)2'r(z,v,—u,—w)

= ()7 (g u,00) P r(z0-u-0) 7.
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Subcase (ii): f= 1 (mod 5). From (6.10) and (6.12), we obtain

By(wg) = (-1)g,(wy)™

f-1
e 5
= (—1)f 1[pT(z,u,v,w)"’r(z,v,—u,—w)]

f-1 2(f-1) f-1
— (—l)f_1 p5 7(z,u,0,w) m(z,0,-u—w) 5 .

Subcase (iii): f = 2 (mod 5). From (6.8), (6.10), (6.12) and (1.18), we
obtain

f-2
i L3
(_1 )f ! [pT(x) u, 7, ’ZU)2T( I, ’U,—’U,,—'ZU)] Jp(wsyws)

f—l f -2 2f +1 f -2
= (-1)"" p¥% 7(zyvw) S 7(z0,-u-w) 5.

Subcase (iv): f = 3 (mod 5). From (1.18), (6.8), (6.10) and (6.12), we
obtain

f
f—1 gp(ws)

By(wg) = (1)
! gp(wi)

= ()T gy (wy)

-

-3

= (0 o)) T Tpwpug (g ud)

£3
L o
= (—1)f 1[pr(z,u,v,w)zr(z,v,—u,—w)] 7(z,u,v,w) 7(z,v,—v,~w)

fq f:3 2f-1
= (-1) p® (z,u,0,w) 5 7(z,v,-u-w)

-

+2

“
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Subcase (v): f= 4 (mod 5). From (6.10) and (6.12), we obtain

f
f—1 gp(wS)

9p(w5)

Eq(ws) = (_1)

f+1
_ (_1){_1 gp(w5)
p
f+1
-+

(—l)f"1 [pr(z, 1, v,w)zf(z,v,—u,—w)] /p

=1 f-4 2f +2 f+
= (_1) pT(T(z,u,v,w))T dz,v,—u,—w)T.

Case (b): p=2or 3 (mod 5), f=0 (mod 4). Taking m = 5 and £ = 2
in Theorem C, we obtain

Eq(’ll)s) = (—]_)f/4(2\§._4)pf/2_1 — (_1)f/4 pf/2—1'

Case (c): »p

4 (mod 5), f= 0 (mod 2). Taking m = 5 and £ = 1 in
Theorem C, we obtain

E (w;) = (_1)’"/2(%&)1,{/2—1 _ (_1)f/2 pf/2—l.

q

This completes the proof of the following theorem.

Theorem 4. (a) If p = 1 (mod 5), let (z,u,v,w) be the unique solution of

[16p = z? + 50u? + 500 + 125w?,
w= v? - 4uv - u?,

iz = 1 (mod 5),

(2—125w2) — 10( 2 zu—zv-2 5vw) = 925'-1 (mod p).
[(z2—125w?) + 10(2zu-zv-25vW)

Set
r{z2,8,0w) = zlf(z + (u+2v) iJ10+2ﬁ + (2u—v) iJ10—2,]_5 + 5w,]_5J.

Then we have
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E(w) = epadz,u,v,w)ﬁ T(z,v,—u,—w)a,
where
f/5-1, if f= 0 (mod 5),
“= {[f/sl, if f#0 (mod 5),
[2//5], if f=0,1,3 (mod 5),
A {[2f/5] +1, iffz24 (mods5),
[f/5], if f=0,1,2 (mod 5),
6= {[f/s] + 1, iff=z34 (mod5),
(-1)f, if f=0 (mod 5),
‘ { 1) , if f# 0 (mod 5).
(b) If p=2 or3 (mod5) and f= 0 (mod 4) then we have
Efwy) = (-)7* 577
(c) If p=4 (mod5) and f= 0 (mod 2) then we have

Eqfuy) = ()75

For some numerical examples illustrating Theorem 4(a) see Tables 11-15.

7. Evaluation of Eisenstein sums: m = 6.

The condition m|pf—1 in this case holds if and only if

1

(a) p =1 (mod 6), or
(7.1)
(b) p =5 (mod 6), f=0 (mod 2).

Case (a): p =1 (mod 6). As p =1 (mod 6) we may determine L and M

uniquely (as in §4) by (4.3), (4.4) and (4.5). By Jacobi’s theorem [13:
p. 167] (see also [5: p. 407]) we have

;nd (2)gp(ws)9p(w3) = gp(ws)gs(wz) (7.2)
wgindg(Z)gp(wg)gp(ws) = gp(wg)gp(wz))
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so that (by 3.1))

in .(251)2
gp(wﬁ) = 'U)g dg(Z) 1(22—) pl/zgp(wii)/gp(wg))

gp(wp) = w;“dg(z) i 1)1/ 2g5(wd)/ g,(wy). e

By (1.17) or (7.3) we have

0, (w)g(wf) = (1) . (7.4)
Thus we have

T(wewg) = (g5(we)?/g,(ws) (by (1.18))
= ul™ e (1)" p g (w)/(g,(uD)? (by (7.3))
= M) (0)7/g,(ud)  (by (4.6))
= ()7 WD (uyu)  (by (118))
that is (by (4.6)),

T (wpwp) = (1) wi™e® [#B] (7.5)

Cubing the first equation in (7.3), and appealing to (4.6), we obtain
3(251)?2 3/2
9p(wg)® =1 (C2)" ¥/ 9p(w3)°/P*,
that is (by (4.6)),
-1 -1\2 2
g(wy)* = ()T LT[z + 39)) 572 (7.6)
Squaring (7.7) we deduce that
-1 4
g(up)? = ()T (L +3M73) . (7.7)

Also, by Corollary 1, we have
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1)y (w,)f f, if m s
O S e AN
gp(ws) /p1 if f5 0 (mod 6)
Subcase (i): f= 0 (mod 6). From (7.7) and (7.8), we obtain

Ey(wy) = (g,(we)")5/p

_ (_1)251-{; [L + 3Mj—§)2f/3p{/6—1.

Subcase (ii): f= 1 (mod 6). From (7.7) and (7.8), we obtain

Ey(wg) = gy(wg)™
_ [(_1)2;(L+3M;j]— 4p]f*6*1
- (_1)2’?'%1 pfi-l[“' gMJ—?’l%ﬁ_

Subcase (iii): f= 2 (mod 6). From (7.5), (7.7) and (7.8), we obtain

gp(wg)’

9p(w§)

Eq( 'ws) = -

f-

= — {(-1)”*3‘l [L—“L—gﬂg] 4p}ﬁbi/'p(wﬁﬂvs)

2f -1

8
A.04 ing (2) B (L + 3M{S3S

Subcase (iv): f= 3 (mod 6).

[N]

By (3.1), (7.6) and (7.8), we have

gp( ws)f
E (wg) = EACNE
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£/3
={@ﬁ¥ﬂ%¥“+”ﬂﬁrﬁﬂ}/ﬂ%Wfﬂ
_ PR [L+3M]:]—3 i

Subcase (v): f = 4 (mod 6). Appealing to (1.18), (4.6), (7.5), (7.7), and
(7.8), we obtain

gp(wﬁ)f
E (wg) = -
! 95(w)
f—4 [gp(w6)2 ’ gp(w§)2
= _gp(wﬁ 2 4
gp(wﬁ gp(ws)

= —g(w)) ™ (I, (ws,w))? J(wlud)

= —gp(ws)f_4(Jp(ws»w6))2 Jp(w3’w3)

2f +1

_ BB gind (2) LA (L4 3MZ3)T
= (-1) u, 8 p 5 .

Subcase (vi): f= 5 (mod 6). By (7.4), (7.7) and (7.8), we have

laq(iuﬁ) =

= g (w) ()T p

2f+2
NED

()7 pT [_BLJr SM — |

Case (b): p = 5 (mod 6), f= 0 (mod 2). Taking m = 6 and £ = 1 in
Theorem C, we obtain

B(uwg) = ()7

This completes the proof of the following theorem.



Eisenstein sums 581

Theorem 5. (a) If p = 1 (mod 6) let (L,M) be the unique solution of

4p = L* + 27TM?, L = -1(mod 3),

&

g‘ (mod p).
g 41

M =

Then we have

B(wg) = epa[%([; + 3MJ?§)]ﬂ,

where

fl6 -1, if f=0 (mod 6)
*= {[f/sl, if f# 0 (mod 6),
2f/3, if f= 0 (mod 3),
(2f/—2)/3, if f=1 (mod 6),
8 =1{(2f1)/3, if =2 (mod6),
(2f+1)/3, if f= 4 (mod 6),
(2f+2)/3, if f=5 (mod 6),

r( 1§Rr)[f/6], if f=01,5 (mod 6)
8= Sl 1§%_1)(f’3) if f=3(mod6),

(- 15%(“ wis?), if f=2(mod 6),

()P W2195®) i f 2 4 (mod 6).

(b) Ifp =25 (mod6) and f= 0 (mod 2) then we have

E(wy) = ()7 gL

For some numerical examples illustrating Theorem 5(a) see Tables 16-19.
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8. Evaluation of Eisenstein sums: m = 7

The condition m|pf—1 in this case holds if and only if

(a) p=1(mod 7), or
(b) p =24 (mod 7), f=0 (mod 3), or
(¢ p=35(mod7), f=0 (mod 6), or (8.1)
(d p=6(mod?7), f=0 (mod 2)
Case (a): p = 1 (mod 7). This case can be handled similarly to Case (a)

of §6. The appropriate diophantine system and Jacobi sums are given in
[6]. The details are complicated and will be included in a sequel to this

paper.

Case (b): p = 2,4 (mod 7), f= 0 (mod 3). Asp = 24 (mod 7) there are
integers G,H such that

p= G+ TH2 (8.2)

If (G,H) is a solution of (8.2), all four solutions are given by (:#G,xH).
We distinguish between G and -G by requiring

4 (mod 7), ifp
2 (mod 7), if p

11

2 (mod 7),

G = 4 (mod 7). (8:3)

Next we determine a unique solution S (mod p) of

S = -7 (mod p) (8.4)
by means of

52 () 4 209 305 4 a0 0P 6D (mod ). (85)
Replacing S by S+ p, if necessary, we can suppose that S is odd. As
H? = —G*|7 = (SG/7)* (mod p), (8.6)

we can distinguish between H and —H by choosing

H = SG/7 (mod p). (8.7)
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" The pair of integers (G,H) is now uniquely determined by (8.2), (8.3) and
(8.7).

As p = 2,4 (mod 7) the least positive integer £ such that =1 (mod 7)
is £ = 3. We first determine E‘ps(w7) = E‘p3(w7, 7(q_1)/(p3_1)). Appealing
to Theorem A(a), we have

Epa(wr) = Eps(“’?) = Ep3(w‘§),

2 w_ g g s (8.8)
pa('w7) = pa(w7) = Epa(w7)-

Thus Epa(w7) is fixed under the automorphism o, :w, — w2  Hence

E_o(w;) belongs to the field Qu, + vk +wj) = Q{-T). As E_4(w;) is an

algebraic integer, we must have Eps(w7) € Z+ Z[_l—'E—B] (the ring of

integers of Q({=7), which is a unique factorization domain). By (2.4), for

some prime 7 € Z + Z[_l—-gE] dividing p, we have
) = —p([g]![%ﬁ]![%ﬂ]!] (mod 72). (8.9)

As p = 77, from (8.2) we see that 7 = (G + H{-T) for some unit 6§ of
Z + Z(EQ—E] that is § = +1. Replacing # by —m, if necessary, we

may suppose that
m= G+ HJ|-T, where H = +H. (8.10)

Next, for p = 2 (mod 7), we have
)
LR o

(mod p) (by Wilson’s theorem)
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8"
=

-1/2G (mod p) ([7: p. 126])

(mod p)

and, for p = 4 (mod 7), we have

BB
(R oo

(mod p) (by Wilson’s theorem)

11
|
—~
8
o
(o9
S
~—

-1/2G (mod p) ([7: p. 126]).

Hence we have

B y(w;) = 77/(26) (mod ) (8.11)

From (8.11) we see that

B s(w;) = Ar, (8.12)

where \(eZ + Z[_l%E]) is not divisible by m. Mapping w, — uf in
(8.12), we obtain

Eps(w‘;) = X7. (8.13)

Now, by Theorem A(c), we have
E y(w))E 4(v)) = p, (8.14)

so that
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AX = L (8.15)
This shows that A is a unit of Z + Z[L;—It—?], thus
A = =1, (8.16)

From (8.12) and (8.16) we obtain
Epa(w7) = %7 (8.17)

Appealing to (8.11) and (8.17), we deduce that the sign * in (8.17) satisfies

+1 = 7/(26) = (7 +7)/(26) = 2G/2G = 1 (mod 7),  (8.18)

proving that the + sign holds in (8.17), that is
Epa(w7) =r=G +H{-. (8.19)

The next step is to show that H,=H As p = 2 or 4 (mod 7), the
cyclotomic polynomial

o,(z) = =+ ++ 2+ 2 +z41

is congruent to the product of two distinct irreducible cubic polynomials

modulo p, namely,

d+(2) = $7(2)07(2), (8.20)

where
$:(z) = 2 + [%ﬁ]z? + [i'r z -1, (8.21)
o(z) = 28 + [1%‘?]22 + [i;g— z -1 (8.22)

Hence, by Kummer’s theorem, the principal ideal (p) of the ring of
integers D of Q(w,) factors into the product of two prime ideals, namely,
{py = PPy, (8.23)

where

{P1 = (p,07(w)), Py = (p, $7(wy), (8.24)

N(Pl) = N(Pz) = pd
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Thus D/P, is a finite field with p3 elements. Hence there exists an
isomorphism 6 :D/P, — Fp3. Let A :D/P, be the canonical homomorphism
defined by

Ma) = a +P; (a € D). (8.25)

Set 7 = 8 o) so that 7 is a homomorphism such that

7 :D %29 Fy. (8.26)
Clearly we have 7(w,) # 0, otherwise 7(@) = 0 for all a€ D=

Zw, +2v] + .. + Zvj . Similatly 7(w;) # 1, otherwise 7(D) C F, .
* * — < 3

Hence 7(w,) € Fpa\{l} and so, as F; = (7,), where 7, = A1)/ (1)

we have 7(w,) = 'y]f‘ for some integer k, satisfying 1 < k, < p3® -2. Then

we have

7t = r(w) = (1) = 6A(1)) = &1 +P) = 1,

[E#]k where 1 < k < 6,

3_
and so (p3 -1)|7k,, that is Erl|k1 , say k,

showing that

3

r(w;) = ,YIk(Er'l), 1< k<6 (8.27)
Next, as
2(w7+w?[+w§)+1—5
) _
= (Bt + wh)p + @ur -1 +8) d3(wy)
€ (p, 97 (w;y)) = P,
we have

A7) = M2(w, +u? +ud) +1) = (2(w, +w? +wd) +1) + P, = S+ P,

and so
({-7) = 6(S +P)) = S. (8.28)

But, from (8.27), we have
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T({=7) = 7(2(w; +u} +wy) + 1)

I I GO IRTC

+ 1

O ) k()

+ 1

I
N

S
= {5 ik=12 (by (8.5)-
-S, if k = 3,56

Hence we must have
3

wy) = +X5T), k=124 (8.29)

Applying the homomorphism 7 to (8.19), we obtain
3
-l .
» 71k(Lr)mdql(a) = G + H,S (mod p),
(073 F;:;
tna)=1
that is
3
-1
3 &) = ¢ 4 B,S (mod p). (8.30)
Q€ F;a
tr(a)=1

But, by Lemma 1, the left hand side of (8.30) is = 0 (mod p), and, by
(8.7), the right hand side is = G + H,7H/G (mod p). Thus we have

0= G* + THH, (mod p),

that is (as G? = -TH? (mod p)) H, = H (mod p) and so H, = H as
asserted. Thus (8.19) becomes

B (w) = G + H[T. (8.31)
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Finally, by Theorem B, we obtain

E(w) = p/*UE y(w))” = s/ c+ BT,

1

3,5 (mod 7), f= 0 (mod 6). In this case £ = 3 is the
least positive integer such that pf{ = -1 (mod 7). Hence, by Theorem C,

Case (c): p

we have, as f= 0 (mod 6),

Eq(w7) = (_1)f/6(2}";’§)pf/2—1 — (_l)f/2 pf/2—1.

Case (d): p =6 (mod 7), f= 0 (mod 2). In this case £ = 1 is the least
positive integer such that p! = -1 (mod 7). Hence, by Theorem C, we
have as f= 0 (mod 2),

f/2(258)_f/2-1 f/2  f/2-1
Byfwy) = ()T = ()2 42
This completes the proof of the following theorem.

Theorem 6. (a) If p = 2,4 (mod 7) and f = 0 (mod 3) let (G,H) be the

unique solution of
(p = G* + THZ,

a = 4 (mod 7), if p =2 (modT),
=12 (mod 7), if p mod 7

[IT]]
1S

2}

_H = [ké [-;]7}((9‘7-—1)]G/7 (mod p).
Then we have

(b) Ifp =35 (mod7) and f= 0 (mod 6), or p = 6 (mod 7) and f= 0
(mod 2), then we have

E(w,) = (-1)7% 7>,

Some numerical examples illustrating Theorem 6(a) are given in Tables
20-21.
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9. Evaluation of Eisenstein sums: m = 8

The condition mlpf — 1 in this case holds if and only if

(a) p =1 (mod 8), or

(b) p=3 (mod 8), f=0 (mod 2), or

(¢) p=5 (mod 8), f=0 (mod 2), or (1)
(d) p=7 (mod 8), f=0 (mod 2)

Case (a): p = 1 (mod 8). As p = 1 (mod 8) we can define integers
A, B, C, D uniquely as follows:

p = A+ B,
-1 (9.2)
A = 1 (mod4), B-= g%_ A (mod p),
and
p = C? + 2D?,
zg_l %m (9.3)
C=1(mod 4), D=|g8% + g JC/? (mod p).
With this normalization, we show that
+7 .
J(wgud) = (1) F §309®) 4 4 i) (9.4)
and
T(wywg) = - (C+ D). (9.5)

We first prove (9.4). We have

(wg) g, (wd)
Jp<w8,w§)=% (by (118))
p 8
= (_1)28-_1 M (by (1_17))

9p(wh)
= (~1)ng_1 w; 2ndg(2) M

8 (by Jacobi’s theorem [(13:

9,(wg) p. 167)], [5: p. 407])
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(it s B0
9, (w})

= (c1)7F 3indg(2) —_—gp(w4)pgp(w2) (by (1.17))

— (1) g (DA B gy (5.5))

p
= (—1)%F §3ndg®) 4 4 py),
completing the proof of (9.4).
Next we prove (9.5). We have
gp(w8)2
Jp(wg,wg) = 9wy (by (1.18))
. g.(wg) g, (wh
= §andgd) M (by Jacobi’s theorem [5] [13])
9,(w})
. 9. (wg) 9, (w}
R el G (by (1.17)),
9,(wg)
that is
-1 =
Ty(wgug) = (15 %) g (wgud) (by (118).  (9.6)

As

o3(Jp(wewg)) = Jp(wiwg) = Jy(wguj),

we see that Ji(wgwi) € Qwy +w}) = Q{=2). Hence, as J (wgwd) is an
algebraic integer, it must be an integer of Q({-2), that is

J(wgud) € Z + Z[72.

The domain Z + Z{-2 is a unique factorization domain. Thus, in view of

Ty (wyud) Ty(whud) = p = (C+ Df72) (C-Df2),

we must have
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J(wgw) = 6(C+ DJ-2), (9.7)

where 8 is a unit of Z + Z[=2, that is § = #1, and D, = #D. Putting
(9.6) and (9.7) together, we obtain

T (wpwy) = (1)°F %@ g+ D). (9.8)

We next show that 4 = (—l)p_il. From (1.17), (1.18), and (9.7), we have
Iwgud) = (1 J(wud) = (1T AC+ D). (99)

Further, in the ring R of integers of Q(wg) (R is a unique factorization

domain), we have

p—
b [w;ndg(k)-l] [w‘éindg(l_k)—l = 0 (mod 2(wg-1)), (9.10)
=2

where wy—1 is a prime such that

(wg-1)(w§-1) = {2, (wg-1)(wg-1) =1 -4
(w—1)(wf-1) = (Z-12, (wg-1)(wd-1)(wi-1)(w5-1) = 2.

Expanding and summing the left hand side of (9.10), we obtain

Jo(wg,wg) = —1 (mod 2(wg—1)). (9.11)

From (9.9) and (9.11), we obtain (as C = 1 (mod 4) and D; = 0 (mod 2))
-1
(-1)"F ¢ = -1 (mod 2(ws—1)),
D7
proving that § = (-1) ¥ as asserted. Hence (9.8) becomes

I (wgug) = ~i"™?)(C+ D). (9.12)

The next step is to show that D, = D. As p = 1 (mod 8), the cyclotomic
8_

polynomial ¢4(z) = —%_—i = z* +1 is congruent to the product of four

distinct linear polynomials modulo p, namely,
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85(2) = (z- 9 )(z- TNz - P (z— 7Ty (mod p). (9.13)

Hence, by Kummer’s theorem, the principal ideal (p) of R is the product
of four prime ideals, namely

(p) = PPyPsP, (9.14)
where

P = (p, wg—gk(gsrl)% NP) = p, k= 135,T. (9.15)

Thus R/P, is a finite field with p elements. Hence there exists an
isomorphism ¢ :R/P, — F,. Let A :R — R/P, be the canonical
homomorphism defined by AMa) = o + P(a € R). Set 7= 6 o X so that

onto

7 is a homomorphism such that 7: R — F,. Clearly 7(wg) # 0 otherwise
*
7(R) = {0}. Hence 7(wg) € F, = (g) and so there exists an integer k,

(0 < k; € p—1) such that 7(w,) = gl:. Hence we have

D

¢ = (r(wg)® = (1) = G(A(1)) = 81+ P) = 1 (mod p),

so that (p-1)|8k, that is, &k, = [i’g—l]k, for some integer k(0 < k < 7).
Thus

r(wg) = 6T (mod p) (0 ¢ k< 7).

Next we have
72 - (4 409

= (w, + v - (9% + 40D

< =1 1
[ws—ng] [1 + ng+ gRg_ wg + w§]
€ P,

and so

A = P2+ P = (84000 4 py,
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giving
gp_é_l+ gs(né_l) (mod p).

() = oo + #U5) + p)
But
({72) = T(wy + w}) = Lo 4 A (mod p),

proving that k = 1 or 3. Hence we have

-1
(wg) = g(p_g—)k (mod p), k=1 or 3.
Applying the homomorphism 7 to (9.12), we obtain

p-1
2 sk(p‘il) (1_3)1‘(})‘5‘1) = _23(25’1) (C + Dl[g(p_g_l)k + gs(né_l)k] (mod p)

5=0
3(2)k
= 3¢y p(2D/C)) (mod p) (by 9.3)).
By the Binomial theorem we have

-1
R S (1-6 %) = 0 (mod p),
as
p—1
m { 0 Emod p;, m
-1 (mod p), m

»

n
I
—
Do
&

Hence we have CZ? + 2DD, = 0 (mod p), that is (as C? = -2D* (mod D))
D = D, (mod p), so D, = D, as asserted. The result (9.5) now follows

from (9.12).

From (1.18), (5.5) and (9.12) we obtain

wy)? :
s;p(ws) _ %04 (o4 prY), (9.16)
p( 4)
g(w)t = «A4 + Bi)(C+ DI (9.17)

Next, by Corollary 1, we have
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f

(-1)™1 A ) , if f# 0 (mod 8),
E (w,) = gp(w§
o 9, (wg)"

pp , if f=0 (mod 8).

Subcase (i): f= 0 (mod 8). We have

E(wg) = (9,(wg))"*/p (by (9.18))

(9.18)

= o34 + B4 (c+ D) (by (9.17)).

Subcase (ii): f= 1 (mod 8). We have

By(wg) = gy(w) ™" (by (9.18)
= (A + Bi)(C+ 1)4:5)2;;1/2)L_rl
— P4+ B)T(C+ DFQ')%I.
Subcase (iii): f= 2 (mod 8). We have

(ws)f
By(wg) = - jw—y (by (9.18))
= g (w2 (uguy) (by (118))

. f-2 f-2
= iy T4+ By T(C+ DR,

by (9.5) and (9.17).
Subcase (iv): f= 3 (mod 8). We have

w )
E'q(’ws) _ gp( )

(by (9.18))
gp(wd) ’

= g,(we) T (wywg) Jy(wgud)  (by (1.18))

(by (9.17))
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-1 f-3 f41 £-1
= ()T pF (A+B)T (C+DD)7,
by (9.4), (9.5) and (9.17), as indy(2) = 0 (mod 2).

Subcase (v): f= 4 (mod 8). We have

f
Ey(wg) = (-1) %(%)7 (by (9.18))

(9, (wg) )7
- () g—plT (by (3.1))

_ £/4
_ () (DA + Bz;g 0+ DY 1y (9.17)

= pF (4 + Bi)/Y(C+ D)2

Subcase (vi): f= 5 (mod 8). We have

w f
B (wy) = % :) (by (9.18))
gp wS
= g (w3)4 g (wg)g (wq) g (wg)2
= (2T g ot s 2L TR B iy (LT
% ) e )

= (1) g () () (w0 D) (b ud) (b (L18))
= pf‘ié (A+ Bz’)f*i‘l (C+ DF?)%_‘,
by (9.4), (9.5) and (9.17), as oy (J (wgwy)) = Jp(w§ui)-

Subcase (vii): f= 6 (mod 8). We have

gp(ws)f

Eq(wg) = (-1) (by (9.18))

gp w8

= (-1)gy(wg) (T (wgyg))® Jp(whwd) T (whud) (by (1.18))
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5 f-6 f+2
= %% p¥ (44 By T(C+ DT,

by (1.17), (3.1), (5.5), (9.5) and (9.17).

Subcase (viii): f= 7 (mod 8). We have

g (ws)
ww—;M)wnmm
f+1
_ g"(w*‘)_l (by (1.17))
(—1)% P

= () 5T (4+ B)T(C+ DT (by (0.17)).

Case (b): p = 3 (mod 8), f= 0 (mod 2). As p = 3 (mod 8) there are
integers C and D such that
p= C?*+2D% (9.19)

If (C,D) is a solution of (9.19), all (four) solutions are given by (xC,:D).
We distinguish between C and —C by requiring

C =1 (mod 4). (9.20)
Next we determine a unique solution K (mod p) of

K? = -2 (mod p) (9.21)
by means of

Kz4F + 73(%—1) (mod p). (9.22)

D? = —C?/2 = (KC[2)* (mod p),
we can distinguish between D and —D by choosing

D = KC/2 (mod p). (9.23)

The pair of integers (C,D) is uniquely determined by (9.19), (9.20) and
(9.23).
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As p

3 (mod 8) the least positive integer £ such that p!{ = 1 (mod 8) is
-1
{ = 2. We first determine Epz('ws) = Epz(ws, yP 1), Appealing to

Theorem A(a), we have
Epz(ws) = Epz(""g),

5 ) (9.24)
Epz('ws) = Epz(ws),

showing that Epz(wg) € Qug +wd) = Q(-2). As Ep2(w8) is an algebraic
integer, we have Epz(ws) € Z + Z{-2 (the ring of integers of Q({-2)).

Z + Z{-2 is a unique factorization domain. By Theorem A(d), for some
prime 7 € Z + Z{—2 dividing p, we have

Gl

Ep2(w8) = p ——— (mod 7?). (9.25)
il
2
As p = 7m, from (9.11) we see that 7 = +#C = D|-2. Replacing 7 by -,
if necessary, we may suppose that

T = C+ DJ-2, where D, = #D.
Now, as p = 3 (mod 8), we have

UGG
]! [25—1]'

5

1
—
=
(@]
A
3
-~

as
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1
25; = 2(—1)253_5 C (mod p)
%_
[7: pp. 111-112).

Hence we have

E (uy) = 71(-1)F(20)" (mod ). (9.26)
From (9.26) we see that
E fuy) = ), (9.27)

where A(eZ 4+ Z{=2) is not divisible by 7. Mapping wy — wj in (9.27), we
obtain

E (ul) = X7. (9.28)
Now, by Theorem A(c), we have

E (wg) E () = p, (9.29)

so that (using (9.27) and (9.28)) AX = 1. This shows that X is a unit of
Z + Z{=2, thus A = #1. From (9.26) and (9.27), we obtain

A= 7120 (mod 1)

(r+D()F (20" (mod 7)

= (20)(-1)*F(20)" (mod 7)
) (mod ),

+5
proving that A = (—l)p_B_, that is

+5 +5
B (wg) = (-1)'F 7 = (-1)T(C+ D). (9.30)
The next step is to show that D, = D. As p = 3 (mod 8) the cyclotomic
polynomial
8 _
dafa) = == = 2* + 1
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is congruent to the product of two distinct irreducible quadratic
polynomials modulo p, namely

$g(2)

NEIMEN
where

Og(z) = 2 - Kz - 1, ¢§(z) = 2 + Kz - 1.

Hence, by Kummer’s theorem, the principal ideal (p) of the ring R of
integers of Q(w,) factors into the product of two prime ideals namely

<p> =P 1P 29
where

Py = (p, O(wy)), Py = (p ¢3(wy)), MP) = NPy = p

Thus R/P, is a finite field with p? elements. Hence there exists an
isomorphism 6 : R/P, — Fp2 . Let A:R — R/P, be the canonical
homomorphism defined by

Ma) = a+ P, (a€R)
Set 7 = 6 o X so that 7 is a homomorphism such that

7R F g -
P
Clearly we have 7(wg) # 0 otherwise 7(R) = {0}. Also we have 7(wg) # 1,

f-1

*
otherwise 7(R) C F,. Hence 7(w,) € sz\{l} and so, as 7P ! generates

*
F , , there exists an integer k(1 < k, < p?-2) such that

£
T(wg) = 7[;:‘2__1]1‘1.

Then we have
f
s e

S (r(wg)* = (1) = (1)) = 81+ P) = 1 (mod p),

f_ 2
so that pf—IIS[%Q_—ﬂkl, that is ps—llkl, say
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and so

Next we have (recall (9.22))

72 - K = (B u)p + (K4 ubi(uy) € Py,

and so
A{-2) ={2+P =K+P,
giving
7({-2) = 6(K+ P,) = K (mod p).
But

T({=2) = 7(wg + w3)
ICE EICEOR
_ { K Emod pg, if k=13,
= |-K (mod p), if k = 5,7,
proving that ¥ = 1 or 3. Hence
T(wg) = 7(%1)1(, k=1 or 3.

Applying the homomorphism 7 to (9.30), we obtain

5 (@ - (4 DK) (mod p),

a€ F*,
P

tr(a)=1

2
where 7/ = 'y(q—l)/(p -1), that is

)3 Y (-1)5(C+ D,K) (mod p).

F*
ac€
p?

tf( a)=1

(9.31)
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By Lemma 1, the left hand side of (9.31) is congruent to 0 (mod p) and
+5
by (9.23) the right hand side is congruent to (—I)QT(C+ 2DD,/C) (mod p).

Hence we have 0

11}

C? + 2DD, (mod p), that is (as C? = —-2D* (mod p))

D, = D (mod p), and so D, = D, as claimed. Hence we have from (9.30)

E (wg) = (-1)*¥(C+ D). (9.32)

P

Next from Theorem B, we deduce

-

lgpz( ws)!f/z

[72) (Ep2(wa))f/2, if f= 2 (mod 4),

E (wg) = { 9pa(ws (9.33)
: £/2
9_o(wg )
e (E‘pz(wg))fﬁ, if =0 (mod 4).
-1
Finally, with - = 7;1’7, we have for 7 odd
gpz(u}g) = k%)F* wgind’x'(k) exp(2mik/p)
p
= kEF* wrsl(pﬂ)inds(k) exp(2mik/p)
€
p
p-1
= B (-1)™%® exp(2mik/p)
k=1
1
= kzl [%]exp(%rik/p),
that is, by (3.1) as p = 3 (mod 4),
g () = ip'?. (9:34)

p

From (9.32), (9.33) and (9.34), we deduce
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- ()7 57 er D,
q\Ws) =

f-2

if f= 0 (mod 4),
(-1) T

L2 f/2 .
p T (C+D[=2)"* if f=2 (mod 4).

5 (mod 8), f= 0 (mod 2). As p =
integers A and B as in Theorem 3, that is, by

(&) 9=

5 (mod 8) we determine

p=A4A"+ B,

A =1 (mod 4),
» ; (9.35)
B = gp7_As T4 (mod p).
Set m = indg(2). As p = 5 (mod 8) we have m = 1 (mod 2). Thus, as
(B/A)? = -1 (mod p), we have
T = (T = [g%_ll = (B/A)® (mod p),
that is

"7 = (—I)E'A;—1 B/A (mod p).

(9.36)
Hence, from the work of Gauss [8] (see also [6], [11], [15], [20]), it follows
that

B = 2(-1)(™ /2 (;mo4 8). (9.37)
Before proceeding we prove a lemma we will need.

3p-T7
Lemma 3. .

(—l)p_gl'ﬂ&—l 2B (mod p).
e

Proof. We have

3p-7 [357],
8 g )
9] (p-1
i [pg— )
3pt+1),

" B
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(-1)F P [P—;—l]l
(&) (&) (%)
2] S

- ()T ()T L. (24)-(1) (mod p)

(mod p) (by Lemma 2)

(-1)°F o (mod 7)

+3 ,m-1
= (<) 7 2B (mod p),
ot -
where we have used Gauss’s result 24 = [ 1 (mod p). This completes
2

the proof of Lemma 3.

The least positive integer ¢ such that p! = 1 (mod 8) is £ = 2, so we first
q -1
determine Ep2(w8) == E‘pz(ws, yP - T). Appealing to Theorem A(a) we have

Epz(we) = Epz(wg)v Epz(wg) = Epz(wg)~

Thus Ep2(w8) is fixed under the automorphism oy :w, — wj .

Hence
Ep2(w8) belongs to Qu?) = Q(i). As Ep2(w8) is an algebraic integer, we
must have Epz(ws) € Z + Zi (the ring of integers of Q). Z + Zi is a

unique factorization domain. By Theorem A(c), we have
E_y(ws)E ,(w5) = p, (9.38)
so that in view of (9.35) we must have
E‘pz(wg) = §(A+ Bi), (9-39)
where # is a unit of Z+ Zi (that is § = #1,#:), and B, = #B.

g_z-_l_

We show first that § = #i. We have (setting 7* = P %)
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7 7
L g = B X (@)
=0

k= k=0 o€ F*,
P
tr(@)=1
7
R L yfindy, (@)
ac F*, k=0
p
tr(a)=1
_8 3y 1
at F;2
tr(e)=1
ind.,(@)=0 (mod 8)
that is,
5B 1) = 0 (mod 9
E = 0 (mod 8). (9.40)
K2y e
As
Epz(l) =P (§1),Ep2(w8) =1 (Theorem 1),
(9.41)

Ep2(w4) = A + B, E'p2(w2) = A-Bi, (Theorem 3(a)),

we obtain from (9.40) and (9.41) (noting p = 5 (mod 8), 4 = 1 (mod 4))
Re(Epz(wS)) = 0 (mod 2),
proving that # = #i. Thus we have

E‘pQ(wg) = pi(A+Bpj), B, =B, p = l. (9.42)

Next we show that p = (—1)(m_1)/2(Bl/B). By Theorem A(d) we have

i f2)

E (wg) = p ———— (mod 7?), (9.43)
J
¥
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* where 7 = A+ Bji. As p =5 (mod 8), appealing to Wilson’s theorem and
Lemma 3, we obtain

)y

G ]

= (—1)&5'1/23 (mod p).

Hence we have from (9.43)

m+1

B j(wy) = 77(-1)F (2B)"* (mod ),
and so, appealing to (9.42), we obtain
pi = 7(~1)"T(2B) (mod 7)
= (F-m)(-1)"T(2B)" (mod 7)
= (-2B)(-1)"T(2B)" (mod )

m-1

= (-1))"(B,/B)i (mod 1),

m-1

proving that p = (-1) Z(B,/B) as asserted. Thus we have shown that

B (ug) = (-1)"7(B,/B) i(A + Byi), where B, = +B.  (9.44)

Next we show that B, = B. As p = 5 (mod 8) the cyclotomic polynomial

8_
di(2) = %‘f——i = z!' 41 is congruent to the product of two distinct

irreducible quadratic polynomials modulo p, namely
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05(2) = 45(2)05(2),
where

bya) = 2-g7, ¢¥(a) = 2497

Hence, by Kummer’s theorem, the principal ideal (p) of the ring R of
integers of Q(wg) factors into the product of two prime ideals, namely

(p> = P1P2 )
where
Py = (p, §s(wy)), P, = (p, qf;(%)): N(P) = NP, = j

Thus R/P, is a finite field with p? elements. Hence there exists an

isomorphism 6 : R/P, — Fp2 . Let A:R — R/P, be the canonical

homomorphism defined by Aa) = a+ P(a € R). Set 7 = fo ) so that 7
onto

is a homomorphism such that 7: R — sz. Clearly we have 7(wg) # 0,

otherwise 7(R) = {0}. Also we have 7(wg) # 1, otherwise 7(R) C F,.

QQ-I_

* *
Hence 7(w,) € Fp2\{1} and so, as 7P ! generates sz , there exists

an integer k(1 < k; < p*—1) such that

f-1
[27)
(wg) = y\PV
Then we have
f
S(R,;l]k
y W = (r(wg))® = (1) = 6A(1) = 61+ P) =1 (mod p),
f_l . 2_1 2_1
so that pf—1|8[%£—1]k1, that is 3‘78—|k1, say k, = [LS-]k, 1< k<,
and so
f )k
T(wg) = 7[%—1] ; 1Ek<T.

Next we have

-1 -1 _
i—gpq_ = wg_ggr = ¢g(w,) € Py,
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and so
Mi) =i+ P = gpi'l+ |
giving
7(1) = g%_1 (mod p).
But

(i) = r(wd) = T = 5 (mod p),
showing that ¥ = 1 or 5. Hence we have
{w) = 'y(gi—l)k (k = 1 ot 5).
Applying the homomorphism 7 to (9.44) we obtain

@ 2 ()% (/BT (4 + B, "T)) (mod p)
a€ ;2

t{a)=1
a;L

where v = 71’-" , that is
2 ak(p_g‘l) = (—1)&5‘1 (Bl/B)g(p—i_l)k(A + B, 9(24-_1)) (mod p).

ta)=1
Li_l
By Lemma 1 the left hand side is 0 (mod p). Hence, as ¢ ¥ = B/A
(mod p), we obtain A + (B,B/A) = 0 (mod p), showing that B, = B
(mod p) (as A? = -B? (mod p)), and thus B, = B as asserted. Hence we
have
m-1

B y(w;) = (-1) T i(4+ Bi). (9.45)

Next, appealing to Theorem B, we have
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£/2
/e 1%]/2_ w)’? | if f# 0 (mod 8),
2
. (9.46)
£/2
”"*Z’“ (B, 3(w))"*, i /2 0 (mod 8).

—1)/(p2—
Finally with 7 = ,y(q D/(P*1) we have for any integer n

g(w}) = & 4 uf™® exp(2rityp)

ke Fp

— & o wf(PFHD)indg(k) exp(2mik/p)
keF, "

DY N winindg(k) exp(2mik/p)
ke F,
= gp(win)
This proves that the value of gp2(w§) only depends upon n (mod 4) not n
(mod 8). Appealing to (3.1) and (5.5), we have

(A—Bi)p/?, if n= 1 (mod 4),

2 wy 2=
R S o S

gpz(w4)=271/2, if n=2 (mod4).

Putting (9.45), (9.46) and (9.47), together we obtain

[ af

pilA+ BT/t if =0 (mod 8),
ind 2) - 3f-6 +2

ey T (4 BT i f= 2 (mod 8),
Eq(ws) =3

B4 /844 g/, if f=4 (mod 8),
ind - f-

= T (4 +B9) D/ i F= 6 (mod 8).

(d) p =7 (mod 8), f= 0 (mod 2). By Theorem C, with m = 8 and
{ =1, we have
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f(p-1

f/2—1

Ey(wy) = (-1 /21

This completes the proof of the following theorem.

Theorem 7. (a) If p = 1 (mod 8), let A,B,C,D be the unique integers given

by
{p = A’ + B,

A =1 (mod4), B= . A (mod p),
and
p = C* + 2D%,
C =1 (mod 4), D = g%l + 93(23-—1)] C/2 (mod p).
Then we have
By(w,) = ep%(4 + Bi)’(C+ D[2)’,

where
1, if f=0,1,4,5 (mod 8),

(0T, i 7237 (mod 8),
i."sindg(2), if f=2(mod 8),
Z.lndg(2)’ if f= 6 (mod 8);

{f/8 -1, if f= 0 (mod 8),

“Tlge, 0 (mod sy
(f/4, if f= 0 (mod 4),
%l, if f=1 (mod 4),

s =122, if f=2 (mod 8),

%—2, if f= 6 (mod 8),
%;1, if f= 3 (mod 4);
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f2,  iff=0 (mod?),
6= (f_l)/2; foE 1,3 (mOd 8)7
(f+1)/2, if f= 5,7 (mod 8).

(b) Ifp =3 (mod8) and f= 0 (mod 2) define the integers C, D uniquely
by
p =C?+2D% C=1 (mod 4),
-1 -1
D = ['yg_r + 73(93_)}D/2 (mod p).
Then we have

(1) pt/*(cr D) /2, if f= 0 (mod 4),
Eq(ws) =

1y T (=D 0y D)2 if = 2 (mod 4).

(c) If p =5 (mod 8) and f = 0 (mod 2) define the integers A, B
uniquely by

p = A? + B, A =1 (mod 4),
B = ggiL A (mod p).
Set m = 1indy(2). Then we have
(37424 4 Bi)/ 4, if f=0 (mod8),

m-1 3f-6 f+2
(-1)Z ip & (A+Bi)T, if f=2 (mod38),
Eq(wg) = 3f-4 £/ 4
55 (A+ B4, if f= 4 (mod 8),

m-1  3f-2 £-2
(-1)Z ip 8 (A+Bi) T, if f=6 (mod8).
(d) Ifp =17 (mod8) and f= 0 (mod 2) then we have
By(wp) = (-)FF) 472

Some numerical examples illustrating Theorem 7(a), (b), (c) are given in
Tables 22-31 in §11.
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11. Tables

The values of the Eisenstein sums given in the tables below were computed
on a Honeywell DPS 8/47 computer at Carleton University. The programs
were written in PASCAL. For each prime p and integer f > 2, an
irreducible polynomial zf + ap st 4+ L+ o,z + a, (mod p) of degree f

was found using a modification of Berlekamp’s procedure. This gave a
concrete realization of pr as

Fe= {oo+bz+ ..+ 2™ 2t = —ap zf- a0z - g}

¢ ; (pf-1)/p;
A generator v of pr was then found by checking that 7 # 1, for
every prime p;|pf —1. The sum Eq(wn) was then calculated by means of
the formula

m—1
Byfug) = 5wl card {sl0¢s <L, s- [%] indy(tr(7)) = ¢ (mod m)}.

m
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TABLE 1
m=3 f=2 p=1 (mod3) (a=0,8=1)

T Fa=(7) Epa(w3) ggiet | %5 L M | YL+3My=3)
7 Zzz_é+z L(-1+3V=3) 3 2 1 +1 -1+ 3v/=9)
13 LI 2T | L5+3/59) 2 3 +5 | +1 1(5+3vV=3)
19 LI P | H-T+3V5) 2 7 -7 | 41 | Y-7+3/5D)
31 LI AT | L(-a-6v53) 3 25 -4 | -2 | Y-4-6/73)
37 ;’zz §+r 1(11-3v=3) 2 26 +11 | -1 111 -3v=3)

TABLE 2
m=3 f=3 p=1 (mod3) (a=0,8=1)

it Fr= Ep>(ws) g=yrat | 5 | L | M| iE+mvTI)
7 LI 3ET | A-1+3v5D) 3 2 | -1 | 41| Y-143v5)
13 Zaz_gfi 3(5+3v-3) 11 3 5 | +1 1(5+3v/=3)
19 1,2 342 | H-7-3v=) 10 11 -7 | -1 | Y-7-3/=3)
31 T Z _g ti 3(—4-6V-=3) 3 25 —4 3 (-4 -6/73)
37 ;’3§_§f§ 111+ 3/73) 32 10 +11 | +1 L(11 + 3V/=3)
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TABLE 3
m=3 f=4 p=1 (mod 3) (a=p=1)
= W =1 - ==
Pt F= Eype(ws) g=pat | 5 | B2 | M| pGE+IMVT)
7 T Z _gf%iz 1-1-21-3) 5 4 = =1 H-71-21v/73)
13 1.2 _3 Hez 1(65 + 39v/=3) 1 3 +5 +1 1(65 + 39v/=3)
19 YZ_1E2 | H(-133457V53) 3 7 -1 | 41 | L-133+57vD)
TABLE 4
m=3 F=5 p=1 (mod3) (e=1,£=2)
= . =1 o
(fm:i ;) = Eps(ws) g= 7%—_1_ gle_ L M p(3(L+ 3M\/—3))2
7 LI I o | Hea-21v5)) 3 2 1| 41 1(~91 — 21/73)
13 YZ f g2 | 3(-13-195V-3) 7 9 5 | -1 | 4(-13-195v73)
TABLE 5
m=3 f=6 p=1 (mod3) (a=1,08=2)
b Fo= Eps(ws) g=t | 5 | L | M | p(i+3MyT)
¥y = 24z 1(-9]1 — = = Li_91 - -
7 %= 2+ | dee-21vm9) 3 2 1| +1 (=91 - 21/=3)
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TABLE 6
m=4 f=2 : p=1 (mod4) («a=0,8=1¢e=1)
=1 . _ -1 < .
(‘r’nod 4) FP’ - (7) EP’ (wq) g= 7)!’-_1 g%’ A B A+ Bi
5 LS 24E ] paw 2 2 | 41| 42| 142
13 LT e | a4 2 8 | -3 | +2 | -3+2
17 Lo 5% | a4 7 4 | 41| 4| 144
29 LI Y| s+ 14 12 | +5 | 42 | s+
TABLE 7
m=4 f=3 : p=1 (mod4) (G:O”B.:Q,g:(_l)(}’—l)/“)
= . - » .
i Fi={ Ep(ws) | g=qi1 | 55 | 4 | B | (-1)C-V/44+ Bip?
5 = 4T 3—4i 2 2 +1 | +2 3—4i
r=-1-z
13 T,= 4+= —5—12i 11 5 -3 | -2 512 .
z°=-5—-1z
17 Tg— = —15—8i 14 13 +1 —4 —15—8i
r=-3-1z
29 7,= 14z | 91490 27 17 | 45 | -2 —21 + 208
r =—-4—1z
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TABLE 8
m=4 : f=4 : p=1 (mod4) (a=0,8=2c=1)

e i) Fpu=1(3) Eps(ws) 7= 7,‘;—} i | A | B | (A+Bip
5 el ~B— 3 s (w2 2-u
13 3L o 5412 11 5 -3 | —2 5+ 12i
17 LI e | s 7 4 | 41|+ | 1548

TABLE 9
m=4 f=5 p=1 (mod4) (a=1,8=2,€e=1)

o Fa= Eps(ws) geqrt | | A | B | sa+Bi
5 I 4tz | -15+20i 2 2 +1 | 42 [ —15+20i
13 YT E | o556 7 5 | -3 | -2 | 65+156i

TABLE 10
m=4 f=6 p=1 (mod 4) (a=1,8=3,e=1)

Ak Fre=(7) Ep(ws) | gt | %7 | 4 | B | pla+Bip

5 Y= _ 2%z, | -s5-10i 2 2 | 41| +2 | -55-10i
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(§ASF + ST — OTA6E + IAT + 0T AT +11-)} 1'0'c—‘6- 81 lid (8/SV + 92T = 0T A8 + 9AT + 01 AT + 11-)} ”“m- =% 1
(Gra+8rs = 0IAIBE —GAT+HOTAB= 1= | 1=1=g=11 | o1 ¢ (Gre+9pL—0TAIE - AT HOI A6 - 1)) | 21t Z€F 1t
(GAG+ AT = 0T AL = AT + 0T A9 - 18-)} 1=0'1-"1 § L (pre+spt-aipn-spetap-1e-)t | FTIT I 1

(m='n=‘a‘z)s(m‘a‘n‘z)st m'a‘n'z _lmam “Jnmh U (sm)edg () =+ ﬁ” vmez%
(1 =31=9'1=¢g'0=») (gpow) [=d : g¢=/ g=w
21 a14VL
(5784522 =01 A6 = GAT +OT A = 1)] - =1 6 (4 (876 = AT — 01 A6 +§AT +OT A + =)} »+M Z4% 19
(SPrS =8/ T =0T ME+SAT+HOTA = 6-)1— | 1-‘g—‘0'6— 18 L (919 +9/T = 0N = AT +0T A9 +6)} ~+annm v
(9AG = 9AT = 0L AL = QAT+ OTA = T4 = | [='1='g='11 | o1 ¢ (Gre+gre—otMe+gpe ot +1I-)F | L, 8T 2 1
(3re+ A2 = 0IA = SAZ +OT AR + 1)}~ 1'1'o't b 4 (8rG -9 T~ 01 A+ G T+ 01 A — =)} a+w z4 1
?—.:.:.val m'a'n'z Almlmu mb =5 An3v.a.w AC = .m ﬁw Wo:%
(1-=3'0=91=¢'0=0) (gpow) 1=d : z=f : g=w
11 414Vl
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(AT + AL~ 01AKGLT + SATHOLAZZ ~66)% | 19-0'1 | ¢ 9 (8rsLe+ AT - 01AKIE + GAT HOLANzE - 66)F | *T T2 T 1
—inetat et - 4k =56
(m—'n="a‘'z)1,(m'a‘n'z)sd nla'ntz ﬂmdq ,T.-_ (3m)edg (&) = o Aw Molnv
(1==3'1=92=¢'1=0) (gpow) 1=d : 9=/ g=w
91 @1avL
(6152 = §/2 = OLM0L = SAT LM = 68)F | 1-'0'1="1 | ¢ L (962 = §AT = 01 M0% ~ SAT 01 Mgz —68)} | &7 7T T ET D] 1
(n=‘n=‘a‘z)s,(m‘a'n‘z)s~ mla‘n'z _lmhm “l.n.ml. =6 (sm)rdg (ky = ¢! J WZ%
(1-=23'1=9'7=¢g‘0=») (gpow) 1=d g=/ g=w
¥ 314dVL
(G0 = GAT ~ 0T AMGL ~ GAT HOTA06+186)F | 1-'g—'0'6— | 18 61 (6P - AL - OIAISL ~SAT +OLM06+186)F | 245 'L b
(87521 = GAT = OLAIOL +SAT +OTAISET+60MF | 1g—'1'11 8 4 (greet - AT - 0T A0L + GAT +HoLAmser +eon)} | T ET I 1t
(S92 + AT = 0T ALGT + AL + 0T AL0Z = 68)} 19-'04 ¢ 9 (P +gps -0+ gpT oA —69)F | ST I 1"
(m=‘n~"‘a‘z)s,(m‘a‘n'z)s- mia‘n'z .3 (3m)rdg (1) =4 AN _M:%
(1==31=92=¢d'0=9) (gpow) 1=d : p=/ ¢=w

€1 3714vyL
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(g=pL+1-)% 1 - | 1+ 9 z Ept1) | 24l Z I
E=pE+e w |- | - | w ¢ tpe+e | o482 1g
(e=pe+ D} 1 T RV B z E=prs+Df | 248 = o1
(g=p + L-)% I + | o+ £ z Epr+1)% | 240 £1
(g=p +9-)¢ 2 i+ | - z £ Ept+e)d | 24872 L
EAHE+ D@l 5,07) | @pu | W | T | &° | == (>m)eig (k) =< e
1=d z={ 9=1w

::;%3%2 =)=3‘1=¢'0=0) (9 pow)

91 1dVL
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TADLE 17
m=6 : f=3 : p=1 (med6) (e=0,4=2c=(-1)0-D)
oA Fo=(1) Ep(we) = Il B T W (R V=)
Cazs e | s | [ e wees
B | LI 4| e | 3|+ [0 -1
oo [ nz3tzfyen-avm | o0 | on |7 o Sl
a | Lz 42| m-nvT 3 L e o
7| LI 3P| deenv 32 100 fhil ] AERS)
TABLE 18
m=6 f=4 : p=1 (mod6) (a=0,B=3,¢c=wiD)

i i) Fo=( Epe(ws) g=pt | S| L | M| 4D | L3O (4L +3M VD)’
. 12342 | tar-19v9)) 5 4 =1 | =1 4 J07-19v=3)
13 BE Awe 1(89 + 17V=3) 1 3 +5 | +1 7 1(89+17V=3)
19 7 z_é’:%;, 1(107 - 73V/=3) 3 7 -7 | +1 7 $(107 - 73v/=3)
31 LI 3F5. | 14—V L2 | el = L 154 =48¢ES

TABLE 19
m=6 f=5 p=1 (mod6) (a=0,8=4,ec=+1)

&5 :) =0 Eps(ws) 9= 7::_: 9%1‘ L M (3L + SM‘/_—:D)’
T 5B Tieee | WSS 3 2 [ -1 R4V
5| BI Leop | MR |1 e s o | TV
19 L2 AT | s -23ve) 3 4 =7 |+ | -e0 -2V
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TABLE 20
m=T7 : f=3 p=2or4 (modT7)
=2or4 S= 3 k) k(!;_l)
ity Fr=(7) Eps(w7) = ,?; () G H | G+HV-T
(med p)
11 Y 4= 2-/=7 2 +2 | -1 2-/=17
23 sz 5 . 4-/=7 4 +4 | -1 4—/=T
37 LI 3TE | -3-2vT 17 -3 | -2 | -8-2/=F
53 L2 2 .| 527 24 -5 | -2 | —-5-2V/=7
67 L 3PT | 243V 44 +2 | 43| 243v/=7
79 LIE g1z | 443V 25 +4 | 43 | 443yF
TABLE 21
m=17 ¢ [f=6 p=2or4 (mod7)
& Fiord s=% (4 (=)
e F=0) Epe(w) =56 ¢ | # | p(G+avT)’
(mod p)
11 I _AtE | -84V 9 +2 | 41 | -33444/7
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181 — 18— /8L — 18— T-p- =2
m\,mﬁxmvmﬂ 9- | 1+ | 8t | e~ 19 oy 15 92 A L/ 8p - ¢ z4g =k £l
LMz = 11+ i INIARIARS T-[-= 2
I\/.Mw/m:wwmﬁ b+ = yt+ g+ I 6 8¢ 62 W\/mwzm:.m.nﬁ T4+¢ .II.n\.. Ty
S AR AGS 1 -lt T=f==¢t
\,.m\,w mmn = | e= | = | 1+ L it 6 2 .m\,mm\,w ° ¢— z ="k i
E=AG+ONg+V)era-0U-) | @ | 0 | @ | v | ()t &0 | &l | &0 | k=t (*m)'q me=ty | MEY
(g/a-(1=)=3‘1=9'1=¢'0=») (gpow) y=d =f ¢ g=w
€2 41dVL
i— =,
2=po-1 o | o= | 1+ 19 o1 v =M1 | z4p 2% oL
=pr—¢ vl v+ | e- 1 8¢ L =Pt u+m|M,M 144
=prte o1 - | &~ L S L =rrte u+M| =% L
@=pra+0)aypuet | @'m | @ | O | ()Pt &S| (&0 | =t o)ty | =y | OEY
(@yrpugt=3‘1=9‘'0=¢g‘0=») (gpow) 1=d : =/ : g=w

¢ 474VL




A8E + 1081+ _ gM8e +i081+ | z-z-9-=
ATl - o e+ | o= | vk | 1+ or v 1 Y ATaL = S =
dezpra+olta+y) | a | o | @ | v | (L)l Tt | &0 | b=t (em)eig )
(1=3'¢=91=g'0=0) (gpow) 1=d : g¢=/ : g=uw
ST A1AVL
MOt + 1999 _ _ MO8 + 1995— g- =
[N TRt L L I L 1 o ol M6 +812 Tt =
ZA021 + 126+ _ . M0TT + 156+ g- =
396 + 811~ Lol B Bl 0¢ % L LA96+ 811~ ity =
LA+ e AR
LABh - 1 e= | e= | vt | 1+ L v L LARE - 1 PP
Qopratolta+v) | @ | 0 | 8@ | v | Rttt | gttt (em)rig W) sy

(1=32%2=91=¢g'0=n) (gpow) 1=d : p=/ : g=w
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TABLE 26
m=28 f=2 p=3 (mod 8)
p=3 . _ _ st 3(5h)
oamy | Fo= Ep(ws) | K=7% +7 c | o | )¥c+ovd
(mod p)
3 vy =142z Zi—=3/22
z2=2 2 2 +1 +1 =1 = /-2
11 1,=2+z | 3472
z2=2 =k 3 -3 +1 =33 /=2
19 T2 h2 | —1g3/0p 13
z2=2 +1 -3 —-1+43/-2
43 LISHE | s5+3v2 27 +5 | +3 54372
TABLE 27
m=38 f=4 p=3 (mod8)
=3 = _emt o 3(t
(mod 8) =0 Eps(ws) K=y s +7 (%) c D | —(C+ DV=2)?
(med p)
== 1
4 LI 5 1+2v=2 1 +1 | -1 142v/=2
11 Teo 2t N =)
zt=-2-222 8 -3 -1 —7—-6v/—2
= 1
19 7 :_24:3;2 17-6V=2 6 +1 | +3 17— 6V/=2
= I
43 LZ 3%, | -1-30v/-2 27 +5 | +3 —7-30V=2
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TABLE 28
m=8 : f=6 : p=3 (mod38)
= _ _ =t 3(%5h) _3
= Fpu=(1) Epe(ws) K=ys 498 ¢ | D | (-1)% pC+DV2)
(mod p)
3 7,= 2+ 15-3/732 1 +1 | -1 V=2
26=—1-z-2? St i - w8-8v-d
11 Te= _‘l’ tz L2 | 99+215v/~2 8 -3 | -1 99 + 275v/=2
TABLE 29
m=8 : f=2 : p=5 (mod38)
e g) Fa=( | Bpws) | 9 | 25 | 4 | B | ind2 | (—1)@2-1/2 (4 4 Bi)
5 LI | 24 ) 2 2 +1 | +2 1 247
13 Loits | 2-3 | 2 8 -3 | 42 1 —2-3i
vy =4+z - B 2 {
29 a2, 2 +5i 14 12 +5 +2 13 —2+5i
37 e 6+i 2 31 +1 | -6 1 6+i
53 Z,f§+z =2=7 | 2 30 =7 | 42 1 =7
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