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1. Introduction. Let Q denote the field of rational numbers and let K be a cyclic extension of Q
of degree 4. The unique (real) quadratic subfield of K is denoted by k. The class number of K
(respectively k) is denoted by h(K) (respectively h(k)). Tables of the class numbers of real cyclic
quartic fields have been given by Gras [6]. In this talk we describe the calculation of tables of h(K)

for imaginary cyclic quartic fields K.

2. Cyclic quartic fields. In 1980 Edgar and Peterson [5] showed that every cyclic quartic extension

of @ can be expressed in the form
K=Q (\/rd+p\/3> :
where d is a squarefree integer > 1 and p, ¢, r are nonzero integers such that
r’d = p? + ¢%.
In fact one can always choose (p,¢,r) so that r divides p, and so K can be represented in the form

K:Q( a(d+b\/3)),

d = b% + ¢? squarefree, b > 0,c > 0,
a squarefree.
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This representation of K is more convenient than Edgar and Peterson’s but has the disadvantage

of not being unique. For example we have

Q (\/—(5+\/§)> =0 ( —2(5+ 2\/5)> .

In view of the identity

Q <\/a(d—+— bﬁ)) —Q ( (a/2)(d+ C\/E)>

we can clearly take a to be odd. Moreover a and d can be taken to be coprime. This is proved in

[7: Theorem 1]. Thus we have the following result.
THEOREM 1. Any cyclic quartic field K can be written in the form

(2.1) K=Q ( A(D + B\/5)> '

where

A is squarefree and odd,
(2.2) D = B? + C? is squarefree, B > 0,C > 0,
(A,D)=1.

Throughout the rest of this talk it is assumed that K is taken in this form. Further, it is

proved in [7: Theorem 1] that this representation of K is unique in the sense that if K =

Q (\/Al(Dl + BI\/DI)) is another representation of K, where A, B1,C;, D;, also satisfy the
conditions (2.2), then D = Dy, A = A;, B'= B;,C = C;. We remark that the field K is real if

A > 0 and is imaginary if A < 0.

3. Class number formula for A(K). Throughout this section we assume that K is an imaginary

cyclic quartic field so that in the representation of K given in (2.1) we have A < 0. As K is totally
complex, § = 1/ A(D + B\/ﬁ) has r; = O real conjugates and 2r; = 4 imaginary conjugates. Hence,
by Dirichlet’s unit theorem, since r; + rz — 1 = 1, K has a single fundamental unit. Hasse [8] has

noted that this unit may be taken to be the fundamental unit (> 1) of k = Q(v/D). Thus the
regulator r(K) of K is given by

(3.1) r(K) = 2loge.
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Hasse [8] has also observed that the only roots of unity in K are 1 except for the exceptional field

K=Q (\/—(5 + 2\/5)> =Q (e""/s) ;
which contains the additional roots of unity
+e?™™/8(m = 1,2,3,4).

Thus, the number w(K) of roots of unity in K, is given by

_ 2, if K+#Q(e*™/5),
(32) w(K) - { 10, if K = Q(627ri/5)'

As K is an abelian field, by the Kronecker-Weber theorem, there is a positive integer f such that
(3.3) K C Q(e*™/1).

The least such positive integer f is called the conductor of K and is denoted by f = f(K). Clearly

we can rewrite (3.2) in the form

4 wr={3 1725

The conductor of the field k is denoted by m = f(k). Since k is the quadratic field Q(v/D), it is

well-known that

_ | D, if D=1 (mod 4),
(3.5) m= {4D, if D=0 (mod 4).

By the conductor-discriminant formula, the discriminant d(X) of the field K is related to m and f
by the relation

(3.6) d(K) = mf?.

Next we let G denote the multiplicative group of residues which are coprime with f. The
group G is isomorphic in a natural way to Gal(Q(e?"*/f)/Q). We denote by H the subgroup of G
which is isomorphic to Gal(Q(e?™*/f)/K). By galois theory we know that G/H is a cyclic group of
order 4. We let o be an element of G such that

(3.7) G/H =< aH > .



142

The particular choice of « will not be important in what we do. We define a character x on G (x

depends on the choice of a) by
(3.8) x(e)=1, x(h)=1 (Vhe H).

X is a quartic, primitive, odd character of conductor f which is trivial on H. All the characters on

G which are trivial on H are given by

(39) Xo,X,Xz,Xa,

where x* = xo (the trivial character on G). The character x3 = x is also a quartic, primitive, odd
character of conductor f. However, the character x% may not be primitive. The primitive character

(x?)" induced by x? is given by

(3.10) 6= (%), (m)=1,

where (%) is the Jacobi symbol of conductor m.

In order to apply the class number formula for abelian fields to K, we will need the product

o, L(1,(x")),
where
— x(n
=3 X
n=1
Berndt [1] has shown that

TP ocn<s/2 X(1)
G -

(3.11) L(1,x) =

where the Gauss sum G(x) is given by

f
(312) Gx) = Yo x(i)emal.

Jj=1

It is a well-known property of Gauss sums that

(3.13) G(x)G(x) =-G)G(X) =~ G I’=-/,
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and so

2

F(x(2) - 2)(x(2) - 2)

(3.14) L(1,x)L(1,x%) = .

> x(n)

0<n<f/2

Further, by Dirichlet’s class number formula for k = Q(v/D), we have

(3.15) L(l,(xz)') = Z (?:) = Zh(ic/)%oge.

Hence we obtain

_ 2n2h(k)loge
-~ Vmf(x(2) - 2)(x(2) - 2)

(3.16) o L(1, (x7))

> x(n)

0<n<f/2

Now, for any abelian extension L of Q, the class number formula for h(L) asserts that (see for
example [11])
_w(D)|dE) 2 T

3.17 = e
( ) AlL) 2ritragrap(L) ;([iﬁol L(1,x")

Appealing to (3.1), (3.4), (3.5), (3.6), (3.16), we obtain

(3.18) h(EK)=ph(k)| D x(n)I%

o<n<f/2

where

1/2, if f=5o0r f>5,fo0dd, x(2) =1,
) 1/8, it f>5,fo0dd, x(2) = -1,
(3,19) P Todidif10g cif F 215, 0dd, (2) = 4,
1/8, if f> 5, f even.

Setting

(3.20) €= ), 1 {i=0,1,23)
0<n<!/2
n€a'H

the equation (3.18) becomes

(3.21) h(K) = ph(k) ((Co = C2)* + (C1 - Cs)?) .

In order to use (3.21) to calculate h(K) numerically we require:
(i) an explicit formula for f,

(ii) a test to decide whether an element of G belongs to H or not,
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(iii) a way of calculating a,

(iv) tables of h(k).

In section 4 we give an explicit formula for f. In section 5 we give a test which enables us to
determine whether an element of G is in H or not. This is used in section 6 to show how to

calculate a. Tables of h(k) are readily available (for example [12]).

4. Explicit formula for the conductor f. In this section the field K can be real or imaginary. The

minimal polynomial of

(4.1) 8 =/ A(D + BVD)

is

(4.2) f(X)=X*-24DX*+ A’C?D
so that

(4.3) discrim (f(X)) = 284°B*C?D3.

Since d(K) divides discrim (f(X)) this shows that the only possible primes dividing d(K) are 2
and the primes dividing ABCD. It follows from a theorem of Llorente, Nart and Vila [10] that, in

the case of odd primes p, we have

(4.4) p**+3 || d(K),
where
(4.5) p* || A,p° || D.

When p = 2 the theorem of Llorente, Nart and Vila does not apply. Instead, proceeding 2-adically,
we show that (see [7]),

(4.6) 2° || d(K),
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where
8, if D=2 (mod 8),
(4.7) _J6, f D=1 (mod 4), B=1 (mod 2),
: ©=14, if D=1 (mod 4), B=0 (mod 2), A+ B =3 (mod 4),
0, if D=1 (mod 4), B=0 (mod 2), A+ B=1 (mod 4).
This proves that
(4.8) d(K) =2°A’D?,

where e is given in (4.7). Appealing to (3.5), (3.6) and (4.8), we obtain

THEOREM 2. If

K=Q (\/A(D + B\/5)> ,

where A, B,C, D satisfy (1.2), then

(4.9) f(K)=2| A| D,
where
3, if D=2 (mod 8) or D=1 (mod 4), B=1 (mod 2),
(4.10) =<2, if D=1 (mod 4), B=0 (mod 2), A+ B =3 (mod 4),
0, if D=1 (mod 4), B=0 (mod 2), A+ B =1 (mod 4).
5. Test to decide whether an element ¢ € G is in H or not. In this section K can be a real or

imaginary field. Let ¢ € G so that g is an integer coprime with f. By Dirichlet’s theorem, we
can find a prime p = g (mod f). Moreover p can always be choosen so that p j2ABCD. This
guarantees that p /f and p [ discrim (f(X)). It follows from galois theory that

(5.1) g € H & peH < f(X) splits completely into linear factors (mod p).

Appealing to a theorem of Carlitz [3], f(X) is the product of 4 linear factors (mod p) if and only if

()~ (42529)

where

(5.3) D = E? (mod p).
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This provides us with the required test.

6. Calculation of a. In this section K can be a real or imaginary field. We may determine « as

follows. We determine the least integer o coprime with f for which there is a prime p (not dividing

2ABCD) such that

{p = o? (mod f),

(6.1) (%) = —i (2) =41, (ﬂw) = —1, where D = E? (mod p).

4

Clearly, as (a, f) = 1 we have (p, f) = 1, so that p € G. Moreover, by the test in section 5,
we see that p ¢ H, and so o’ ¢ H. Hence H,aH,a?H,a®H are distinct cosets and we have

G/H =< aH > as required.

7. Method of calculation of A(K). Let K be the imaginary cyclic quartic field

Q ( A(D+ B\/ﬁ)) , where A < Ois squarefree and odd, D = B?+C? is squarefree (B > 0,C > 0)
and (A4, D) = 1. Using the results mentioned above we calculated the class numbers h(K) of the
3521 distinct fields K with

(7.1) 1<D<1000, 1<—-A<20,
as well as those of the 4274 fields with conductor f satisfying
(7.2) f < 10,000.

The calculations were carried out using computer programs written in PASCAL and implemented
on both an IBM micro computer and an APOLLO mini computer. The resulting values are listed
in the tables in [7].

We now describe briefly how the computations were carried out. First, Theorem 2 was used to
generate two data files containing the values of (D, A, B,C) and f: one for the fields K specified
by (7.1), the other for those fields given by (7.2). For each of these two data files, a file of the class
numbers h(K) was produced as follows. For each (D, A, B,C) an element a of G was determined

such that G/H =< aH >. This was done by the method described in section 6. Next, for
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each (D, A, B,C), a set of elements from which the subgroup H is easily constructed, was found.
This was done by determining the generators of the cyclic groups of prime power order in the
decomposition of G as described, for example, in [2]. These generators were stored together with
their orders. The generators of the odd part of G are also the generators of the odd part of H.
For each generator g;(1 = 1,2, ,s) of the 2-part of G, the unique integer j(g;)(= 0,1,2,3) was
determined such that g; € a?(9:) H using the value of a calculated above and the criterion of section

5. The values of j(g;) were stored. The 2-part of H is given by the elements

(7.3) 97 95 (0<zi<ord(gs)—1, 1<i<3s)
for which
(7.4) z17(91) + - + z+7(9s) = 0 (mod 4).

Then, for each (D, A, B,C), the value of
(Co— C3)* + (C1 - Cs)?,

where C; is defined in (3.20), was calculated.

The identities

(7.5) Co+Ca=¢(f)/4, C1+Cs=¢(f)/4

served as checks on the calculation.

As the relative class number h(K)/h(k) is an integer the following congruence holds
(76) (CQ = 02)2 + (Cl = C3)2 =0 (mod t),

where

8, if f>5,f even,

18, if f > 5, f odd, x(2) = -1,
10, if f > 5, f odd, x(2) = %,
2, otherwise.

(7.7) t=

This congruence was used as another check on the calculation in order to reduce the chances of a

computer error.
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Finally, (3.21) was used to calculate h(K) from the values of (Co — C3)% + (C; — C3)?, the
values of h(k) given in [12], and the values of p defined by (3.19).

When D = g(prime) = a?+ b2 =5 (mod 8), ¢ < 1000,A=-1,B=5b=0 (mod 2),C =a=1
(mod 2), our values agree with those in [9]. In addition when D = 5 our values agree with those

which can be deduced from the table in [4].

8. Table of class numbers of imaginary cyclic quartic fields

Q <\/A(D + B\/l—))> ;

where D,A ,B,C are intege;s such that

A is squarefree and odd, A <0

D = B? 4+ C? is squarefree, B> 0,C >0

(A,D)=1
in the range

f < 200.
This is an extract from the table in [7] for f < 10,000.

case f D -A B c h(k)
1 5 5 1 2 1 1
2 13 13 1 2 3 1
3 16 2 1 1 1 1
4 29 29 1 2 5 1
5 37 37 1 6 1 1
6 40 5 1 1 2 L
7 48 2 3 1 1 1
8 51 17 3 4 1 1
9 53 53 1 2 7 1
10 60 5 3 2 1 1
11 61 61 1 6 5 1
12 65 5 13 2 1 1

=
—
23]
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