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1. Introduction. Let K be a real abelian extension of the rational number
field Q. As K is abelian, by the Kronecker-Weber theorem, K is contained in
a cyclotomic field Q((,), where {, = exp(2mi/n), n # 2(mod 4). We let Q(,) be
the smallest such field containing K, so that n is the conductor of K. The
ring of integers of Q((,) is

@(n)—1

R={Y &l aqeZ (0<j< p(n)—1)},
j=0

where ¢ denotes Euler’s totient function and Z denotes the domain of
rational integers.

Now let p be a prime = 1(modn), say, p=nf+1. Let g be a fixed
primitive root modulo p. The cyclotomic polynomial of index n has ¢(n)
distinct roots modulo p. One of these roots is g/. Thus, by Kummer’s
theorem, the ideal

P = pR+((,—¢")R

of R is a prime ideal of norm p which divides pR. Thus the canonical
homomorphism

(1.1) it R Rlp™> ZIpZ

maps {, onto g/ (mod p). We have thus shown that for any given primitive
root g(modp) there is a unique homomorphism Ai: R— Z/pZ satisfying
A(,) = g’ (mod p). This homomorphism is central to the rest of this paper.

For any integer a not divisible by p, the least non-negative integer b
such that a = g*(mod p) is called the index of a with respect to g and is
denoted by ind a. (We re-emphasize that g is regarded as fixed.) The purpose .
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of this paper is to obtain a congruence modulo a certain divisor of n for &
=ind 4 (¢), where ¢ is a unif of K (see Theorem 1).

Taking K to be the real quadratic field Q(\»”B) of discriminant D, we
obtain, as a special case of Theorem 1. a congruence for &, = /(g,) modulo
GCD(D, hp), where ¢, denotes the fundamental unit (>1)of Q(V/B) and hy,
denotes the class number of Q(N/D) (see Theorem 2).

The congruences in Theorems 1 and 2 are given in terms of the
cyclotomic numbers (h, k), of order n, where for any integers h and k the
cyclotomic number (h, k), is defined to be the number of solutions (r, s} of

1+g"’+hEg"5+"(m0dp),
I<r<f-11<s< /1.

The basic properties of cyclotomic numbers are given for example in [14].

Finally, as explicit expressions are known for the cyclotomic numbers of
orders 8, 12, 5 (see [6], [16], [15] respectively), Theorem 2 can be applied to
the real quadratic fields Q(\@) (of conductor 8), Q( /5) (of conductor 12).
o( "5) (of conductor 5), to obtain explicit congruences for ind (1+
+\,/T7.)(mod 8), ind(2+\/§)(m0d 12), ind (3(1+/5))(mod 5). This is done in
Sections 4,5 and 6 respectively. Theorem 2 can also be applied to Q(\./—6) (of
conductor 24) as the cyclotomic numbers of order 24 are known explicitly
[5]. However, in this case the amount of elementary algebra needed to
compute the right-hand side of Theorem 2 is extremely onerous so this was
not done. For D# 5, 8, 12, 24 explicit expressions are not known for the
cyclotomic numbers of order D and so are not available for use in Theorem 2.
For example for K = Q(\/v7), we have D = 28, and although the cyclotomic
numbers of orders 7 and 14 have been evaluated ([10], [11]) this is not the
case for those of order 28.

2. Proof of Theorem 1. Let U(K) denote the group of units of K and let
C(K) denote the group of cyclotomic units of K. C(K) is a subgroup of
U(K) of finite index and we set i(K,} = [U(K): C(K)]. It is known that i(K)
is related to the class number h(K) of K (see for example [13]).

Let & be a unit of K. Then we have £®c(C(K), and so there
exist integers a (=0,1), b (=0, 1, ..., n—1), ¢; and d; (=0,1, ..., n—1),
J=1.2,..., k, such that

k
(2.1) R = (1P ] (¢ —-1)9,
i=1

' Applying the homomorphism i: R — Z/pZ to (2.1), we obtain

k
(22) 7% = (~1)°¢" [] (6% - 1) (mod p).
i=1
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Taking the index of both sides of the congruence (2.2), we obtain, as ind(—1)
= nf/2,
k .
(2.3) i(K)ind& = Lnaf+bf+ ¥ ¢; ind(g"’ —1) (mod p—1).
j=1
Now by a result of Muskat ([12], p. 499). we have
n—1

ind(g” —1)= Y. I(l, d), (modn),
=1

so that
i(K)ind § = $naf + bf + Z Z I, dj), ( modn)

We have thus proved the followmg congruence for ind& modulo
n/GCD (n, i(K)).

THEOREM 1.

i(K) < n
dé= b <y U, d)), d—-—F—1
GCD(n, () M7 =nath] +JZ ¢ 2 1 dpn {mod Gap e t(K))>
3. Proof of Theorem 2. We take K to be the real quadratic field Q(N,/B)

of discriminant D. It is we‘ll-known that the conductor n of Q(\,/B) is D and
that i(Q(\/D)) = h(Q(y/D)) = hp. The character y, of the field (/D) is
/

D D
given by yp(j) = (A_>, where (A) is the Kronecker symbol.
J J

Dirichlet’s class numbet formula (see for example [4], p. 344) for hy, can
be written in the form

3.1) eg?= [] (sinmyp) .

0<j<Df2
We note that there are L @ (D) values of j in the range 0 <j < D/2 for which
yp() = 1, and +¢(D) values for which yp(j) = — 1. The remaining values of j,
namely those for which GCD{j, D) >> 1, are such that y,(j) = 0. Replacing
sinmj/D by —i{p#*({}—1) in (3.1), we obtain

(32 a =0 I G-
0<j<D/2

where

(3:3) Ip= ) Jul
0<j<Df2

If D =0(mod4), it is easily shown that £, = 0(mod 2) so that the exponent
X,/2 in (3.2) is an integer. If D = 1(mod 4), X, can be either even or odd, so
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. . . in/2 . .
in this case we write CDD/ in (3.2) in the form

ZDIZ 1/2:2 o z 2p D+ 1)/2
34) (= ({D/ ) D __ —(QS)D+ 1)/2) D _ (-1) Dég ) )ZD‘

Then (3.2) has the form (2.1) with

(3.5) n=D, i(K)=h, ¢=g¢p,,
0, if D =0(mod4),
(3.6 %ZD, = 1(mod 4),
_{3Zp, if D =0(mod4),
(37) b= {2(D+ DX, if  D=1(mod4),
(3.8) _ {D/2, 1 D = 0(mod 4),
=1)/2, if D =1(mod4),

and for j=1, 2, ...,
3.9 ¢; = —xpl), =]

Appealing to Theorem 1 we obtain the following congruence for ind &,
modulo D/GCD(D, hp).

THEOREM 2.

hp . bt D
———————ind§, = wEG—- Y 1, (modH .
GCD(D, hpy "4 = 2 OG- ¥ 1)) GCD D, i)

We remark that in Theorem 2 if we set
(3.10) ép=3(T+U. /D), T=U(mod2),

then appealing to the result [1]; p. 319

. D-1
(3.11) VD= Y i,
(r.rD:)il
we have
(3.12) A/D) = z (g™ (modp),
(rD) 1
and
D—-1
(3.13) &p =Alep) =3T+3U Z xp(r)g” (mod p).

=1
(r, D) 1
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4. K = Q(\_/'E). In this case n=D =8, ¢ = 1+\@, hp, =1, and for k

odd
8 2 +1, if k=1,7(modB),
wk=\-]1=\7]= , _
k k -1, if k=23,5(mod8).
Let p = 8f+1 be a prime with primitive root g. Interpreting \/E =38

modulo p as }1(\/5) = %}.(\/@) =1(¢' -3’ — g%/ +g¢"/)(mod p), Theorem 2
gives

(4.1) ind(1+./2) = —f+ ¥ 1((l, 35— (1, 1)) (mod$).

Next we define integers x and y by

p—1 i

4.2) > exp%—zfl(indm+ind(l —m))} = —x+2y /-1
m=2

and integers a and b by
rcl 2ni . .

(4.3) Y exp ?(xndm+31nd(1—-m)) = —a+b./—2.
m=2

It is known (see for example [3]) that

(4.4) p=x*+4y?, x=1(mod4),

(4.5) p=a*+2bh?, a=(—1)"""¥(mod4).

Emma Lehmer ([6], pp. 115-117) has expressed the values of the cyclotomic
numbers (I, m)g in terms of p, x, y, @ and b. It should be noted that in order
to make her formulae conform to the definitions of x, y, a, b given in (4.2)
and (4.3), it is necessary to change the sign of a in her tables for the case
p = 9(mod 16). Making use of her tables we obtain

7

@.6) 43 (I 3)—(l 1))
=1
—1+3x+4yv—2a—2b, if  p=1(mod16), ind2 = 0(mod 4),
—1—x+4y+2a—2b, if p=1(mod16), ind2 = 2(mod4),
—143x+12y+2a+2b, if p=9(modl16), ind2 = 0(mod4),
—l—x—4y—2a+2b, if p=9(mod16), ind2 = 2(mod 4).
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As
[ x=4/+1(mod32),  a=4f+1(mod16)
y = 0(mod 4), " b =0(mod4),
if p=1(mod 16), ind 2 = 0(mod 4),
x =4f+25(mod 32), a=4f+5(mod16),
y = 2(mod 4), b = 2(mod 4), }
47) 4 if p=1 (mod}1 6), ind 2 = 2(mod 4),
x = 4f+25(mod 32), a = 12f+3(mod 16),
y = 0(mod 4), b = 2(mod 4), }
if p=9(modi6),ind 2 = 0(mod 4),
X =4f+17(mod32), 4 = 1214 7(mod 16),
y = 2(mod 4), b = 0(mod 4), }
if p=9(mod16). ind2 = 2(mod 4).
we obtain

7

(48) 43 1((I, 3)g—l. 1))

=1
|4 —4y—2b(mod 32), if p=1(mod1i6),
T 116447 +4y+2b(mod32). if p=9(mod16),

and so by (4.1) we obtain

—y—%b(mod8), if p=1(mod]l6)

4. i /2) =
(4.9) ind(1+./2) %4+y+%b(mod8), if  p=9(mod16).

We have thus proved

THeOREM 3. Let p =8f+1 be a prime. Let g be a primitive root (mod p).

. /~
Define /2 modulo p by

2.2 = ¢/ —g* — g% + 47! (mod p).
Let (x, y) be the solution of
p=x*+4y?,  x=1(mod4),
given by (4.2), and let (a, b) be the solution of
p=a*+2b*,  a=(-1)""V8(modd),

given by (4.3). Then we have
—y—3b(mod8), i p=1(mod1i6),

‘nd(l+\/2)E%4+.»~+%b(mod8), if p=9(mod16),
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A few values of p, g, a, b, x, y are given in Table 1 to illustrate Theorem 3.

Table 1

—y—3b(mod 8)

p=1(mod8) Py s v a ind(1+/2) __ i p=1(mod16)

p <500 (mod 16) ° (mod 8) 44 y+4b(mod 8)

if p=9(mod16)
17 1 3 1 2 =3 2 5 5
41 9 6 5 2 3 -4 4 4
73 9 5 =3 4 -1 -6 5 5
89 9 3 5 4 -9 =2 7 7
97 1 S 9 -2 5 6 7 7
113 1 3 -7 4 9 4 2 2
137 9 3 —11 2 3 8 2 2
193 1 s =7 6 —11 —-6 S 5
233 9 3 13 -4 15 2 1 1
241 1 7 —15 2 13 -6 1 1
257 1 3 1 8§ —15 -4 2 2
281 9 3 S -8 -9 10 1 1
313 9 10 13 -6 -5 12 4 4
337 1 10 9 8 -7 12 2 2
353 1 3 17 4 —-15 -8 0 0
401 1 3 1 —-10 -3 14 3 3
409 9 21 =3 10 11 -12 0 0
433 1 5 17 -6 -—19 6 3 3
449 1 3 =7 10 21 -2 7 7
457 9 13 21 2 —13 12 4 4

Remark 1. As y = 0(mod2), by Theorem 3, we have
(4.10) ind (1 +\'F2) = 0(mod 2) < b = 0(mod4),
vwhich is a result of Barrucand and Cohn [2]. From (4.7) we see that
4.11) v = b+ 2f(mod 4),
so that (4.10) can also be formulated |

(4.12) ind(1+./2) = 0(mod2) < y =4(p—1)(mod4).

Remark 2. If b = 0(mod4), by Theorem 3, we have

ind(1+/2) = 0(mod4) <> y+}b = 0(mod4)
\ .
<y = $h(mod 4)
< 3b+2f = 0(mod 4),
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that is
(4.13) ind(1+\/§) =0(mod4) < {b+f = 0(mod 2),
which is Theorem 1 of [9].
Remark 3. By Theorem 3 we have
(4.14)  ind(1+./2) = 0(mod 8)
%y+%b =0(mod8), if p = 1(mod 16),
<> .
y+3b=4(mod8), if  p=9(mod1i6).
The case p = 1(mod 16) of (4.14) is Theorem 2 of [9].

5. K= 0Q(./3). In this case n =D =12, ¢, = 2+4./3, hy = 1. and for k
satisfying (k, 12) =1

oo (2Y_(3\_{+L i k=111@mod1d),
wh={3)={;)= ~1, if k=57(mod12).

Let p=12f+1 be a prime with pr1m1t1ve root g. Interpreting \/3 = 2\/12

modulo p as A(y /3) = Ay 12) = (g — g g’ +g'")(mod p), Theorem 2
gives
_ 11
(5.1) ind(2+/3) = =2+ ¥ I((l, )2~ (L 1)y,) (mod 12)
I=1

Next we define integers x and y by

p-l 2ni . . .
(5.2) Y exp -4—(1ndm+1nd(1—m)) = —X+2yi

m=2
and integers 4 and B by

p-1 21'[1 P . /—

(5.3) Zzexp ?(Zmdermd(l—m)) =—~A+B./-3
(see for example [16], p. 61). It is known that
(5.9 p=x+4y*,  x=1(mod4),
(5.5) p= A2+3B_2, A = 1(mod 6).

Whiteman [16] has expressed the values of the cyclotomic numbers of order
twelve in terms of p, A, B, x and y. There are twenty-four different sets of
formulae depending upon p(mod 24), ind 2(mod 6), ind3(mod4), and the
value of a certain quantity ¢, whose precise definition is not needed in this
paper ([16], eqn. (5.7), p. 64). Using these formulae we obtain the following
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11
table of values for 6°Y I((l, 5)12— (L D12):
=1
Table 2
< p ind2  ind3
Case 6,§11«1’ Sa=(h Do) (mod 24) (mod6) (mod4)
1 —24+8A4A+9B—6x—8y 1 1 0 0
2 —2+4+24+3B—4y 1 -1 0 0
3 —2+24A+3B+4y 1 1 2 0
4 —2—-4A4-3B+6x+8y 1 -1 2 0
5 —2454+15B—3x—20y 1 i 4 0
6 —2—A+9B+3x—16y 1 -1 4 0
7 —2484+9B+2x+12y 1 i 0 2
8 —2+424+3B+4x 1 —i 0 2
9 —2+24A+3B—4x 1 i 2 2
10 —2—-44-3B-2x—12y 1 —i 2 2
11 —2454+15B—x+24y 1 i 4 2
12 —2~A+9B+x+12y 1 —i 4 2
13 —24+11A+15B—5x 13 i 1 0
14 —2454-3B-Tx—12y 13 —i 1 0
15 —2424+9B+4x 13 i 3 0
16 —2—-4A-9B+2x—12y 13 —i 3 0
17 —2+24+21B+4x 13 i 5 0
18 —2—-44+3B+2x—12y 13 —i 5 0
19 —2454—-3B+3x+8y. 13 1 1 2
20 —2+114+15B+9x+4y 13 -1 1 2
21 —2—44—-9B—6x+8y 13 1 3 2
2 —2+24+9B+4y 13 —1 3 2
23 —2—-44A+3B—6x+38y 13 1 5 2
24 —~2+424+21B+4y 13 -1 5 2

Treating the equations given by Whiteman for the

congruences mod 16, we obtain

I(p+1)(mod8), if p=1(mod?24),

56 A= %(p—3)(mod 8), if p=1(mod?24),
1(p+5)(mod8), if p=13(mod?24),
L(p+1)(mod8), if p=13(mod24),
O(mod4), if p=1(mod24),

6N B= {Z(mod 4, if p=13(mod24),

(58 x= {%(p-i- 1)(mod 8), %f p = 1(mod 24),
i(p—-3)(mod8), if p=13(mod?24)

(59) _ O(mod2), if p=1(mod24),
1(mod2), if p=13(mod?24).

5 — Acta Arithmetica XLVI.1

cyclotomic numbers as

ind 3 = 0(mod 4),
ind3 = 2(mod 4),
ind 3 = 0(mod 4),
ind3 = 2(mod 4),
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Similarly reducing the equations modulo 9 we obtain

I}

(5.10) 4

(5.11) B =

(5.12) x =

(5.13) y =<

2p+2(mod?9),

—ind 2(mod 3),

( 0(mod 3),

2p—1(mod?9),

p—2(mod?9),

(0(mod 3),

p+4(mod?9),

2p+2(mod9), i

if

-

if

if

if

(2p—~1(mod9), if p = 1(mod24), ind2 = O(mod 6)

or
p = 13(mod 24), ind 2 = 3(mod 6)

p = 1(mod 24), ind 2 = 2,4(mod 6)
or

p = 13(mod 24), ind 2 = 1,5(mod 6),

p = 1(mod 24), ind 3 = 2(mod 4)
or
p = 13(mod 24), ind 3 = 0(mod 4),
p =1(mod 24), ind3 = 0(mod4),c = +1
or
p =13(mod24), ind3 = 2(mod4),c = —1,
p =1(mod24), ind3 = 0(modd4),c = —1
or
p =13(mod24), ind3 = 2(mod4),c = +1,
p = 1(mod 24), ind 3 = 0(mod 4)
or
p = 13(mod 24), ind 3 = 2(mod 4),
p=1(mod24), ind3 = 2(modd),c = +i
or
p =13(mod 24), ind3 = O0(mod 4),c = —i,
p = 1(mod24), ind3 = 2(mod4),c = —i
or

p =13(mod 24), ind3 = O(mod 4),c = +i.

Appealing to (5.1), Table 2, and the congruences (5.6)«(5.13), we obtain
congruences for ind (2+\/§) mod 8 and mod9 in each of the twenty-four
cases. We just give the details in case 1 as the rest of the cases can be treated
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similarly. By (5.1) and case 1 of Table 2 we have

(5.14) 6ind(2+\/§) = —12f—2+84+9B—6x—8y (mod72).

Reducing (5.14) modulo 8 we obtain, as f is even in this case,
—2ind(2+./3) = —2+B+2x (mod8).

Appealing to (5.7) and (5.8) we obtain

—24+B+2x = —B (mod8),
so that

(5.15) ind(2+./3) = B/2 (mod 4).
Reducing (5.14) modulo 9, we obtain
—3ind(2+./3) = —3f—2—A+3x+y (mod9).
Appealing to (5.10) and (5.12) we obtain
~3f—2—A+3x+y =y (mod9),
so that
(5.16) ind(2+./3) = — /3 (mod3).

Putting all the twenty-four cases together we obtain

67

THEOREM 4. Let p = 12f+1 be a prime. Let g be a primitive root (mod p).

Define \/5 modulo p by
2./3=¢'~g*" —g"/ +4¢'"/ (modp).
Let (x, y) be the solution of
p=x>+4y*, x=1(mod4),
given by (5.2), and let (A, B) be the solution of
‘ p=A2+3B%, A =1(mod6),
given by (5.3). Then we have

(5.17) ind (2+./3) = (— 1™/~ 1 xy/3 (mod 3)
and
(5.18) ind(2+./3) = (- 1Y +ind3/2>§ (mod 4).

A few values of p, g, 4, B, x, y are given in Tables 3 and 4 to illustrate

Theorem 4.
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. Table 3
p=1(mod12) f 4 p ind3 ind(2+./3) (—1yurind32 g
p < 500 (mod2) ¢ (mod4)  (mod4) (mod 4)
13 1 2 41 +2 0 3 3
37 1 2 -5 42 2 1 1
61 1 2 47 42 2 1 1
73 0 5 =5 +4 2 2 2
97 0 5 +7 -4 2 2 2
109 1 6 +1 -6 0 3 3
157 1 5 +7 -6 2 1 1
181 1 2 +13 42 0 3 3
193 0 5 +1 +8 0 0 0
229 1 6 —11 -6 0 3 3
241 0 7 47 48 2 0 0
277 1 5 +13 +6 0 1 1
313 0 10 —11  +8 0 0 0
337 0 0 —-17 -4 2 2 2
349 1 2 47 —10 2 3 3
373 1 2 419 42 2 1 1
397 1 5 —17 46 2 3 3
409 0 200 +19 -4 2 2 2
421 1 2 —11 -10 0 1 1
433 0 5 41 4120 2 2
457 0 13 =5 +12 2 2 2
Table 4
p = 1{mod12) f ind3 ) ind(2+./3) (—1)nd32+/1 xp13
p <500 mod2) 9 (mods) * 4 (mod 3) (mod 3)
13 1 2 0 . 1 1
37 1 2 2 1 3 2 2
61 1 2 2 5 3 1 1
73 0 5 2 -3 4 2 2
97 0 5 2 9 -2 0 0
109 1 6 0 -3 =5 2 2
157 1 5 2 —11 3 2 2
181 1 2 0 9 -5 0 0
193 0 5 0 -7 6 2 2
229 1 6 0 -15 -1 2 2
241 0 7 2 —15 2 2 2
277 1 5 0 9 -7 0 0
313 0 10 0 13 -6 2 2
337 0 10 2 9 . 8 0 0
349 1 2 2 5 -9 0 0
373 1 2 2 -7 -9 0 0
397 1 5 2 -19 -3 2 2
409 0 21 2 -3 10 2 2
421 1 2 0 ~15 7 1 1
433 0 5 0 17 -6 1 1
457 0 13 2 21 2 2 2
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Remark 1. If p=1(mod24) (so that f = 0(mod 2j) by Theorem 4 we
have

(5.19) md(2+\[) 0(mod4) < 3B =0(mod4) < B = 0(mod?8),
which is a result of Emma Lehmer ([9], Theorem 3).
Remark 2. Since

22+3) =(1+./3?,

the congruences in Theorem 4 give congruences for ind (1 + \/5) modulo both
2 and 3.

Remark 3. From Theorem 4 we have
(5.20) ind(2+\/§) = 0(mod 3) <= xy/3 = 0(mod 3).

If p=1(mod24), ind3 =2(mod4) or p =13(mod24), ind3 = 0(mod4), by
(5.12) and (5.13), we have x = 0(mod 3), y # 0(mod 3), so that (5.20) becomes
in this case

(5.21) ind(2+,3) = 0(mod 3) < x = 0(mod9).

If p=1(mod24), ind3 =0(mod4) or p = 13(mod24), ind3 = 2(mod4), by
(5.12) and (5.13), we have x # 0(mod 3), y = 0(mod 3), so that (5.20) becomes

- in this case

(5.22) ind(2+./3) = 0(mod 3) < y = 0(mod9).
Congruences (5. 21) and (5.22) are due to Barrucand (see for example [8],
p. 385).

6. K = Q(./5). In this case n =D = 5, ¢, = 3(1+./5), hp = 1, and for k
satisfying (k, 5) =1
S +1, if kEl,4 mod 5),
1o(k) = )={  k=1dmodd)
k -1, if = 2, 3(mod 5).
Let p = 5f+1 be a prime with primitive root g. Interpreting \/g modulo p as
A/5) = ¢’ —g% —g* +g*/ (mod p), Theorem 2 gives

(6.1) ind(3(1+./5)) = —~+Z 1((I, 2)s—(L, 1)5) (mod 5).

Following Whiteman ([15], pp. 100-101), we may define integers x, u, v,
w by

p—1 )
(62) 4 z ﬁindm-ﬂnd(l—‘m)
m=2

=(—x+2u+4v+5w) f+(—x+4u—20—5w) B> +
+(—x—4u+20—5w) B> +(~x—2u—4v +5w) p*,
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2nif5

where f = ¢“™>, or equivalently by

3x = —p+14425(0, 0)s,
u= (0, 2)5 —(0, 3)5,
v =(0, 1)s—(0, 4)s,

w=(1,3)s—(1, 2)s.

(6.3)

The 4-tuple (x, u, v, w) is a solution of Dickson’s system

%161) = x2+50u®+ 5002 +125w2,  x = 1(mod5),

(64) XwW = 1;2—4ul)—u2'

Whiteman has given the cyclotomic numbers of order 5 in terms of p, x, u, v,
w (see [15], (4.9)). Using these in (6.1) we obtain

ind4(1+./5) = —u+3v(mod5).
We have thus proved

THEOREM 5. Let p = 5f+1 be a prime. Let g be a primitive root (mod p).
Define /5 modulo p by

\[5 =g/ —g* — g% +g* (mod p).

Table 5
p = 1(mod5) , o indE(1+/5) —u+3v
p <500 9 X “ ¢ W (mod 5) (mod 5)

11 2 1 0 1 1 3 3
31 3 11 -2 —1 -1 4 4
41 6 -9 0 3 -1 4 4
61 2 1 -4 ! 1 2 2
71 7 —-19 -2 3 1 2 2
101 2 -29 2 -3 -1 4 4
131 2 11 -6 1 -1 4 4
151 6 -4 -2 2 —4 3 3
181 2 11 -2 -7 -1 1 1
191 19 41 -4 3 1 3 3
211 2 1 2 -1 5 0 0
241 7 16 4 4 -4 3 3
251 6 -4 2 6 4 1 1
271 6 31 -8 1 -1 1 1
281 3 11 —4 -3 -5 0 0
31 17 —49 7 0 1 3 3
331 3 61 2 -5 1 3 3
401 3 —-29 10 -3 -1 1 1
421 2 -19 -8 1 5 0 0
431 7 36 6 6 -4 2 2
461 2 1 -2 -9 5 0 0
491 2 -9 —-12 3 -1 1 1
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Let (x, u, v, w) be the solution of (6.4) given by (6.2) or equivalently by (6.3).
Then we have

(6.5) ind4(1+./5) = —u+3v(modS5).

A few values of p, g, x, u, v, w are given in Table 5 to illustrate Theorem 5.

Remark 1. The congruence (6.5) can also be deduced from the theorem
proved in [17].

Remark 2. From the second equation in (64), we have, as
x # 0(mod 5),

u = 3v(mod 5) < w = 0(mod 5).

Thus %(1+ﬁ) is a fifth power (mod p) if and only if w =0(mod5). This
result is due to Emma Lehmer [7].
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