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1. Introduction. Let H(m) denote the strict ideal class group of the
quadratic field Q(\/m) of discriminant m. We have

(1.1) H(m):ZZ,,leZ,,zx sz,,ka,

where the order g of the group G is odd and Z,, denotes the cyclic group of
order 2"

m e
Let p be a prime number such that <~> = 1. Then p is represented by
p

two inverse classes .C,, C,' (or one ambiguous class) of binary quadratic
forms of discriminant m. Gauss’s theory of genera determines C, modulo
squares in the composition class group of discriminant m.

In this paper we determine the class C, modulo fourth powers in the
simplest case, namely when -

(1.2) Hm=>~Z,,xG, nx=2,

and the class C, is a square, that is p is a prime on which all the generic
characters have the value +1. It is known (see for example [2]) that (1.2)
occurs precisely for the following values of the discriminant m:’

(I) m= —4r, r(prime) = 1(mod 8);
(I) m = —8r, r(prime) = 1(mod 8);
(ITI) m = — 8¢, q(prime) = 7(mod 8);

(IV) m = —qr, q(prime) = 3(mod 4), r(prime) = 1(mod 4), <%> — b
(V) m = 8r, r(prime) = 1(mod 8);
(VI) m = gr, q(prime) = r(prime) = 1(mod 4), (g) = 1.
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We define
g =1 in case (I),
q = 2 in cases (II), (V),
r =2 in case (III)
and

k =

q

% Q(/—q in cases (I), (II), (II), (IV);
0\ ) in cases (V), (VI);

k=0(/r): kn=0(/m)
Q(/r. /=) incases (I) to (IV),

K = 'T’ /E) = { — j
g (/7,9 in cases (V), (VI).

The strict class number of the quadratic field Q(,/d) will be denoted by
h(d).

. x+y/n
Throughout this paper the symbol (Y_y\_n)’ where n and x?—ny? are
P

quadratic residues of the odd prime p, will be used both as a Legendre
symbol, in which case \/"n is interpreted as a rational integer modulo p, as

. ) +yn] .
well as (equivalently) the quadratic residue symbol I:Lp\/n] in the ring
2

of integers of Q(\/;), where P is either of the two prime ideals dividing p.
We prove:

THEOREM 1. Let r be a prime =1(mod 8) and p a prime satisfying

-1
<—>= <B)= 1, so that p is represented by the classes C, and C,' of

disiriminanrt —4r, and there exist integers a, b, e and f such that

(1.3) : p=a’+b?,

(1.4) P =er—rf2, e>0, (e, f)=1.

Then the class C, is a fourth power if, and only if, for any solutions of (1.3) and

a+by/—1 \ .
(14), | ———— ) =1 or, equivalently, e+f = 1(mod 4).
»

THEOREM 2. Let r be a prime = 1(mod 8) and p a prime satisfying <7>

>
—8r, and there exist integers a, b, e and f such that

= <[—)> =1, so that p is represented by the classes C, and C, " of discriminant
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(L.5) p = a>+2b?,
(1.6) P —elopf2, e>0, (e.f)=1.
Then the class C, is a fourth power if, and only if, for any solutions of (1.5) and

b./=2) 2\r-1/8 / _ 2
(1.6), (H—r\_) =1 or, equivalently, (;) (ei+f> —l

THEOREM 3. Let q = 7(mod 8) be a prime. Let p be a prime satisfying

<B>=<g>=l, so that p is represented by the classes C, and C,' of
d:’lscrimirfant —8q, and there exist integers a, b, e and f such that

(1.7) p"=9 =a%44qb?%,  (a,b)=1,ao0rb=1(mod 4),

(1.8) p=e2—22 e>0. '

Then the class C, is a fourth power if, and only if, for any solutions of (1.7)
and (1.8),

—1\4e+t1g /9 /2
<~> (—) =1  or, equivalently, <e__+f b > =1.
P a+b q

-We note that Theorem 3 of [1] is part of the special case ¢ = 7 of our
Theorem 3.

THEOREM 4. Let ¢ = 3(mod 4) and r = 1(mod 4) be primes such that (ﬂ)
r -

= 1. Let p be a prime satisfying <B> = (5) =1, so that p is represented by the
q

classes C, and C,' of discriminant —qr and there exist integers a, b, e and f
such that

(1.9) 4p"=? = a’+qb*, (a,b)=1 or.2,
(1.10) 4p*? = 2 —rf2, (e,f)=10r 2, e>0.

Then the class C, is a fourth power if, and only if, for any solutions of (1.9) and
(1.10),

<(a +b./—9)2

r

/r)2
) =1  or, equivalently, CiM) =1.
q

We note that Theorems 6 and 7 of [1] can be deduced as special cases
of our Theorem 4 with ¢ =3, r =13 and ¢ = 11, r = 5, respectively.

2
THEOREM 5. Let r be a prime = 1(mod 8) and p be a prime satisfying (—)
p
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= (B) =1, so that p is represented by the classes C, and C, ' of discriminant
r :

8p, and that there exist integers a, b, e and f such that

(1.11) p=a*-2b*, (a,b)=1, a>0;

(1.12) PP =e—rf2, (e,f)=1, e+f=1(mod 4).

Then Cpris a fourth power if, and only if, for any solutions of (1.11) and (1.12),
<a+bw/2

>= 1 or, equivalently, e+f = 1(mod 8).
,

THEOREM 6. Let q and r be primes = 1(mod 4) such that <‘-1> =1. Let p
r .

be a prime satisfying <B> = G) =1, so that p is represented by the classes C,
and C, ' of discriminan‘i qr and that there exist integers a, b, e and f such that
(1.13) 4p"@ = g2 —gb?,  (a,b)=1 or 2;
(1.14) 4p"0 = e —rf2,  (e,f) =1 or 2.
Then C, is a fourth power if, and only if, for any solutions of (1.13) and (1.14),

b /’F /'/'_
<M) =1 or, equivalently’ <w>
q

=1.

2. Proof of the theorems. The assumption (1.2) implies that the strict
class group of k, contains exactly one subgroup of index 4. Let L be the
extension of k,, corresponding to this subgroup by class field theory. Then L
is the cyclic extension of degree 4 of k,, unramified at any finite prime.

It is known ([3]) that L is a dihedral extension of Q whose quadratic
subfields are k,, k, and k, and whose quartic subfields are the field K, two
fields A and A’ containing k, but neither k, nor k,,, and two fields B and B’
containing k, but neither k, nor k. :

L
A// K\\BB’
NI
\a /
Let p be a prime on which all the generic characters of k,, take the value

+1. Then p is completely decomposed in K, the genus field of k,,, and the
classes C,, C, ' are squares. The classes C »» C, ! are fourth powers if, and
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only if p is completely decomposed in L, that is if p is completely
decomposed in any of the four fields 4, A’, B or B.

Consider for instance the extension B/k,, of conductor fz. Theré exists a
character yp of order 2 on the group of ideals of k, prime to f; such that a
prime ideal i of k, is decomposed in B if, and only if, (i) = 1. The value yz(i)
is equal to yz(i"”), as h(r) is odd, and the value of yz on principal ideals
prime to fy has been calculated in Propositions 2.6 to 2.11 of [4]. Applying
this to either of the ideals p,, p, such that (p) = p1 P, in k, we shall obtain
the results for those theorems involving the integers e and f The results
involving the integers a and b will be obtained by considering the extension
Alk,. We give the details of the proof of Theorem 3, the other proofs are
similar. In this case the decompositions of p, ¢ and r = 2 in the fields k, and
k, are the following:

(2.1) P =pip2 @=G/-9% @=ryr, ink,
22 (P =Pb @=0d 2=(/2° ink,.

We first consider the extension A/k,. By Section 2 of [4] one of r,, r, is
ramified in A/k; and the other in A'/k,; we choose the notation so that r,
ramifies in A/k,. By Proposition 2.9 of [4] the conductor of Alk, is r{ and
the value of the character y, on principal ideals is given by:

55 W (42) (1, if A= +l(modr}),
3 1) = re ) |—=1, if A= +3(modr3).

Let (a, b) be a solution of a*+b*q = p"~9. As the integers a+b./—q and
a—b./—q are coprime we may set

(24) (@+by/—q)=p"2, (a—b/—q) =py 2.
Now from (2.3) we first see, as p = +1(mod 8), that:
(2.5) _ 1a(P1) x4(P2) = X4 ((P))'= 1,

so that from (2.3) and the fact that h(—gq) is odd:

1, if a+b/—gq=+1(modr}),
2.6 = ) ={ =
(26)  Xxa(P1) = 2a(p2 =1, if a+b./—q= +3(mod r})

Let f=1 or 3 be such that ¢ = —f*(mod 16). As (B—/—q)(B++/—q)
= 0(mod r$r$) and (B—./—q, /3+\f——q) = 2 there exists ¢ = +1 such that
a+b./—q=a+efb(mod rj) and so

1, if a+efb=+1(mod 8),

XA(p1)={_1, if a+6ﬂb5 + 3 (mod 8),

8 — Acta Arithmetica XLIV 4
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that is

2
(2.7) 14(P1) = 14(P2) = (W)

The integer a is odd or divisible by 4 according as p=1 or —1(mod 8) so
that when ¢ = —9(mod 16) we have

<a+23b> " (%)(aib)

which together with (2.7) proves

L 1 (g+1)/8 2
(2.8) 14(p1) = xa(p2) = (7) <a+b>'

We next consider the extension B/k,. By (2.1) of [4] we can suppose that
q, ramifies in B and ¢, in B'. Then the character y; is given by

A
(2.9) . 18 (D) = [—] X sgn A.
q1 |2

Let (e, f) be any solution of p = e?—2f? where e > 0. Then we may set
py =(e+f \/E), p; =(e—f/2), and we deduce from (2.9) that

/2 +f /2
(2.10) x8(P1) = xg(p2) = [%:l = <€f—\>.
q1 2 q

which together with (2.8) completes the proof of Theorem 3.

Remark. The class C, of discriminant m is a fourth power or not
according as p"™/* is represented by the principal class I or by the class J of
order 3. Using the well-known representative of I and of J, and also the
forms of discriminant 4m when m is odd, we obtain:

'

C, fourth power C, square, not fourth power
Theorem I prt = X2 4rY? 2 = X2 4y
Theorem 1T p" =274 = X24 2rY?2 ph Nt = 2Xx2 4 rY?
Theorem III  p"~29/* = X2 4 24Y? prT24 = X2 4 qY?
ph(—qr)/4 — X2+XY+qr+l YZ phl—qrb/‘t - qX2+qXY+q+r YZ
Theorem IV { 4 4
4ph(—qr)/4 == X2+qu2 4ph(—qr)/4 = qxl+ry2
Theorem V. pH2M/4 = X2 _2ry? gp"it = X2 2ry?
h( 2 1—gr 1—gr
PVt = X2 4 XY+ ——Y? gpPt = X2+ XY+——Y?
Theorem VI 4 . 4

4ph(qr)/4 = XZ_quz 4gph1qr)/4 - XZ_qryl
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In the cases (V), (VI) when m > 0 the integer g = —1, g or r is such that the
solvable non pellian equation is X?—grY? =g.
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