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ABSTRACT. Throughout this paper e denotes an integer =3 and p a prime =1
(mod e). With f defined by p = ef + 1 and for integers » and s satisfying 1 <s <<r
< e — 1, certain binomial coefficients ( ;f) have been determined in terms of the
parameters in various binary and quaternary quadratic forms by, for example, Gauss
[13], Jacobi [19, 20], Stern [37-40], Lehmer [23] and Whiteman [42, 45, 46].

In §2 we determine for each e the exact number of binomial coefficients ( ;f) not
trivially congruent to one another by elementary properties of number theory and
call these representative binomial coefficients. A representative binomial coefficient
is said to be of order e if and only if (r, s) = 1.

In §§3-4, we show how the Davenport-Hasse relation [7], in a form given by
Yamamoto [50], leads to determinations of n(»~D/™ in terms of binomial coeffi-
cients modulo p = ef + 1 = mnf + 1. These results are of some interest in them-
selves and are used extensively in later sections of the paper.

Making use of Theorem 5.1 relating Jacobi sums and binomial coefficients, which
was first obtained in a slightly different form by Whiteman [45], we systematically
investigate in §§6-21 all representative binomial coefficients of orders e =
3,4,6,7,8,9,11, 12, 14, 15, 16, 20 and 24, which we are able to determine explicitly
in terms of the parameters in well-known binary quadratic forms, and all representa-
tive binomial coefficients of orders e = 5, 10, 13, 15, 16 and 20, which we are able to
explicitly determine in terms of quaternary quadratic decompositions of 16p given
by Dickson [9], Zee [51] and Guidici, Muskat and Robinson [14]. Some of these
results have been obtained by previous authors and many new ones are included.

For e = 7 and 14 we are unable to explicitly determine representative binomial
coefficients in terms of the six variable quadratic decomposition of 72 p given by
Dickson [9] for reasons given in §10, but we are able to express these binomial
coefficients in terms of the parameter x, in this system in analogy to a recent result
of Rajwade [34].

Finally, although a relatively rare occurrence for small e, it is possible for
representative binomial coefficients of order e to be congruent to one another
(mod p). Representative binomial coefficients which are congruent to =1 times at
least one other representative for all p = ef + 1 are called Cauchy-Whiteman type
binomial coefficients for reasons given in [17] and §21. All congruences between
such binomial coefficients are carefully examined and proved (with the sign ambigu-
ity removed in each case) for all values of e considered. When e = 24 there are 48
representative binomial coefficients, including those of lower order, and it is shown
in §21 that an astonishing 43 of these are Cauchy-Whiteman type binomial coeffi-
cients. It is of particular interest that the sign ambiguity in many of these con-
gruences does not arise from any expression of the form n‘?~ /™ in contrast to the
case for all e < 24.
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432 R. H. HUDSON AND K. S. WILLIAMS

1. Introduction and summary. Throughout this paper e denotes an integer = 3 and
p a prime = 1 (mod e). The integer f is defined by p = ef + 1. For integers r and s
satifying 1 <s <r < e — 1, certain binomial coefficients

4

have been determined modulo p by, for example, Gauss [13], Jacobi [20], Stern
[37-40], Lehmer [23], and Whiteman [42,45,46] in terms of representations of p by
certain quadratic forms. The first result of this kind is due to Gauss [13, Vol. 2, p. 90]
who showed that fore =4, p = 4f + 1 = a> + b*,a = 1 (mod 4),

(1.2) (2ff) =2a (mod p).

Emma Lehmer [23] used Jacobsthal sums to obtain congruences for (%) and (¥)
when p = 5f+ 1 in terms of the system 16p = x? + 50u* + 500% + 125w?, xw =
v? — 4uv — u?, x = 1 (mod 5), introduced by Dickson [8].

In this paper we systematically use Jacobi sums to obtain congruences modulo
primes p = ef + 1 for binomial coefficients of the type (1.1). These include old as
well as new ones. The cases treated in §§6—19 are e = 3,4, 5,...,16. In §§20-21 we
handle in some detail the cases e = 20 and e = 24, relying heavily on recent
evaluations by, e.g., Berndt and Evans [4] of bidecic and biduodecic Jacobi sums.

Our results are obtained in terms of the parameters in the following Diophantine
systems: '

(1) p=a*+b*>, a=1(modd), 4e,
() p=x2+3y%,  x=1(mod3), 3le,
(3) 4p =A*>+27B%, A =1(mod3), 3]e,
(4) 16p = x% + 50u® + 500% + 125w?, xw = 02 — 4uv — u?,
x=1(mod5), S5le,
(5) p=x*+72  x=1(mod7), e=7,14,
(6) 72p=2x}+42(x] +x} +x7) +343(x3 +3x3), x,=1(mod7),
e=17,14,
(7) p=c*+2d* c=1(modd), e=38,16,24,
(8) 16p = x2 + 26u* + 260% + 13w?, xw = 30> — duv — 3u?,
x=9(mod13), e=13,
9) p=g>+15h*, g=1(mod3), e=15,

(10) p=x2+2u*+20*+2w?,  2x0=u>—2uw—w?  x=1(mod8),
u=v=w=0(mod2), e=16,
(11) p=e?>+5f2, e=a(mod5)if5|b and e=|b|(mod5)if5]a,

e =20,
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(12) p=u?>+6v>, u=-1(mod4)if3|b and u =1 (mod4) if 3|a, 7
e =24,

Although the sign of b is not fixed in (1) it is clear that for P = 4f + 1 there exists
at least one primitive root g( p) such that g/ = a/|b| (mod p). For e = 20 and 24

some of our determinations require fixing g in this manner (see, in connection, [19]).
The following congruences are typical of those proved in §§6-21.

sz) =-4 (modp=3f+1) (Jacobi[20]),

sz) =2a (modp=4f+1) (Gauss[13]),

2 2
2f) _1 (_ Wi(xxTn;:))) (mod p=5f+1) (Lehmer [23]),
=2x (modp=6f+1),

A (mod p=7f+1)  (Jacobi[19]),

=(-1)""2¢ (mod p =8f+ 1),

(

¥

(2ff) +(i‘f) +(§;) =-x; (mod p=7f+1),
(

( m) (mod p =101+ 1),
(

)
Sf) 1 (_x _ ow(x? — 125w?)
)

=4 (modp=12f+1), (6ff)sza (mod 12f + 1),

a=1(mod4) = 3|b,
4f\ 1 3w(x? — 13w?)
=— x4 20X~ W) =13f+ 1),
( ) ( x 8(wx + 13uv) (mod p = 13f+ 1)
2g(mod p =15+ 1), AB =0 (mod5),

7" 24f+ 18Bg (mod p=15f+1), A =Bor-2B(mod5),
2f A —9B

2A4g — 18Bg 3 _
4 T 9B (mod p=15f+1), A= _Bor2B (mod5),

(Z‘) =(-1)2cor (-1)"'2¢ (mod p = 16f + 1)

accordingash =0 or8 (mod 16),
2_ 52
(i,f) = 2(_1)f(x _ o220 ) ed = 167+ 1),

u? — w2+ 2uw
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(1?f) =2eor2ea/|b| (mod p=20f+1), 5|bor5|a  (Whiteman [45]),
W) L, 4 w2 125w) =
(3f) T2 (-x " 4(xw + 5uv) (mod p =207+ 1)

for the solution (x, —v, u, -w) of (4),

(5;) =(-1)""7*"'4 (mod p = 241 + 1),
( ljf) =(-1)2u (mod p =241+ 1).

In so far as possible we determine all binomial coefficients for the cases consid-
ered if they can be given in terms of the systems (1)-(12). Binomial coefficients
which are not treated are related to the parameters in more complicated quadratic
partitions. In some cases, see §§18-21, we are able to determine these binomial
coefficients up to sign in terms of the parameters in (1)-(12).

For each e, there are 3(e — 1)(e — 2) binomial coefficients of the type (1.1) which
are of order e. In §1 it is shown by an application of a simple generalization of
Wilson’s theorem that it suffices to determine N(e) of these binomial coefficients
(for large e, N(e) = e?/12) where N(e) is given explicitly by

2 — 12 ife=a(mod6), =-3,0,1,4,
(13)  Ney= &7 a/12 ife=af )«
(e?+ a)/12 ife=a(mod6), o=-4,-1.
These N(e) binomial coefficients will be called representatives.

When e is composite, say e = mn, it is useful to have a congruence of the type

—oyym @ flay g f!
(1.4) nP=b/ =51, {1 b, /1 (mod p)

where the a;, b, are integers between 1 and e — 1 inclusive. Such a congruence
follows from the Davenport-Hasse relation for Gauss sums [7] and a congruence of
Yamamoto [50]; see (3.11). For values of m and » for which m or » is small we show
in §4 that the expression on the right-hand side of (3.11) can be given in terms of
binomial coefficients (mod p). Together with known results for n?~Y/™ (mod p) in
terms of representations of p by quadratic forms we deduce congruences (mod p)
relating certain binomial coefficients which are used in later sections. For example, if

p = 2mf + 1, it is shown in Theorem 4.1 that we have

(1.5) 2(p=1)/m E(—l)f( (m *]; 2)f)/ ( (m;f2)f) (mod p).

Putting (1.5) together with a result of Emma Lehmer [23], see (4.5), we obtain
Corollary 4.1.1 which is used in §§9, 15, and 21. The results in §4 appear to us of
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some interest, totally apart from their use in later sections. For example, an easy
application of (2.1), (2.2) and (3.11) gives

3(p=1/16 E(_l)f( 1j;f)/ ( 138;) (mod p = 48 + 1).

We note that criteria for 3 to be a 16th power in terms of the parameters in
Diophantine systems is an open problem.
In 1840, Cauchy [5, p. 37] show that

(1.6) ( l?ff) ==+ ( 13?;) (mod p =201+ 1),

and in 1965 Whiteman resolved the sign ambiguity in this congruence. Representa-
tive binomial coefficients which are congruent to =1 times another representative
modulo p for all p = ef + 1 are said to be of Cauchy-Whiteman type for reasons
given in [17] and §21. We systematically investigate all such congruences. The 27
congruences of this type given in Theorems 21.1 and 21.2 far exceed the number of
such congruences for all e < 24. Moreover, the congruences in Theorem 21.2 do not
arise (as do all other known Cauchy-Whiteman type congruences) as expressions of
the form (n»~Y/™y p = mnf + 1.
Forp = 11f+ 1,4p = a®> + 11b%, a = 2 (mod 11), Jacobi [19] showed that

(S5 e

For larger values of e with many representative binomial coefficients it is not
appropriate to list all such congruences, and we cite only one.

Forp =20f+1=e>+5f%(e =a(mod5)if 5|b and e =|b| (mod 5) if 5|a) we
have

(y)(i{)/(l;;) =(-1)?"2¢ (mod p).

The sign may be given unambiguously in this congruence (and in many other
congruences in §20) only because of an important sign ambiguity resolution ob-
tained by Muskat and Whiteman [31] in determining the cyclotomic numbers of
order 20.

In all that follows we are heavily indebted to Berndt, Evans, Muskat, and
Whiteman for their pioneering work on Jacobi sums of higher orders.

2. The number of distinct binomial coefficients of the type (1.1). If m and n are
positive integers such that m + n =e, then a simple modification of Wilson’s
theorem yields

(2.1) mfinf1=(-1)""""'=(-1)""" (mod p).
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Making use of (2.1) and the elementary property (§) = (,%,) of binomial coeffi-
cients, we deduce that for ] <s <r <e — 1 we have

e (7)=(, 2, E(‘”UW( o i;ﬁ)(“)"w( = ;;)

_ e le=rts)fy _ L f(e—rts)f

=C0 ( (e~ r)f ) = (7)o
If r #2s, 2r — s # e, r + s # e then the entry pairs in the six coefficients in (2.2)
are distinct and we call (2.2) a 6-cycle. If exactly one of r=2s, 2r — s = e,
r + s = e holds, then there are three distinct entry pairs in the coefficients in (2.2)
and we call (2.2) a 3-cycle. Finally, if at least two of r = 2s5,2r —s=e,r+s=e
hold, then in fact all three hold so that e = 3s and the coefficients in (2.2) reduce to
the 1-cycle (3).

The number N, of 1-cycles is clearly 1 if e = 0 (mod 3) and 0 if e = 0 (mod 3). The
number N, of 3-cycles is the number of pairs (7, s) satisfying exactly one of r = 2s,
2r —s =e, r +s = e. Thus N, is the number of integers ¢ satisfying 1 <t <e/2,
t # e/3, so that

e/2—2 ife=0 (mod6),
(e—1)/2 ife=1 (mod6),
e/2 — 1 ife=2 (mod6),
(e—3)/2 ife=3 (mod6),
e/2 — 1 ife=4 (mod6),
(e—1)/2 ife=5 (mod6).

(2.3)

2
I

The number Ny of 6-cycles is now easily deduced from the values for N, and N; and
the identity

(2.4) N, + 3N, + 6N, = 3(e — 1)(e — 2).

Since the coefficients in (2.2) are congruent (mod p) it suffices, for each e, to
determine N(e) = N, + N, + N of them. For the convenience of the reader Table 1
is given summarizing the above and indicating the representative to be chosen from
each cycle. :

A representative binomial coefficient of the type (1.1) with (r, s) > 1 is the same
as the lower order binomial coefficient (;'/1), where

rn=r/(r,s,e), s, =s/(r,s,e), e, =e/(r,s,e)<e,

fi=(r,s,e)f,p = e, f, + 1. Henceforth, a representative binomial coefficient will be
said to be of order e only if it is not the same as one of lower order. It is easy to see
that if R(e) denotes the number of representatives with lower order ones excluded,
we have

R(3)=R(4) =1, R(5)=R(6)=2, R(7)=R(8) =4,

(2.5)  R(9) =R(10) =6, R(11)=10, R(12) =8, R(13) = 14,
R(14) = 12, R(15) = R(16) = 16, R(20) =24, R(24) = 33.
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We close this section with a lemma which will be useful when R(e) > 1 in that it
makes it possible to further reduce the number of binomial coefficients which must
be treated separately.

LEmMMA 2.1. If g, h, k are integers satisfyingl <h<g<e— 1l 1<h<k<e—1,
e—k<g— h,then

gf\[(e—28)f _( \ethr | Kf (e—k)f mo
(2.6) (hf)((k—h)f)_( D (hf)((g—h)f) (mod p).

3. Basic properties of Gauss and Jacobi sums. For a positive integer n we set
¢, = exp(2wi/n). For (a, e) = 1, we define the automorphism o, by

(3.1) 0,:$,~>%, o.P->P,

where P denotes any of the ¢(e) prime ideals dividing p in Q({,). Let g be a
primitive root (mod p) such that gt?~"/¢ = ¢ (mod P). We define a character x,
(mod p) of order e by

(3.2) X(x) = {

¢4 ifx =0 (mod p), xP~ /¢ =¢2 (mod P),
0 ifx=0(modp),

so that x (g) = ¢,. If x Z0 (mod p), the index of x with respect to g, written
ind (x), is the unique integer b such that x = g% (mod p), 0 < b <p — 2. Clearly
X (x) = {5 Let r and s denote positive integers. The Gauss sum G,(r) of order
e is defined by
r—1 p—1
G(r)= 2 xux)§y = Z I
x=0 x=1

The Jacobi sum J(r, s) of order e is defined by

p—1 p—1
I(r ) = S xX)xi(1 = x) = T g,
x=0 x=2
Gauss and Jacobi sums are related by
(3‘3) Je(r’ S) = Ge(r)Ge(s)/Ge(r + S)’

provided e does not divide r, s, or r + s. Moreover (see, for example, Muskat [30]),
we have

(34) I(r.s) = (s, r) = (-1)"I(-r =5, 5),
(3.5) J(r,s)J(-r,s)=p (r,s,r+s=0(mode)),
(3.6) G(r)G(-r)=(-1)7p  (r=0(mode)),
(3.7) J(r,s)=J,(m,sn) ife=mn,

and if eis prime and e} r, s, or r + s, then

(3.8) J(r,s)=-1 (mod(1 - ¢,)?).
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An important relation involving Gauss sums is provided by the Davenport-Hasse
relation [7], namely,
G (m)}2(G,(my)
723G, (m; + 1)

(3.9) gindglm) —

Further, it follows from the work of Yamamoto [50] that if [16Z}{G(/)}* (¢; an
integer) is a unit of Q({,,), then

and
(3.10) [;1l (6.1} E‘fl;]] (1% (mod P).

Applying this to (3.9) we obtain

. ntf 172 1 (mjf )!
(311) n(p—l)t/m = n{l J .1( .]f) (modp)
szo((mf +1)f)!
Finally, it follows from Stickelberger [41] that if etr, s or r + s, and {J(r, 5))
denotes the ideal generated by J,(r, s), then

e—1

(3.12) ‘ (J(r,s))= I1 P,
(o=
(rt™'fe} + {st™ fe} <1
where 17! denotes the inverse of ¢ modulo e, and { } denotes, as is customary, the
fractional part of the quantity inside the braces.

4. n?=Y/™ as a product of binomial coefficients (mod p). In this section for values
of m and n for which either m or n is small and 7 = 1 we show that the expression on
the right-hand side of (3.11) can be expressed as a quotient of products of binomial
coefficients (mod p). Making use of known results in the literature for n(?=1/m
(mod p) in terms of representations of p by quadratic forms, we deduce congruences
(mod p) relating certain binomial coefficients of the type (1.1). These congruences
will be used in later sections.

Throughout this section we have p = mnf + 1. Taking n =2 in (3.11) and
appealing to (2.2), we obtain foreacht = 1,2,...,m — l and p = 2mf + 1,

2(p=yt/m E(_l)'"f( 2{?)/ (rZ{) (mod p).

Binomial coefficients (mod p = ef + 1), when e is composite, are often related to
one another by powers of n(?~1/™ where n is a divisor of e (not necessarily prime).
For e < 12 we are able to determine these interrelationships by simply taking ¢ = 1
in (3.11) so we may appeal directly to results in this section. Beginning with e = 14
in §17 the number of powers of n»~ Y™ which need be considered becomes
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sufficiently large that it is convenient to use the full strength of the congruence
(3.11). We postpone this generalization for now and it will be understood throughout
this section that ¢+ = 1 in applying (3.11).

Taking n» = 2 in (3.11), and appealing to (2.2), we obtain

THEOREM 4.1. If p = 2mf + 1 is prime then

(4.1) 2p=1)/m E(l)f( (m; 1)f)/ (’2";) (mod p).
When m = 2 we have, as is well known,
(4.2) 20°972 =(-1)) (mod p = 4f + 1).

When m = 3, Theorem 4.1 gives
(4.3) (-1)’(2ff) = 2<P-'>/3( 3}{) (mod p = 6f+ 1).

As p is a prime = 1 (mod 3), there are integers x, y such that
(4.4) p=x>+3y?, x=1 (mod3).

The determination of 2(?~P/3(mod p) in terms of x and y is given by

(1 (mod p) ify =0 (mod3) (Jacobi [19]),
x + 3y L

(4.5) 20-D/3=] x =3y (mod p) ify =1 (mod3)
x — 3y (Lehmer [23]).

(mod p) if y =2 (mod3)

x + 3y

L

Primes p = 1 (mod 3) are also expressible in the form 4p = 4> + 27B%, A =1
(mod 3), where 4 and B are related to x and y in (4.4) by

= -2x, B= =2y if y = 0 (mod 3),
(4.6) A=x+3y, B==}x—y) ify=1(mod3),
A=x-3y, B==}x+y) ify=2(mod3).

Thus (4.5) may be reformulated in terms of 4 and B as follows:

1 (mod p) if A =B=0(mod2),
A+ 9B N _

(47) 20-93 =17 "9p (mod p) if4=B=1(mod2),4 = B(mod4),
A — 9B

<798 (mod p) if4=B=1(mod2),4 = -B(mod4).

Combining (4.3) and (4.5) we obtain
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COROLLARY 4.1.1. pr =6f+ 1=x%+ 3y2 x =1 (mod 3), is prime, then
/(%) tmoa p) iy =0 (mod3),

(:;ff)a( )fx+3y( )(mOdP) ify =1 (mod3),

(_1)fif§y( )(modp) ify =2 (mod3).

Combining (4.3) and (4.7) we obtain

COROLLARY 4.1.2. If p = 6f + 1, with 4p = A?> + 27B*, A = 1 (mod 3), is prime,
then

)

( 1)’( )(modp) ifA=B=0(mod2),

A

4
(- 1)A+9B

(- l)fA +9 — (fo) (mod p), ifA=B=1(mod2), 4 = -B (mod4).

( f ) (mod p), ifA=B=1(mod2),4 =B (mod4),

When m = 4, Theorem 4.1 gives

(4.8) (3f) E(—l)fz(l’“)/“( 4f) (mod p =87+ 1).
f 2f

As p = 1 (mod 8) there are integers a and b such that

(4.9) p=a*+b? a=1(mod4), b=0(mod4),

and by a result of Gauss [13, Vol. 2, p. 89] we have
2070/4 =(=1)”*  (mod p).
Hence from (4.9) and Lemma 2.1, we have

CoROLLARY 4.13. If p=8f+ 1=a?>+ b (a=1 (mod4), b =0 (mod4)) is
prime, then

)= ef) e

When m = 5, Theorem 4.1 gives

(4.10) (“ff) s(-l)fzw-‘)/S(Z,) (mod p = 10f + 1).

As p = 1 (mod 5) there are integers x, u, v, w such that

— 2 2 2 2 =
(@11) {16p—x + 504 + 500% + 125w%,  x =1 (mod5),

w = 0% — duv — u>.
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It is known (see, for example, [49, p. 544]) that (4.11) specifies x uniquely. If x =0
(mod2), Lehmer [21] has shown that 2?~"/° =1 (mod p). Moreover, if x =1
(mod 2), then there is a unique solution (x, u, v, w) of (4.11) satisfying

(4.12) u=0 (mod2), x+u—0v=0 (mod4),

and for this solution we have 27~ Y/% = a(x, u, v, w)(mod p) where

_ w(125w? — x?) + 2(xw + Sup)(25w — x + 20u — 10v)
~ w(125w? — x2) + 2(xw + 5u0)(25w — x — 20u + 10v) )

Combining these we have

(4.13) a(x,u,0,w)

COROLLARY 4.1.4. If p = 10f + 1 is prime, and (x, u, v,w) is a solution of (4.11)
satisfying (4.12) we have

(4f) _ (‘l)f(ij;) (mod p), if x =0 (mod 2),
2 (—l)fa(x,u,v,w)(gj}) (mod p) ifx =1 (mod2),

where a(x, u, v, w) is given by (4.13).

When m = 6, Theorem 4.1 gives

(4.14) (5;) s(—l)f2<l’-'>/6( g’;) (mod p =12+ 1).
Since 2(»~ /2 .E (=1)/ (mod p), we have
(4.15) (Sff ) = (2<P-'>/3)2( gﬁ) (mod p).

Appealing to (4.5), we obtain
COROLLARY 4.1.5. If p = 12f + 1 = x* + 3y* (x = 1 (mod 3)) is prime, then

( gj;) (mod p) ify = 0 (mod 3),

5 — 6
(;) 3 i+§§(2{‘) (mod p) ify =1 (mod3),

x + 3y
x— 3y

(g];) (mod p) ify =2 (mod3).

When m = 7, Theorem 4.1 gives

(4.16) (6]{) E(—l)fZ("“)”( Z’;) (mod p = 141 + 1).

The determination of 2(?~"/7 (mod p) has been given by Nashier and Rajwade [33].
Since this determination is extremely complicated, we just illustrate it below for the
case when 2 is a seventh power (mod p).
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COROLLARY 4.1.6. Let p = 14f + 1 be a prime. Then there are integers x,,...,X¢
such that )
(72, = 2x2 + 42(x2 + x2 + x2) + 343(x5 + 3x,)’,
12x2 — 12x2 + 147x2 — 441x2 + 56x,x
(4.17) 1 +24x,x; — 24x,x, + 48x;x, + 9Bx;x, = 0,
12x3 — 12x3 + 49x2 — 147x2 + 28x,x5 + 28x,x4

+48x,x; + 24x,x, + 24x3x, + 490x5x5 = 0,

with x;, =1 (mod7). All the solutions of (4.17), except the two trivial solutions
(X5 Xy X35 Xg, X5, Xg) = (=61, =2u, *2u, ¥2u,0,0), where p =1t>+ Tu?, t=1
(mod 7), have the same value of x,. If x, =0 (mod?2), then 2 is a seventh power
(mod p), and we have

(4.18) (6;) E(—l)f(;j;) (mod p).

ExaMpLE. We illustrate Corollary 4.1.6 by taking p = 673 so that f = 48 and
x, = 22 = 0 (mod 2) (see [47, p. 1136]). In agreement with (4.16), we have

(6f ) _ (288) =346 (mod673),

f 48
(4)’(5’}) = (393’66) =346 (mod673).
When m = 8, Theorem 4.1 gives
f fop— 8f _
(4.19) ( f)(—l) 2 l)/8(2f) (mod p = 16f + 1).

From Lehmer [23, p. 66] we have

+1 if b =0 (mod 16),
+b/a if b= 4 (mod16),
-1 if b = 8 (mod 16),
-b/a  if b =12 (mod 16),

(4.20) 2P=1/8 =

where a and b are defined as in (4.9). Combining (4.19) and (4.20) we obtain

COROLLARY 4.1.7. Let p = 16f + 1 = a* + b (a = 1 (mod 4), b = 0 (mod 4)) be
prime. Then

()=

Since expressions for 27~ Y/™ (mod p) are also known for m = 10, 12, 15, 16, 20,
24, 32 and 40 (see [23, p. 70; 18]), similar congruences to those given in Corollaries
4.1.1-4.1.7 can be deduced.
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Next we take n = 3 in (3.11) to obtain

THEOREM 4.2. If p = 3mf + 1 is prime then

(L3)~V/m = ( (m+ 2)f)/ ( (m + 2)f) (mod p).

f 3f
When m = 3, Theorem 4.2 gives
5f _ 5f
4.21 ( )53(1’ ')/3( ) mod p = 9f + 1).
(4.21) ; 2y (modp=97+1)
By a result of Lehmer [23, p. 67] (see also [48, p. 279]) we have
1 (mod p) if B =0 (mod 3),
A — 9B e
(4.22) 3-b/3 =] T oB (mod p) if B =1 (mod3),
‘j t gg (mod p) if B=2 (mod3),
where
(4.23) 4p = A* + 27B?, A =1(mod3).

Combining (4.21) and (4.22) we obtain
COROLLARY 4.2.1. If p = 9f + 1 is prime then

(;j;) = (5;‘) (mod p) if B =0 (mod 3),
E%{—g% ( Sff) (mod p) if B=1(mod3),
=~ +9g(5ff) (mod p) if B =2 (mod3).
When m = 4, Theorem 4.2 gives
(4.24) (6;) s(-3)"’"’/“(g;) (mod p = 12+ 1).

From the work of Gosset [15] we have

(=3)P~ V4 = {1 (mod p)  if b =0 (mod3),

(4.25) -1 (mod p) ifa =0 (mod3),

where a = 1 (mod4), b = 0 (mod 2) ((-3)*~ /4 =+1 (mod p) as p = 1 (mod 12)).
Combining (4.24) and (4.25) we have
COROLLARY 4.22. If p=12f+ 1 =a*+ b* (a=1 (mod4), b =0 (mod?2)) is

prime then
( 6f) (g;) (mod p) if b =0 (mod 3),
1 =

_ (g;) (mod p) ifa=0(mod3).
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When m = 5, Theorem 4.2 gives
(4.26) (7;) = 3(”_')/5( ;;) (mod p = 15f+ 1).

An explicit determination of 3(?~ D73 has been given in [49, Theorem 2]. Using this
together with Jacobi sums of order 15 given by Muskat [30] an explicit determina-
tion of (7) and (3}) is obtained in §18.

Taking n = 4 in (3.11), and appealing to (2.2), we obtain

THEOREM 4.3. If p = 4mf + 1 is prime then

e L[ A A [ R

Taking m = 3 in Theorem 4.3 we obtain
COROLLARY 4.3.1. If p = 12 f + 1 is prime then

() -2f) e

We note that it is possible to obtain a simpler form for the determination of
4P=b/m (mod p) by using (2.1) together with (3.11). In particular, we have

3
41! mjf )! ~
4p=0/m = fl:l‘( " = 4 (=)™ 2mf)!
i ((mj + 1)f)! FH{(m+ DAHL@m + DN (Gm + 1)

J

_ G4 @m) m = g ((m ; 3)f) ( " / Z)f)
7 ((m+ D) (@m+ D) ((m+3)f)((2m+l)f)'
4f f

Thus we have obtained the following variation of Theorem 4.3.

THEOREM 4.4. If p = 4mf + 1 is prime then

4p=1/m E(_l)f( (m J; 3)f) ( (m J; 2)f) / ( (m :f 3)f) ( (Zm; l)f)

(mod p).

Although Theorems 4.1 and 4.4 clearly give the same result for m = 3, this is not
the case in general.

The following congruence, which will be referred to again in §14, is particularly
interesting, since it shows that representative binomial coefficients may be identical
modulo p = ef + 1. Several of these identities are established in §21. It would be
interesting to know for which values of e such congruences are possible.
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COROLLARY 4.4.1. If p = 12 f + 1 is prime then

5Ay _ (8
(7)=(5) @oan.
Proor. Using (3.4) together with Theorems 4.1 or 4.4 (appealing to (2.2) to see
that (-1)/(%/) = (}) (mod p) in the latter case),

211/ () =33/ () s

On the other hand,
af\(8f) _[6f\[6f
(2f)(4f) =(2f)(2f) (mod p)

is an immediate consequence of Lemma 2.1 withg =4, h =2,k = 6.

We remark that one can also obtain the last step in the proof by expanding in
terms of factorials using (2.1). This corollary is important to us, as using it, other
representative binomial coefficients of order 12 are determined in §14 using the
simple determination of (2/ ), p = 3f + 1, given by, e.g., Jacobi [20]. Taking » = 5 in
(3.11), and appealing to (2.2), we obtain

THEOREM 4.5. If p = Smf + 1 is prime then

gm0 ) () G2

Taking m = l3 in Theorem 4.4 we obtain

(mod p).

(4.27) (Sff) = 5“’")/3( ;’;) (mod p = 15+ 1)
By a theorem of Williams [48, pp. 282-283] we have
1 (mod p) if AB =0 (mod 5),
(4.28) 5(p—1/3 = ﬁ t gg (mod p) if 4 = Bor-2B (mod5),
A — 9B

YR (mod p) if4 = -Bor2B(mod5),

where 4p = A% + 27B%, A = 1 (mod 3). Combining (4.27) and (4.28) we obtain
COROLLARY 4.5.1. If p = 15f + 1 is prime then

-

(;j;) (mod p), if AB =0 (mod5),
(Sff) = j tgz(;j;) (mod p), ifA =Bor-2B(mod5),
L %(Zj}) (mod p), ifA=-Bor2B(mod5).
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Finally, taking m = 4 in Theorem 4.4, we obtain

( l?‘f) - 5(,,_.)/4( 130;) (mod p = 207+ 1).

Since

1 (mod p), ifb=0(mod5),

S(r—1/4 =
-1 (mod p), ifa =0 (mod5),

where a = 1 (mod 4), we have

COROLLARY 4.5.2. If p = 20f + 1 is prime then
( 10f )
f

Corollary 4.5.2 was first proved by Whiteman [45], although the congruence
('Y) ==(4/) (mod p) had been established by Cauchy [5, p. 37] one hundred and
twenty-five years earlier.

( 130;) (mod p) if b =0 (mod5),

_ ( 13"/[) (mod p) ifa =0 (mod5).

5. The basic theorem. We prove the following theorem which shows how each
binomial coefficient of type (1.1) can be determined modulo P by means of Jacobi
sums. This theorem provides a basic tool which will be used through the rest of the

paper.

THEOREM 5.1. If p = ef + 1 is prime and r, s are integers suchthat 1 <s <r<e —
1, then
rf\ _ sf+1
(5.1) of =(-1)""J(r,e—s) (modP).

PROOF. Since
X(x) =x/ (mod P)

we have
p—1
J(r,e—s)= 3 x7(1—x)" (mod P)
x=1
p—1 (e—s)f
= 2 x'f 2 (_1)’((e—s)f)xt
x=1 =0 t
(e—s)f -1
= ezs (_l)t( (e _t s)f) pz xrf+t'
t=0 x=1
However,
(52) pélxkz O0(modp) ifk=0(modp—1),
' ot -1 (mod p) ifk=0(modp — 1),
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so that we have, appealing to (2.2),

(53) J(r.e—s) E(E:f(_l)m( (e s)f)

if
() () man

We note that Whiteman [45] has already proved a result similar to, but not exactly
the same as Theorem 5.1. Letting B = 2™/ be replaced by g/ for a primitive root g
of p=ef + 1 our J(r, s) becomes Whiteman’s ¢, ;. In Lemma 6 of [45] Whiteman
showed that

(1) Y, , =0 (mod p) (r+s<e),

(ii) Y, = _((Zie_—rr_);)f) (mod p)  (r+s>e).
In view of (2.2), condition (ii) can be rewritten in the simpler form

Gy sy =0 7] meap)

In later sections we will refer again to Whiteman’s very useful Lemma 6.

6. e = 3. There is a single representative binomial coefficient of order 3, namely
(3/). With 4 and B defined as in (4.23), we choose P = (), where

(6.1) w=%(A+3B\/:§),
so that P|p. It is well known that
(6.2) L(1,1) =,

(see, for example, [4, p. 357]), so by (6.1) and (6.2)

(6.3) 5(2,2) =7

%(A —3B/-3) =4 (mod).

Hence, by Theorem 5.1 (withe = 3, r = 2, s = 1) we have (as fis even),

(6.4) (sz ) = J(2,2)= -4 (mod ).

As (3/) and -4 are both rational integers, and 7 |p, we have
THEOREM 6.1. If p = 3f + 1 is prime and A is given uniquely by 4p = A + 27B?,
A = 1 (mod 3), then

(sz) =-4 (mod p).

This result is due to Jacobi [20]; see also Whiteman [42] and von Schrutka [35].
Thus, appealing to (4.6), Theorem 6.1 can also be given in the form
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THEOREM 6.2. If p = 3f + 1 is prime and x is given uniquely by p = x* + 3y2,
x = 1 (mod 3), then )

7]
f
7. e = 4. There is a single representative binomial coefficient of order 4, namely
#).
With a = 1 (mod 4), b = 0 (mod 2), we choose P = (7)), where 7 = a + bi, so that
P|p. Then it is known that J,(1,2) = (-1)/* 7 (see, for example, [4, p. 361]), so
Ji(2,3) = 7,(1,2) = (-1 'F = (1) (a — bi) =(-1)""2a  (mod 7).
Thus, by Theorem 5.1, we have
7
f

2x (mod p), ify =0 (mod 3),
-x — 3y (mod p), ify =1 (mod3),
-x + 3y (mod p), ify =2 (mod3).

) =(-1)"""7,(2,3) =2a (mod 7),
and hence

THEOREM 7.1. If p = 4f + 1 is prime and a is given uniquely by p = a* + b*, a =
(mod 4), then

7
f

This is the result-of Gauss mentioned in §1; see also Whiteman [42, p. 95].

) =2a (mod p).

8. e = 5. There are two representative binomial coefficients of order 5, namely
(7/) and (3/). For convenience we set 8 = {,. It is known that the ring of integers R
or Q(B) is a unique factorization domain [27]. In R, p factors into primes as

(8.1) P = MTMT3Ty,

where 7 is any prime factor of p in R and w, = o,(7) (i = 1,2, 3,4). We can set

(8.2) 7=a,B+a,B>+ a,B* + a,B*,

where a|, a,, a,, a, are rational integers (see, for example, [49]). Clearly a, + a, +

a; +a, =0 (mod5), as 1 — B|5, 54 p. Replacing 7 by its associate am, where « is
the unit of R given by

+1 ifa, +a, +a;+ a, =1 (mod5),
-(B+B*) ifa,+a,+a,+a, =2 (mod5),
+(B+B*) ifa, +a,+a,+a,=3(mod5),
-1 ifa, +a, +ay;+ a, =4 (mod5),

(8.3) a

we may suppose that 7 = 1 (mod(1 — B)).
Replacing the new value of 7 by its associate g=(#1+242+3a: 440y we may suppose
further that

(8.4) 7=1 (mod(1— B)).
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By a theorem of Stickelberger, see (3.12), we have

(8.5) J(1,1) =0 (mod mm;),
so
(8.6) Js(1,1) = umm,,

where u € R. From (3.5), (8.1) and (8.6) we have

uirm mymym, = (umm)(umm ) = J(1,1) L(1,1) = p = mymymym,,
e
(8.7) ui =1,
showing that u is a unit of R, that is (see, for example, [36]),
(88) w==(B+BY)B  (k=0,%1,%2,...;1=0,1,2,3,4).
Now (8.7) guarantees that k = 0 in (8.8) so

(8.9) u= =g’ (/1=0,1,2,3,4).
By (3.8), (8.4), (8.6) and (8.9), we have
=B'=u

= umm (mOd(l - :3)2)
=J(1,1) (mod(1 — 8)?)
=_1 (mod(l - B)z)’

so0 in (8.9) the minus sign holds with / = 0, that is, u = —1, giving

(8.10) J(1,1) = —mm,.
We set
(8.11) L(1,1) = ¢, + ¢, 82 + 3B + ¢, 8.

AsJy(1,1) = -1 (mod(1 — B)?), by (3.12), we have

c,+te,t+eote,=-1 (mod5),
¢, +2¢c, +3¢c;,+4¢, =0 (mod5).

(5.12 {

Next, since 8 — B2 — B> + B* =5, we have
(e == et e )5 =(e,— ;= e+ ¢,)(B— B> — B>+ B)
—(I+¢+ey+e+e¢) (mod(l—B)Y)
=2((c; + ca)(B+ B*) + (e + ¢3)(B>+ B°) +2) (mod(1 - B)")
=2(J(1,1) + L(1,1) +2)  (mod(1 — B8)°)
=2(J5(1,1) + 1)(A(TL 1D + 1) (mod(1 — B)°)
=0 (mod(1 - B8)"),
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SO

(8.13) cg—¢;—¢3+¢; =0 (mod5).

Congruences (8.12) and (8.13) enable us to define integers x, u, v, w by
x=-(c,te,+e3te,), Su=c +2¢—2¢—cy,

(8.14)

So=2¢, — ¢y +c3;— 2¢,, S w=c¢, —c, —¢3+ ¢y

Using (3.5), (8.11), (8.12) and (8.14), it is easy to check that (x, u, v, w) is a solution
of

(8.15) {1617 = x% + 50u? + 5002 + 125w2,  x =1 (mod5),
xw = v? — duv — u?.
From (8.14), we obtain
8.16 4c;=-x+2u+4v+ 5w, 4c,=-x+4u—2v— Sw,
(8.16) 4c;=-x —4u+ 20— 5w, 4dc¢y=-x—2u—4v+ 5w,
and so (8.11) and (8.16) give
(8.17)  J(1,1) =%(x+u(2/3+4,82—4,83 —28%)

+0(48 — 2B% + 28> — 48%) + 5w/5 ).
Next, from (8.17), we deduce that

(8.18) O (1L,1) + J(4,4) =%(x+SW\/-5_).
Since
(8.19) J(1,1) =0 (mod 7),
by (8.5), we deduce from (3.4), (8.18) and (8.19) that
(8.20) J5(2,4) = J,(4,4) E%(x +5wis) (mod).
Hence, by Theorem 5.1, we have
2
(8.21) ( ff) = -4(2,4) = —%(x + 5W\/§) (mod 7).
It now remains to determine y/5 (mod 7) in terms of x, u, v, w.
Since
1
2 _9p3 _ p4—
522 B+2B2—2B8%— Bt = 21\/50 +10/5 ,

28— B2+ B — 2p% = %i\/SO — 105,

we obtain from (8.17) and (8.19):

(823)  x+iw/50 + 105 + ivy/50 — 10/5 + 5w5 =0 (mod 7).
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Also from (8.5) we have

(8.24) J(1,1) =0 (mod my).
Applying the automorphism o, to (8.24), we obtain
(8.25) J(2,2) =0 (mod m).

Hence from (8.17) and (8.22) we have
(8.26)  x—iw/50 — 10/5 + ivy/50 + 105 — 5w/5 =0 (mod ).
Adding (8.23) and (8.26) we obtain

(8.27) 2x + i(u +0)y/50 + 10/5 — i(u — v)y/50 — 10/5 =0 (mod ).

Taking the term 2x over to the right-hand side of (8.27) and squaring, we obtain
after some simplification,

(8.28) 10(u? — uv — v2))/5 = x* + 254> + 250 (mod 7).
From (8.15) and (8.28), we obtain

(8.29) /5 = —(x? + 25u® + 250%) /10(xw + Suv) (mod 7).
Using (8.29) in (8.21), we get, appealing to (8.15),

L2y _ x| w(x®— 125w?)
(8:30) ( f) ) * 8(xw + S5uv)

As both sides of the congruence (8.30) are integers (mod p), and since x, x? — 125w?
and x + Suv/w are independent of the choice of solution (x, u, v,w) of (8.15),
(8.30) holds mod p. Similarly, using J5(2,2) in place of Ji(1,1), we obtain an
analogous congruence to (8.30) for (}f ). These congruences are due to Emma
Lehmer [23, p. 69]. Summarizing, we have

(mod 7).

THEOREM 8.1. If p = 5f + 1 is prime and (x, u, v, w) is any solution of (8.15), then

(2ff) = ("‘ " f‘m—liﬁf))) (mod p),
(3ff) E%(—x - %ﬁ—:i)) (mod p).

The next corollary follows immediately from Theorem 8.1. It was recently
rediscovered by Rajwade [34].

COROLLARY 8.1.1. If p = 5f + 1 is prime and x is given uniquely by (8.15), then

x+ (2ff) + (3ff) —0 (mod p).
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9. ¢ = 6. There are two representative binomial coefficients of order 6, namely
(3) and (3/). In this section we establish a congruence for (7/) which, in conjunc-
tion with Corollary 4.1.1, gives

(9.1) (3;

We have been unable to find a reference to this result.
Consider the Jacobi sum Jg(2,5). By (3.4) and a result of Jacobi [19,p. 69], we
have

)E2x (mod p = 6f+ 1).

Js(2,5) = (-1)/)(5,5) = x5'(4) J5(4,4),
that is (by (3.7))
Js(2,5) = x3'(2)5(2,2).
Since x5(2) = 2»~ Y/ (mod ) from (4.7) and (6.3) we obtain
A (mod 7), if A =B =0 (mod2),

1 .
J(2,5) = _E(A +9B) (mod 7), ifdA=B=1(mod2),4 =B (mod4),

—%(A —9B) (mod 7), ifA=B=1(mod2),4 = -B(mod4).

Thus by Theorem 5.1 we have
THEOREM 9.1. If p = 6f + 1 is prime and A, B are defined by (4.23), then

(-1)"'4 (mod p) ifA =B =0 (mod2),
(2f) _ (_1)%(14 +9B) (mod p) ifA=B=1(mod2),4 = B (mod4),

(—l)f%(A —9B) (mod p) ifA=B=1(mod2),4 =-B(mod4).

Appealing to (4.6), we obtain
THEOREM 9.2. If p = 6f + 1 is prime and x, y are defined by (4.4), then
2(~-1)/x (mod p) ify =0 (mod 3),
=1(-1)/(=x + 3y) (mod p) ify =1(mod3),
(-1) (=x — 3y) (mod p) ify =2 (mod 3).

ExaMPLE. We illustrate Theorems 9.1 and 9.2 by taking p = 991, so that f = 165,
x=22,y=13,4 =61, B= 3. Wehave

()= (220) =sms =17 moaso)

(1) (ox + 3y) = (—l)f%(A —9B) = _17.
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10. e = 7. There are four representative binomial coefficients of order 7, namely,

TRV e (5]

By (2.2) and Lemma 2.1, we have

on L) e

so that it suffices to determine

2f) ( 3f) ( 4f)

s and

( f f f

modulo p. In order to do this by means of Theorem 5.1 one must consider the Jacobi

sums J,(2, 6), J;(3,6) and J,(4, 6), respectively. Of these, J;(3,6) is an integer of the
subfield QV-7 of Q(¢,), as

0,(J5(3,6)) = J;3(6,5) = J;(3,6),

and we are able to reprove Jacobi’s result [19] for (3/) (mod p) using Theorem 5.1.
The other two Jacobi sums are related to J;(1, 1) by

1(2,6) = 1,(6,6) = a(J,(1, 1)), J5(4,6) = Jy(4,4) = 0y(J5(1, 1)),
so that to determine (3/) and (}) modulo p it suffices to consider J;(1,1). This
Jacobi sum, unlike J5(3, 6), does not belong to a subfield of Q({;). We are able to
express J,(1,1) in the form C,¢; + Cy¢2 + G§3 + Ci87 + Cs§3 + Cy{§ where the
C,i=1,...,6, ‘are linear combinations of a nontrivial solution (xq,...,x¢) of (4.17).
Using Theorem 5.1 we are able to obtain the congruence
|7

; ) = 2(2x, + TxsR + 21x,S) (mod m)

where
R=§+3-28 20+ +8, S=G-8-8H+¢,

and 7 denotes any prime factor of p in the ring of integers of Q({;), but,
unfortunately, we have not been able to determine R and S mod 7 in any aesthetic
form. Consequently, unlike the case e =5, we are unable to give (}/) and (})
mod p explicitly in terms of invariants of the system (4.17), although a result
analogous to Theorem 8.1 (but more complicated) may well exist.

We are (in analogy to Rajwade’s result [34]) able to evaluate

7+ () 3

+ + mod p).

12+ () + (3]) emoa o

First we show, however, how Theorem 5.1 can be used to deduce Jacobi’s result [19].

The ring R of integers of Q({,) is a unique factorization domain [27]. In R, p
factors into primes as

(10.2) P = W Ty,
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where 7 is any prime factor of p in R and 7, = o,(7), i = 1,2,3,4,5,6. In precise
analogy to the case e = 5 (see 8.4) we may normalize 7 so that

(10.3) 7=1 (mod(1—¢,)%).
By (3.12) we have
J,(1,2) =0 (mod mm,m,)
S0
J,(1,2) = umm,m,,

where u is an integer of Q({;). In view of (3.5) we have uiz = 1 so u is a unit of
O(£5). As all units of Q({,) are of the form

(10.4) =(B+B%) (B> + B°)
(see, for example, [36, p. 99)), it follows from (10.4) that k, = k, = 0, therefore
(10.5) u==B"1=0,1,2,3,4,5,6.

But J,(1,2) = -1 (mod(1 — ¢;)?) and mmym, = 1 (mod(1 — §,)?) so
u=-1 (mod(l - {7)2).
Thus (10.5) must hold with the minus sign and with / = 0, that is,
J5(1,2) = -7 mym,.
Next, as
0,(J7(1,2)) = oy(-mmym,) = —mymym = J,(1,2),

we deduce that J,(1,2) € Q(/-7). Since J;(1,2) is an integer of Q({,), it must be an
integer of Q(Y-7), so there are integers X and Y with X = Y (mod 2) such that

(10.6) J7(1,2)=%(X+ Y/-7).
As J5(1,2)J,(1,2) = p, by (3.5), we have
(10.7) 4p = X* 4+ 772,

which implies there exist integers x and y with X = 2x, Y = 2y, and (from (10.6)
and (10.7))

L(1,2)=x+y/~7, x*+T?=p.
As J,(1,2) = -1 (mod 1 — ¢,)? and (as is easily checked),
FT=6+8-8+8-8-¢=0 (mod(1 -¢)),
we have x = -1 (mod(1 — ¢,)?) so x = -1 (mod 7).

Finally, using Theorem 5.1 we have

(10.8) (3]{) = ,(3,6) = J,(5,6) = - T.(1.2)

= —(x —y\/j) =-2x (modw).
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As the quantitites in the congruence (10.8) are rational integers, we have the
following theorem due to Jacobi [19].

THEOREM 10.1. If p = 7f + 1 is prime and x and y are integers with p = x? + Ty?,
x = -1 (mod7), then

(?’ff) = 2x (mod p).

We now show that a result analogous to that of Rajwade [34] follows easily from
Theorem 5.1 and the basic properties of Jacobi sums listed in §3.
First, note that a precisely analogous argument to the one above for J,(1,2) gives

J(1,1) = —mymyms so J,(1,1) =J5(2,2) =J,(3,3) =0 (mod 7).

By Theorem 5.1 we have

(10.9) (2ff ) = J.(2,6) = —J,(6,6) (mod ),
(10.10) ( ‘;f) = J(4,6) = ~J,(4,4) (mod ),
(10.11) (;‘;) = _J,(4,5) = —J,(5,5) (mod ).

Adding (10.9)-(10.11) we obtain

( 2}{) +(4ff) + (g) =1 .§IJ7(1’,1') (mod 7).

=

Since
6
> J,i)=x, x;=1 (mod7),
i=1

we have

THEOREM 10.2. If p = T7f + 1 is prime and (x,...,x¢) is a solution of (4.17) with
x,; = 1(mod7), then

AR

- + 1.

( f f 2f
ExampLE. We illustrate Theorem 10.2 by taking p = 29 so that f=4 and x;, = 1

(see [47]). In agreement with Theorem 10.2 we have, for f = 4,

(sz)+(4f)+(;";)§12+22+235_1 (mod 29).

11. e = 8. There are four representative binomial coefficients of order 8, namely,

(1) e (5]

-x, (mod p).
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Now, by Corollary 4.1.2, we have

(11.1) (3ff ) E(—l)’“’/“(;‘j) (mod p),

and appealing to Theorem 7.1, we obtain

THEOREM 11.1. If p = 8f + 1 is prime and a is given uniquely by p = a* + b,
a = 1(mod 4), then

(3f) =(-1)Y"""2a (mod p).

f
Next, from Lemma 2.1 and (2.2), we obtain
af\(4f) 3\ 5
(112 ()37 = (7)) moan
Thus from (11.1) and (11.2) we have
(11.3) (;’;) z(-l)b/“(“;) (mod p).

Again, appealing to Lemma 2.1 and (2.2) we have

[P c()(3) mn

which gives, in view of (11.3),
' 21\ _ f+b/4(4f)
(11.4) ( f) =(-1) f (mod p).

(11.3) and (11.4) show that it suffices to determine (}/) (mod p). In order to do this
we must consider Jg(1, 4).

We set B=1¢; = (1 +i)/V2. The ring R of integers of Q(B) is a unique
factorization domain [27]. Let 7 denote a prime factor of p in R. We have

_ _ G4(3)Gs(4) _ Gy(1)Gs(4)
03(‘]8(1’4)) =J%(3,4) = G(7) = G4(5)
s0 Jg(1,4) belongs in the subfield QV-2 of Q(B). As Jy(1,4) is an integer of Q(B), it
must be an integer of Q(Y-2 ). Thus we can set
(11.5) J(1,4) = - (c + d/-2),

where ¢ and d are integers. As Jy(1,4)J5(1,4) = p, we have p = ¢* + 24>, Clearly,
we have

= J(1,4),

(11.6) (l;n)—lEO(mOdZ) ifptl—n.
Further, since y—2 = B(i + i), we have

(11.7) xs(n) — 1 =10 (mod/-2 ) if(%)=+1,
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(11.8) xs(n) — B =0 (mod/=2) if(%)z_l‘

We now combine (11.6)—(11.8) and note that

p—1
1 —n p
5 (50=1,
n=2 0, (_) =_1,
L p
1 n
p—1, (E(p - 3)» (_) = +1»
p
2 1= 1 n
=2 —_ —_ — = -
n kz(p 1), (P) 1.
It clearly follows that
(11.9) Jy(1,4) = -1 (mod2/-2),
SO
(11.10) c=1 (mod4).

Then by Theorem 5.1, we have

()= 5@ (meam)

=(-1Y""L04) (modw)
E(—l)f(c—d\/z) (mod 7).

But Ji(1,4) = 0 (mod 7) by (3.12), so ¢ + d/-=2 = 0 (mod 7). Hence

(‘j{) =(-1)2¢c (mod ).

Thus we have proved

THEOREM 11.2. If p = 8f + 1 is prime with a and c defined uniquely by p = a® + b?
=c?+2d* a=c=1(mod4),

( 4{) =(-1)'2¢ (mod p),

(%) =072¢ (moap).

The first congruence in Theorem 11.2 is due to Jacobi [20] and Stern [40].
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12. e = 9. There are six representative binomial coefficients of order 9, and using
(4.21) it is easy to show that all six are expressible in terms of

FHE5)

In particular,

(12.1) (2ff) ssw-'m(‘;f) (mod p),
(122) (3;)53<p—'>/3(;§) (mod p),
(12.3) (i{)ssw—nﬂ(;;) (mod p).

Unfortunately, we have been unable to determine any of these binomial coeffi-
cients explicitly. However, we are able to prove the following theorem analogous to a
result of Jacobi; see Theorem 14.1.

THEOREM 12.1. Forp = 9f + 1,4p = A*> + 27B*, A = 1 (mod 3), we have

)/ G =(T)GE0/ (7] = e

PRrROOF. Since
(4f)(5f)/ (3f) _ 4f1576f!
fl\2f f 3f13f16f!°
the result follows immediately from (2.1) and (12.1)-(12.3).
13. e = 10. There are six representatives binomial coefficients of order 10, namely,
2f 3f\ [4f 5f 5f 6f
(13- )09 () (7))

We show that all of the binomial coefficients in (13.1) can be determined from the
lower order binomial coefficients (3) and (§/;) which are given explicitly in Theorem
8.1.

We begin by taking the Davenport-Hasse relation (3.9) withe = 10, m = 5, t = 3,
to obtain

G 10(5)G10(6) = x3(2)G14(3)G10(8)-
By (3.3) we have

J1o(5,8) = G10(5)G10(8)/G10(3) = Xg(z)GIO(S))Z/GIO(6)
= X:;(z)JIO(S’ 8) = X%(Z)Jlo(s"‘)

s0, by Theorem 5.1, we have

) () men
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where 7 is defined as in §8, so

(13.2) (;{,) E(2<P—'>/5)3(;§) (mod p).
From (4.10) and (13.2) we have

4f f(r(p—1)/5 f
(13.3) 7 =(-1) (27~ ) 2f (mod p).
Applying Lemma 2.1 (with g = 5, h = 2, k = 4) we have

6f\ _ (Y /(¥
(134 (57 = (3] / 37) @moar
Using (13.2) in (13.4) we obtain
(13.5) (g) E(—l)fZ(P_')/S(;j;) (mod p).

Applying Lemma 2.1 (with g = 3, h = 1, k = 4), using (2.2), (13.3), and (13.5), we
obtain

(13.6) (if) s(zw—wff(g;) (mod p).

Next, applying Lemma 2.1 (with g = 3, A = 1, k = 5), using (2.2), (13.4)—(13.6), we
get

N P L

Finally, applying Lemma 2.1 (with g = 2, A = 1, k = 5) and using (13.7) we obtain

(139) () =coree ey () moap)

Combining (13.2), (13.3), and (13.5)-(13.8), we have the following new theorem.

THEOREM 13.1. Let p = 10f + 1 be a prime and let (x, u, v, w) be a solution of
(8.15). If 2 is a quintic residue of p (equivalently, x is even), we have

)=t o

w(x* — 125w*)

© T 8(xw + Suv) ) (mod p),

()=

w(x* — 125w?)
8(xw + Suv) ) (mod p).

[7)=¢

(-3
(7] =
(34
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If 2 is a quintic nonresidue of p (equivalently x is odd), we can choose a solution
(x, u, v,w) of (8.15) satisfying u =0 (mod2), x + u —v =0 (mod4) so that (see
Lehmer [21])

200=V/5 = q(x, u,v,w) (mod p)

where a = a(x, u, v, w) is given by (4.13). Then we have

() -cref) =) oo

=1y 3 - I (o ),

()=o) el ) <[

_ o x . ow(x* = 125w?)
=(—l)fa (5 + m) (mod p).

We close this section with two examples illustrating Theorem 13.1.
EXAMPLE. Let p = 151 so that f = 15 and 2 is a quintic residue of p. Then

(,;,(5)) _(4112) E‘(Zg) - _(gg) =52 (mod151),

()-8 =)= =5

A solution (x, u, v, w) of (8.15) with x even is given by (x, u, v, w) = (-4,2,2,4).
In agreement with Theorem 13.1, we have

(—1)’(—x wlx® = 125w7) 125w2)) =4 46— 2000) _ gy od s,

2 8(xw + Su) 2 8(-16 + 20)

and

(_l)f(_i + M) = A 40620000 _ o5 (odist).

2 8(xw + Sw) 2 8(-16 + 20)

ExaMPLE. Let p = 11 so that f = 1 and 2 is a quintic nonresidue of p. Note that
a=4s0 a>=5 (mod1l), o> =9 (mod11), a* =3 (mod11). Now it is easily

checked that
(%) _ _3(?) _ 4(?) - _5(2) =2 (mod1l)

(1) ==(5)=(3)

Moreover, solutions of (8.15) are

and, similarly,

9(2) =4 (modll).

(x,u,v,w)=(1,0,1,1), (1,-1,0,-1), (1,1,0,-1), (1,0,-1,1).
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The first of these solutions satisfies (4.12) (« =0 (mod2), x + u —v =0 (mod 4))
and, in agreement with Theorem 13.1, we have

(_l)faz(_z _owlx? - 125w2)) _ _5( 1 1-125

2 8(xw + Suv) 2 8(1 +O)) =2 (modll)

and

(-1)fa4(_5 - M) = —3( LI in) =4 (mod1l).

2 8(xw + Suv) 8(1 +0)
14. e = 11. There are ten representative binomial coefficients of order 11, namely
GG
14 M 1 s b s s b
(14:) 09 (F)- (7)1

af\ (5f) (6f) (of) (7
2fP\2f)7\2f)7 \3F )7\ 3F)
It appears to be difficult to determine any of these explicitly modulo p in terms of
the variables of a quadratic partition of p such as
(14.2) 4p = a* + 11b?, a =2 (mod11),

or the representation given in [25]. We first show that Theorem 5.1 can be used to
reprove a theorem of Jacobi [19] relating ( / ) (5%) and (§}) modulo p.

Let 7 be a prime factor of p in the unique factonzatlon domain R of integers of
Q($1))- By Stickelberger’s theorem (3.12), we have

Jn(l’ 2) ~ M T Ty T Ty J”(2,2) ~ MM T Ty J11(3, 3) ~ T\ T3Ts T7Tg s

where, if a; and «a, are integers of Q({},), @; ~ a, means that «,/«, is a unit of the
ring of integers of Q({;,). Hence,

(14.3) Y = JIn(1,2)414(3,3) /014(2,2) ~ mmymymsm,
showing that vy is an integer of Q({,,). Next, appealing to (3.3), we have
= G;1(1)G1(3)G1(4)/G11(2)Gy,(6),
SO
o3(v) = G11(3)G11(9)G11(1)/G1(6)G (7).

Since, by (3.6), G|,(2)G,(9) = G,(4)G,(7) = p, we obtain 6,(y) = y, which shows
that y belongs in the subfield Q(vV-11) of Q({,,). As v is an integer of Q(,,), it must
be an integer of Q(vV-11), and so has the form

(14.4) y=-%(a+b/—7),

where a, b are integers such that a = b (mod?2). From (14.3) and (3.5) we have
v¥ = p. Hence a and b satisfy the equation given in (14.2). The congruence in (14.2)
follows as

a=a+ bm =2y=2 (mod(l - fn)z)’
by (3.8).
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Finally by Theorem 5.1 we have

7,0, 10)5_(9;) (mod 7),
111(8,8)5—(2;) (mod ),
7,,(9,9) = - (Z,) (mod 7),

SO

as - (F)E)/13) =

But from (14.3) and (14.4) we have

%(a - b\/jf) (mod 7).

(14.6) %(a+bm) =0 (modm).

Hence from (14.5) and (14.6) we have

75/

and so appealing to (2.2), we obtain

of
2f

) =a (modw),

463

THEOREM 14.1. If p = 11f + 1 is prime and a is defined uniquely by 4p = a* + 11b2,

a = 2 (mod 11), we then have

Hid

This is equivalent to Jacobi’s result [19]

1

4f
2f

) =a (mod p).

a =

FI3f1af15£19f1

(mod p).

ExAMPLE. With p = 89, so that f = 8,a = -9, b = 5, we have

HEVIHEC o S

16

11

15. e = 12. There are eight representative binomial coefficients of order 12,

namely,

aso () (F1(F)

Sf
f

) G35 ()

We show that all the binomial coefficients in (15.1) can be determined from the
lower order binomial coefficients ($), (§/) and (¥}).
We begin by determining () in terms of (§;) modulo p. Let P be a prime ideal
divisor of p in Q({;,) and define g and x,, as in §3. Then it is known (see, for
example, Whiteman [44, p. 61]) that J,,(3,3) = —a + bi where p = a’+b% a=1

(mod 4).
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Appealing to Whiteman’s cyclotomic numbers of order 12 [44] we have
(15.2) Jio(1,2) = (—l)fCX12(3)J12(2’ 4),
where c is given by
(-1 ifa=1(mod3),b =0 (mod3),
(-1)*" ifa=2(mod3), b =0 (mod3),
(-1 ifb=1(mod3),a =0 (mod3),
(-1)i  ifb=2(mod3),a =0 (mod3).

(15.3) c=

Now 3 is clearly a quadratic residue of p so that x,(3) = (-1)/ if b =0 (mod 3)
and x,(3) = (-D)*! if a =0 (mod3) (see, for example, [22, p. 24]). Taking con-
jugates on both sides of (15.2) we have

J1,(10,11) = ¢&J,,(10, 8),
where
- {+1 if 5 = 0 (mod 3),
-1 ifa =0 (mod3).

Appealing to Theorem 5.1, we have
1 10
(_1)f+‘( 2") = —65( f) (mod P).

4f
Finally, as J 1.2(3, 3) = —a + bi = 0 (mod P) we have, using (2.2),
3f\ _ o 6f

(15.4) (f) =0(2f) (mod p),
where

(-1 if a=1(mod3), b =0 (mod3),

£+l e _

(15.5) o= (-1) ifa=2(mod3),b =0 (mod3),

(-1Yb/a  ifb=1(mod3),a =0 (mod3),

(-1Y"'b/a ifb=2(mod3),a =0 (mod3).

We now show that the 7 remaining binomial coefficients of order 12 may be
determined in terms of lower order binomial coefficients.

Corollary 4.1.5 relates ( / ) and ($ f) modulo p. However, Corollary 4.4.1 gives a
simpler congruence, namely,

(15.6) (5;) (4f) (mod p).

Corollary 4.2.2 gives the congruence

-4
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Corollary 4.3.1 gives the congruence

() {9 4] e

Appealing to (2.2) and Lemma 2.1 (g = 2, h = 1, k = 9) we have
P/ () = ()7 () =)/ (£) o

Thus, using (4.3), we obtain

()= 707 G =2 (TG )

Now using (15.4) and (15.7) we have
(15.8) (“/,f) 0( ;) (mod p).
Next using Lemma 2.1 (g = 7, h = 3, k = 4) we have
f NI 5f
)/ (3 =0 () /7] mos
s0, using (15.5) and (15.8), we obtain
(15.9) (ZJ;) E(—l)fﬂ(g;) (mod p).
Again appealing to Lemma 2.1 (g = 6, h = 3, k = 5), we have
6f s 6f
3/ () = (3)/ (3] @osm

Using (15.9) we have

(15.10) (;’;) —¢- (f,) (mod p).
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Finally, appealing to Lemma 2.1 (g = 4, h = 2, k = 5) and using (2.2), we have

(2717 ) = () () =(20)7 (5] oo
Using (4.3), (15.9) and (15.10) we have
2)=(/ (2
A [ e

so that after cancellation we obtain

(15.11) (27’;) E(—l)f2(”_')/3e(§;) (mod p).
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Combining (15.4) and (15.11) and appealing to (4.5), Corollary 4.1.1, and Theo-
rems 6.1, 7.1 and 9.2, we have

THEOREM 15.1. Let p = 12f+ 1 = a?> + b> = x> + 3y? be a prime with a =1
(mod 4), x = 1 (mod 3), and let 4p = A*> + 27B* with A = 1 (mod 3). Then we have
the following congruences modulo p:

(2ff) = 20%a, (3ff) = 20x, (‘;f) = 20a, (Sff) =4 (6ff) _ 207,

(;j;) = 2(;, (27/;) =2(-1)6%a, (;;) =2(-1)'6a,
where 0 is given by (15.5) and ¢ by

1 ify =0 (mod 3),

¢=1(x+3y)/(x—3y) ify=1(mod3),

(x —3y)/ (x+3y) ify=2(mod3).

ExaMmpLE. For p < 97, formulas (15.4)—(15.11) and Theorem 14.1 can be easily
checked from the following brief table of values. (See Table 2.)

16. e = 13. Since 05(/,5(1,3)) = J15(3,9) = J15(1,3), J15(1,3) is an integer of the
field Q(iy26 + 613 ). Zee [15, p. 263] has shown that

(16.1) J5(1,3) = (x+W\/__+l( w26 + 6/13 +v\/26—6\/_))

where (x, u, v, w) is a solution of the system
{1617 = x2 4 26u? + 2602 + 13w?,  x =9 (mod13),

xw = 3v% — duv — 3u?.

(16.2)

We prove

THEOREM 16.1. If p = 13f + 1 is prime then

af\ _ 3(x2 = 13w?)w
( f) o + 8(xw + 13uv) (mod p)
and
7Y ox  3(x*— 13w?)w
(Zf) =727 8(xw + 13uw) (mod p),

where (x, u, v, w) is any solution of (16.2).

PrROOF. The ring of integers of Q({,3) is a unique factorization domain (see, for
example, [27]). Let 7 be a prime dividing p in Q(¢,;). By Theorem 5.1 and (2.2), we
have

(16.3) (“ff)

(IOf

; ) = 7,(10,12) (mod 7).
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Since, by (3.12), we have
(16.4) Ji5(1,3) =0 (mod ),
adding (16.3) and (16.4) and appealing to (16.1), we obtain

2Re(J5(1,3)) = - (4f) (mod 7),

f

that is,
(16.5) (‘;f) = —%(x +w/13) (mod ).

For brevity we set 8 = {,;. We have (see, for example, [S1, pp. 262-263])
(16.6) B+ B+ B+ B0+ B0+ = ({13 — 1),
(16.7) B+ B+ GO+ BT+ B+ B = o (1B 1),
(16.8) B+ B+ B — BT — B — B = 11/26 + 613 ,
(16.9) B+ B> — B+ B~ BB =126 613 .

By (3.12) and (16.1) we have

(16.10) %(x + w13 + i(u\/26 +6/13 + 026 — 6/13 )) =0 (modm).
Applying the automorphism o, to (16.10) and appealing to (16.1)—(16.9), we obtain
(16.11) %(x — w13 — i(u\/26 —6/13 — 0)/26 + 6/13 )) =0 (mod ).
From (16.1) and (16.4) we have

(16.12) %(x + w13 + i(u\/26 +6/13 + 026 — 6/13 )) =0 (modr).
Adding (16.11) and (16.12) we get
(16.13)  2x + iu(\/26 +6/13 — /26 — 6/13 )

+iv(\/26 +6/13 + /26 — 6/13 )Eo (mod ).

Taking the term 2x to the right-hand side of (16.13) and squaring, we obtain, after
some simplication,

(16.14) /13 =(x2+ 13u + 13v%) / (2u® — 6uv — 20*) (mod 7).
Next, using (16.2), we get

(16.15) 13 = -3(x — 13w?) /4(xw + 13uv) (mod 7).
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Substituting (16.15) into (16.5), we have

4 _ x| 32— BBwhw
(16.16) ( f) -2 * 8(xw + 13uv)

R. J. Evans (personal communication) has shown that all solutions of (16.2) are
given by

(mod 7).

(x,u,0,w), (x,—u,-v,w), (x,v,-u,-w), (x,-v,u,-w).

Hence, x, w? and uv/w are independent of the choice of solution of (16.2), and thus
(16.16) holds (mod p). This completes the proof of the first part of the theorem. The
second part follows similarly, by considering J5(7, 11) = J;5(7, 8) = 0,(J;5(1, 3)) in
place of J,5(1, 3).

COROLLARY 16.1. If p = 13f + 1 is prime and x is given uniquely by (16.2), then

=) (2) tmn

ExaMPLE. We taken p = 53 so that f=4. A solution of (16.2) is given by
(x, u,v,w) =(9,3,4,-3), so that

—x/2=22, 3(x?>—13w?)w/8(xw + 13uv) =49 (mod>53).
Hence, by Theorem 6.1, we have (mod 53),

4f\ _ — M) 29y — 9=
(f):22+49=18, (2f)=22 49 = 26.

Indeed, we have

(4f) _ (16) =1820 =18 (mod53),

7 4
7
(2’;) — (288) = 3108105 =26 (mod53).

17. e = 14. There are 16 representative binomial coefficients to consider when
e = 14 (see Table in §2), four of which are of lower order. The binomial coefficient
(gg,) is given by Theorem 10.1. In this section we show that the 12 representatives of
order 14 can all be expressed in terms of the lower order binomial coefficients

(27 (1) e ()

THEOREM 17.1. If p = 14f + 1 is prime then the sixteen representative binomial
coefficients can all be expressed in terms of the lower order binomial coefficients

[27)- i) (&)

In particular, we prove



BINOMIAL COEFFICIENTS AND JACOBI SUMS 469

We have (mod p),
2f — 75 —1)/7( 4f) _ I —l)/7( 7f)

= 2(p—1)/7( i}[) E(_1)f22(p—1)/7( gfj:) ,

(3f) E(_1)f26(17—l)/7( 6f) E( 7f) = 22(p—1)/7( 9f) = 25(p—l)/7( 4f)’

f f 2f 4f 2f
SN — sy S — | O\ [ TF) — 53o—1y/9[ &
) (g e (3] ().

PrROOF. We begin by noting that
2f af\ _ (3f 4f 4f 8f\ _ 5/ ( 8f )
o (F)/(5)=(7)7 030 (/150 = 00/ (30)
5f 6f\ _ (3 6f
=/ (5= 07/ (9)
For brevity we denote ¢, by .
From the work of Dickson [9] (see also Muskat [28]) we have

(17.2) J(1,4) = BEnig®y, (4,4)  [28,(4.7)],
and
(17.3) T14(1,6) = B12gJ,,(6,6) (28, (4.8)].

Applying the automorphisms 6,5 and o,, to (17.2) and (17.3), respectively, we obtain
7,4(13,10) = B9 @J,,(10, 10)
and
J14(11,10) = péindg@y, (10, 10),
o)
J14(13,10) = J,,(11, 10).

Hence by Theorem 5.1 we have

%)=(3)

where 7 is a prime ideal divisor of P in Q( ). Appealing to (2.2), we obtain

(17.4) (Sff) _ ( Z) (mod p).
The proof of
0)=(3) e

is similar.
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Next, appealing to (3.11) withn = 2 and r = 1,2,...,m — 1 we have, using (2.2),
_ mf | 2tf mf
Hp—/m —=(_ f
2 =(-1) (tf)/(tf) (mod p).

Applying Lemma 2.1 withg = 2¢, h = ¢, k = m, e = 2m, we have from (17.1),

s ()/ (73]

Appealing to (17.2) and (17.3) with + = 1,2,3, and m = 7, and using (2.2) we
obtain (mod p),

o () (7). ().

f f

4f—p—77f 7f: —179f
I e F B VR ]

6 7 7 _ns1 8
(17.8) (3;) E(_l)f23(p—l)/7( 3/;)’ (31}) =23(p—1/ (41;)

Moreover, from (4.16) we have
of) — (1) p—l)/v( 7f)

(17.9) . (f) =(-1) 2 2f)

Theorem 17.1 now follows easily from (17.1)-(17.9).
REMARK. The congruences in (17.4), (17.5), and

(7= 3) mir

(Theorem 17.1) are of Cauchy-Whiteman type (see [17], (1.6), and §21).

18. e = 15. There are 19 representative binomial coefficients to consider when
e = 15, including 3 of lower order. We begin this section by establishing seven
congruences relating these representatives solely by powers of 5(7~ /3 or 3(»=1D/3,
We prove the following.

THEOREM 18.1. If p = 15f + 1 then we have the following congruences (mod p):

[7) =L
/ 27)

(3f) = 3(p—l)/5( 6f) = 32<p—1)/5(7f) = 33(p—1)/5( 7f)
/ 2f f 3f)”

ll) ()15
2f 3f)° f 3f
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PRrOOF. The first and fourth congruences in Theorems 18.1 are exactly (4.26) and
(4.27).
The third congruence can be established using (2.2) and Lemma 2.1 with g = 3,

the second congruence follows at once from this, and the third follows from the
second.
The fourth, sixth and seventh congruences are easy consequences of (2.1) and
(3.11). For, using (3.11) with n = 3, ¢ = 3, m = 5, it follows from (2.1) that
3p=1)/5 E9f!10f! 15! — 2N
318113 flef!  3f!
Similarly, using (3.11) with n = 3,7 = 2, m = 5, it follows from (2.1) that
32p=1)/5 E6f! 1011511 _ 8f!  3f'ef!
2f1VIfV12F0 21161 9f!
Next, using (3.11) with n = 3, ¢ = 1, m = 5 it follows from (2.1) that
_nss _ 3f1SFY10FY _ 4fY 3f13f!
(p—1/5 = = .
3 =TFve I f13f1 0 6f1 (mod p).
Finally the fifth congruence clearly follows from the second and the fourth.
The last two congruences in Theorem 18.1 are particularly interesting because they

relate binomial coefficients of order 15 to the lower order binomial coefficients given
explicitly in terms of the system (8.15) in Theorem 8.1. In particular, we have

(mod p).

(mod p).

(18.1) (‘t,f) 53(11—!)/5(_%4.%__:?—1:‘:;1) (mod p)
and

8 _ 2 —125w?
(18.2) (2/;) =3%r ')/5(—§—M§(xxw—+5u‘z))) (mod p).

ExAMPLE. Let p = 31 = 15(2) + 1 so that (x, u, v, w) = (11,1,-2,1) is a solution
of (8.15). As 3° = 16 (mod 31) and 3'* = 8 (mod 31), we have

8) g =16(_ L _2) =
(2)—28_16(—2 8)_—96 (mod 31),

( 4 ) —22—8(— 2 + 3 = 40 (mod31),
in agreement with (18.1) and (18.2).

Next we use the Jacobi sum J,5(1,4) to explicitly determine (¥/) and (7)) in terms
of parameters in the quadratic forms p = g2 + 1542 and 4p = 4% + 27B% In
particular we prove
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THEOREM 182. Let p =15+ 1=g>+ 15h% 4p=A>+2IB?, A=g=1
(mod 3). Then we have :

2g (mod p) if AB =0 (mod5),
5\ _ 24g — 18Bg (mod p) ifA=Bor-2B(mod5),
7=,
I —%p (mod p) ifA = -Bor2B(mod5),
2g (mod p) if AB =0 (mod5),
(27f) — %zﬁ (mod p) ifA =B or-2B(mod5),
/ 24g — 18Bg

T8 (mod p) ifA = -Bor2B(mod5).

PrOOF. From Muskat [30,p. 498] we have J;5(1,4) = 5~ D/3 (g + h/15 ). Ap-
pealing directly to Lemma 6 of [45] and noting that

Di5(14,11) = (5@~072) (g — n/15i ),
one immediately deduces (by adding and using (4.28)) the first congruence in
Theorem 18.2.

The second congruence is then an immediate consequence of (4.27), completing
the proof of Theorem 18.2.
Consider now the Diophantine system

{1617 = x2 4 50u? + 500% + 125w?,  x =1 (mod5),
2.

(18.3)

xw = 0> — 4uv — u
let @ = 1if 3»~1/% = 41, and if 3 is a quintic nonresidue of p, let
w(125w? — x2) + 2(xw + S5uv)(25w — x + 20u — 100)
w(125w? — x?) + 2(xw + S5uv)(25w — x — 20u + 10v)’
where (x, u, v, w) is the unique solution of one of
(a) x=1, u=1, v=0, w=2 (mod3),
(b) x=2, u=2, v=0, w=1 (mod3),
() x=1, u=2, v=1, w=1 (mod3),
d x=2, u=1, v=2, w=2 (mod3).
Then Williams [49] has shown that

(18.4) a(x,u,v,w)=

(18.5)

(18.6) 3P0 = a(x,u,v,w) (mod p).
A straightforward calculation shows that

(18.7) (3779/5)? = a(x,-v, u,-w) (mod p),

(18.8) (3~ 1/5) = a(x,v,-u,-w) (mod p),

(18.9) (3P~ 1/%) = o(x,-u,~v,w) (mod p).
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Using Jacobi sums first given by Dickson [10] with a sign ambiguity, and later by
Muskat [30] with the sign ambiguity neatly removed, we obtain

THEOREM 18.3. Let p = 15f + 1 = g% + 15h%, g = 1 (mod 3), and let (x, u, v, w)
be the unique solution of (18.5) satisfying (18.3). Then we have, modulo p,

(3ff) = (=) 2ga(x, u, 0, w), (7;) =(-1)**"2ga(x, -0, u,-w),

6f\ _, \2z/5) T\ [ (\2e/5)
(2f) =(-1) 2ga(x,v,—u,-w), (3f) =(-1) 2ga(x, u,v,w).

PrOOF. From Muskat [30, p. 487] we have

JlS(l’ 4) = b(5(p_ I)/3)2(3(p_1)/5)-]15(1’ 2),

where b = (~1)128/31 by [30, p. 498]. Thus

J,5(14,11) = b5P~D/3(3e=1/3)4 1 (14,13),

so that, again appealing to Lemma 6 of [45], we deduce that

( Sff) = (_1)l23/515(p—1>/3(3<p—1)/5)4( 3ff) (mod p)

from which the first congruence in Theorem 18.3 follows in view of (4.28), Theorem
18.2, and (18.9). Theorem 18.1 now gives the remaining congruences.
EXAMPLE. Let p = 661 so that 3?71/ = 1 (mod 661),

A+9B _ 76 _
1= m =364 (mod661),

(5¢71/3) =22/76 =296 (mod 661),

5([’_1)/3 =

g = —11 so that (-1)!?¢/3] = —1. From Theorems 18.2 and 18.3 we have, for f = 4,

(Sf ) — (-22)(296) = 98 (mod 661),
( ;&) = (-22)(364) = 585 (mod661),

and
HEH R R EE——

all in agreement with values for these binomial coefficients obtained from computer
data.
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The remaining binomial coefficients of order 15, namely

0 G577 () (5

are related to one another in the following theorem.

THEOREM 18.4. Let p = 15f + 1. Then we have

51/ 15712250/ ()= (55)/ 13

9f 8f
“(4f)/ (4f)
=(-1)?*1a35¢ /3 (mod p).

PrROOF. Theorem 18.4 follows immediately from Theorems 18.2 and 18.3 as
6f 2f _ 7f 7f 8f) (8f):(7f) (3f)
(f)/(f) (2f)/(f)’ (3f/ f 2f/ rr

4f 5\ _ (7 f
(27 (1= )/ 5
and, making use of (2.2),

)/ (5= (5)/ 51 =(5)/ ()
as f is even.

An explicit determination of the 8 binomial coefficients in Theorem 18.4 appears
to require the quadratic form discussed on p. 198 of [10]. An easy computation
shows that each of these binomial coefficients may be determined given an explicit
determination for any one of them. The following theorem provides a determination
of (3/;) which involves only the forms p = g* + 15h% 4p = 4% + 27B?, and 16p =
x% + 50u? + 5002 + 125w2, x =1 (mod 5), xw = v> — 4uv — u?; this determina-
tion has a sign ambiguity in the form of a square root.

THEOREM 18.5. Let p=15f+1=g>+ 15h% 4p+ A>+27B? A=g=1
(mod 3), and let (x,u,v,w) be the unique solution of (18.5) which is a solution of
(18.3). Then we have
((“2ga(x. —0. u. - 2o

( ga(xa v, u, W)‘Y—Y+/A) lfAB *O(m0d5)9
( Sf) (-28a(x, ~0, u,-w)y.(4 + 9B)y. / (4* — 94B))"”

2f = ifA =B or-2B(mod5),
(-2ga(x,-v, u,—w)y_(4 — 9B)y,/(A* + 9AB))1/2
| ifA = -Bor2B (mod5),

where
Ye =y (x,u,0,w) = —x/2 + w(x? — 125w?) /8(xw + Suv),
Y.=v.(x,u,0,w) = —-x/2 — w(x? — 125w?) /8(xw + 5uv).
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PROOF. We have
(57501

from which it follows

2/

8f

.

)/ |
7l

2

) 15

f

9l

6f
3f

/(5 =G0/ (3) mosn
)/(15();) (mod p).

Hence Theorem 18.5 follows from Theorem 6.1, (18.2), Theorem 8.1, and Theorem

18.2.

ExAMPLE. Let p = 661 so that we may take (x, u, v,w) = (1,3,0,-9), -2g = 22,
A=49= 6= -2B(mod5),and (4 + 9B)/(A — 9B) = 364 (mod 661). Then

1 -9(1 —125(81)) _ -1+113 _ _ -1-113 _
Ve =5 + &) = 5 = 56, Y= 3 = -57.
As a = 1, Theorem 18.5 gives

(5f

Computer data gives

(

5 f) =/(22)(604)(364)(56) /49

220
88

= \/? (mod 661).

) =325 (mod661),

which clearly is in agreement as ((325)(7))> = -5 (mod 661).

19. ¢ = 16. There are 16 representative binomial coefficients of order 16, namely,

7)1
(27}

7)1

)

7
i)

f

/)

)

)|

Sf

7

i

7f)
ik
10f

5|

i

) 3.

2f)’(

We begin by noting the following congruences between binomial coefficients of
lower order; these are immediate consequences of (11.1), (11.3), and (11.4) respec-
tively. Throughout this section p = a® + b> = ¢* + 2d?, a = ¢ = 1 (mod 4).

(19.1) (g;
(19.2) ( ‘fff
(19.3) (g

=
) =(-n""*
=y

8f
4f
8f
2f
8f
2f

| (moap),
| modp),

| (modp).

Two of the above 16 binomial coefficients may be related to the lower order
binomial coefficients (¥,) and (/) as follows:

(19.4)

(7]{) E(—l)fZ(”_l)/g(g{;) (mod p),
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(19.5) (;;) E(—l)fZ(P_')/g(;;) (mod p).

The first congruence is an immediate consequence of Theorem 4.1. To prove (19.5)
note first that from (3.11) we have

18f13f! 6 11
we ey =g =(5)/[) o
Next, using (2.6) with g = 11, 2 = 3, k = 6, we have
1L\ (5 7[6f\[10f
(3f)(3f)=(“) (3f)(2f) (mod p).

By (19.3) and (2.2) we have

i) = (3] e (37) =030

from which (19.5) follows immediately as 27~ /4 = (~1)*/* (mod p).
Now as 27" D/8 = +1 or —1 modulo p according as b =0 (mod 16) or b = 8
(mod 16), we have the following theorem analogous to Theorem 11.2.

THEOREM 19.1. Let p = 16f+ 1 = a?> + b%> = ¢* + 2d*, a=c = 1 (mod4), be a
prime for which b = 0 (mod 8). Then

f 5f
—lf( )E—lf( )E2cor—2c mod
| f =5 (mod p)
according as b = 0 (mod 16) or b = 8 (mod 16).
When b = 0 (mod 8) we can use [23,(50), p. 70] to obtain

THEOREM 19.2. Let p = 16f + 1 = a®> + b> = ¢ 4+ 2d?, a = ¢ = 1 (mod 4), be a
prime for which b Z 0 (mod 8). Then
"\ 5f\ _ 2bc  —2bc
e[ 2 2
according as b = 4 (mod 16) or b = 12 (mod 16).

Next, we establish 8 congruences which show that each of the remaining 14
representative binomial coefficients of order 16 are related to at least one other by
the quantity 2(?~D/8_All such interrelationships are easily deducible from these 8
congruences. We first establish 8 congruences which relate

1) = ()

) ) , and

( flA\2f)\3f 5f

to either (/) or (3/), since for these two binomial coefficients we will give an explicit
determination in terms of the system given in [14] (see also [26, p. 366]).

(19.7) (sz ) E(—l)f2<P—'>/8( 8{) (mod p),
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Y\ _ rir-nysy3( 8
(198) (2f) =(2( I)/8) ( f) (mOdp)’
(19'9) ((35;) E(_l)f(z(p—l)/8)3(§]fr) (modp),
(19.10) (150;) E(—l)fzw—')/s(z) (mod p).

To prove (19.7) we use (19.4), (2.2), and (2.6). Taking g=14, =8, k=9, in

(2.6) we have

147\ (2f\ _, o\ (7

() = (T)T) moan

Since

(l;ff) ( )(modp) and ( )_( l)f( )(modp)

by (2.2), the result follows at once from (19.4). Next taking g =7, h =1, k = 8, in

(2.6) we have
= ()] e

so (19.9) follows from (19.4).
Now (19.9) is immediate from (19.6) as

)= (1)
by (2.2). Next, taking g = 8, h = 3, k = 6 in (2.6) we have
=)=
3fJ\3f) \3f)\ 5f
5o (19.10) follows from (19.9).

Similarly, we may establish the following congruences:

(19.11) (Zi:) = 2"’">/8(6ff) (mod p),
9
3

(19.12) i)
) E(_l)f2<p—1>/8(27§) (mod p),
/)

9] i
(19.13) (Zf
(19.14) (5f z(_l)fz<p—1>/8(3ff) (mod p).

Taking g = 7, h = 6, k = 10, in (2.6), we have

2= () i
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However,
10f ) b/4( 8f )
=(-1 mod
( 6f | =D gy (modp)

by (19.2) so (19.11) follows from (19.4).
Taking g = 6, h = 1, k = 4, in (2.6) we have

6f\(10f) _ 4f)(12f)
(SIS =[] ot
50 (19.12) is an immediate consequence of (19.11), noting that

()= (%) o ) and (152;)5(_1)f(zf;) (mod p)

by (2.2).
Taking g = 11, A = 9, k = 12 in (2.6) we have

()= ()

50 (19.13) follows from (19.5), noting that

(lglf)E(Zr) (mod p) and (9f)_( 1)f(3f) (mod p)

by (2.2).
Finally, taking g = 13, h = 11, k = 12, in (2.6) we have

(7)) = (3] e

50 (19.14) also follows from (19.5), noting that

- imen = (3] -

by (2.2).

Before proceeding to our determination of ( /) and (§§) we wish to note that all
congruences between representative binomial coefflclents of order 16 of Cauchy-
Whiteman type (see [17], (1.6), and §21) are readily deduced from the above
congruences. Computer data shows that the only such congruences are

(19.15) (150ff) =(- 1)"/4( j:) (mod p),
(19.16) (sz) E(—l)f“’/“(;]}) (mod p),
(19.17) (7ff) E(—l)”/“(gf;) (mod p).

From (19.9) and (19.10) we have at once (19.15), and from (19.7) and (19.8) we
have (19.16). Finally, (19.17) follows from (19.3)-(19.5).
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Now, appealing to (2.2) and Theorem 5.1, we have

7,4(15,9) = - ( 8}{’) (mod ),

where 7 is a prime ideal divisor of p in Q({),
(19.18) p=x*+2u*+ 202+ 2w?  2x0=u?— 2uw — w?
x =1 (mod8), u=v=w=0 (mod2). For the duration of this section we let
§= e

From (3.5) and [43, p. 405] one obtains

716(15,9) = ()T = 087 = ¢6) = u(¢ +¢7) = w(s + ).

It is easy to see from [26] (see, e.g., [18, (3.20)] with x = —1 (mod 8)) that
(19.19) x—o(* =) +u(@+¢)+w(*+¢°)=0 (modw)
and
(19.20) 20" — x> =(u? — w? + 2uw)(¢2 — ¢¢)  (mod 7).

’

Thus

(19.21) (8;) = J,,(15,9) = 2(—1)f+1{—x —0($*—¢%)} (mod )

= 2(‘—1)f{x —o(x*>—20%)/ (> = w? + 2uw)} (mod ).

As the expressions on the left and right of (19.21) are rational integers, the
congruence holds (mod p).
Similarly (mapping 6 — 6°) we have

Tie(13,11) = (1) {x + 0(§2 = ¢%) — u($3 + &%) + w(E + 7))

Moreover, (19.19) becomes
(19.22) x+o(* =) —u(P+ ) +w(t+¢7) =0 (mod 7).
As '

Jo(13,11) = - (iﬁ) (mod )

from Theorem 5.1 we have

(1923) () = 13,10 =20 x4 ofe2 = 59} (mod )

= 2(—l)f{x + o(x* = 20%)/ (u* — w*+ 2uw)} (mod =),

so, as before, this congruence holds (mod p).
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Combining (19.7)~(19.10), (19.21), and (19.23) we have

THEOREM 19.3. Let p = 16f + 1 = a® + b* = x? + 2u* + 20% + 2w?, 2xv = u?
— 2uw — w2, with signs chosen so that a = 1 (mod4), x =1 (mod8), andu=v=w
= 0 (mod 2). Then we have

R Y

and

Sf) _(IOf) _ { o(x? —20?) } ( f)
D (3f 5f Wt uw 3f ( 2
where § = +1, -b/a, -1, or +b/a (mod p) according as b =0,4,8 or 12 (mod 16).

ExampLE. For p =113, f=17, b =28, (x,u,v,w) = (1,-6,4,-2). In agreement
with Theorem 19.3 we have

8 = () = (¥ =42 (moa113), —2(1 — ¥V} =42 (moa 113),
( )

f f 2f 56
(g,f‘) E(150;‘) E(g;) = 67 (mod 113), —2(1 - 4(—;22) = 67 (mod 113).

The remaining 8 representative binomial coefficients of order 16 we are only able
to determine up to sign. Let

8, =8(x,u,v,w)= 2(—1)f{x —o(x?=20%)/ (u® — w? + 2uw)]},
8, =8,(x,u,0,w) = 2(—1)f{x + o(x? = 20%)/ (u* — w? + 2uw)}.
Then we have

THEOREM 194 Letp—16f+l—a +b2=c?+2d*=x*+2u*+ 20> +
2w?, 2xv = u? — 2uw — w?, with signs chosen so that a =c =1 (mod4), x =1
(mod 8), u = v = w = 0 (mod 2). Then we have the following congruences (mod p):

2] (2)-fet]”

-t (41"

()=o) () =lo2)” () =lcr )"
/)=l

( (18,8, )

PRrOOF. In view of (19.11)—(19.14) it suffices to prove the congruences for

[ (715 e ()
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To prove the congruences for (7) and (}) we note that

FNE=ET) GG (7))

A7) =)

2fIN 7] \2fNr )

so that appealing to Theorem 11.1, (19.4), (19.13), (19.14) and Theorem 11.2 we have
(mod p throughout) ‘

[ =S ()

= (-1)""2a2777/%)(2e8,) 277 V/%) /8,

) =EAET) G
=(-1)/20=0/82¢(-1)"*2a(-1)/ 22~ 1/8)’s, /8,.

To prove the congruences for (#/) and (%) we use Lemma 2.2 and (19.12) to see
that

I

and we use (19.5) and Theorems 11.1 and 11.2 to see that

wa (9)/(%)-(2)7(2)

fr(p— b/4
(1) 207 VA1) 2c = (_1)f2<p—l)/8£.
(-1)"*24 a
From (19.24) and (19.25) the stated congruences for (') and (') follow at once.
. . . f
The next theorem taken in conjunction with (19.11)-(19.14) shows that a correct

sign determination for one of the congruences in Theorem 19.4 suffices to fix the
sign for the remaining seven.

and

and

THEOREM 19.5. Let p = 16f + 1 = a> + b*> = ¢ + 2d?, a = ¢ = 1 (mod 4). Then
we have

(3 e (4] ()= i

PROOF. The first congruence in Theorem 19.5 follows by combining (19.13) and

T E——
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(see (19.4), Theorems 11.1, 11.2). The second congruence follows at once from
(19.11) and (19.25).

We close this section by noting that results similar to Theorem 19.1 may be
deduced for e = 32 and e = 64, making use of the system given by (19.18), as
2(r=1/16 and 2(P~D/32 have recently been determined (see Evans [12] and Hudson
and Williams [18)]) in terms of the parameters in this system and those in Theorem
19.1.

20. ¢ = 20. For p = 20f + 1 there are 24 representative binomial coefficients of
order 20 and 9 lower order representatives. We begin this section by showing that 10
of the 33 binomial coefficients of order 20 may be expressed in terms of the
parameters in the representations p = a®> + b?>=e>+ 5f%, a=1 (mod4). In
[45, Theorem 3] Whiteman proved that for p =20f+ 1 =a? + b? = e? + 5f2,
a =1 (mod 4), we have

10 10
(20.1) ( ff)( 3ff) =4¢? (mod p),
and according as b Z 0 (mod 5) or b = 0 (mod 5),
0 0 1
(W)Y ()

resolving the ambiguity in the congruence of Cauchy [5, p. 37]. If b = 0 (mod 5) then
(as the sign of a is determined by the condition ¢ = 1 (mod4)) Whiteman showed
that e may bé expressed unambiguously by the condition e =a (mod5), so for
p=20f+1=a’>+b>=e*+ 5f% b=0(mod5), we have

o )[4

The sign of b is not fixed. However, comparing formulas (4.7) and (4.13) of [45]
one sees readily that e may be expressed unambiguously by the condition e =|b|
(mod 5). (Set e = (~1)/b’ (where b’ denotes Whiteman’s b) when 5 | b; the determina-
tion in (20.4) requires choosing a primitive root g with g = a/|b| (mod p).) Then
from [45, Theorem 3] we have, for p=20f+ 1 =a?>+b*=e’>+ 5% b=0
(mod 5),

(20.4) ( lgf) =- ( l;)ff) % (mod p).

Let B8 =2#~D/1° We show in the next two theorems that 8 representative
binomial coefficients are related to (') and (}/) by powers of 8.

) =2e¢ (modp) (a=1(mod4),e=a(mod5)).

THEOREM 20.1. Let p = 20f + 1 = a® + b* = e* + 5/ be a prime with the signs of
a and e chosen so that a =1 (mod4), e = a (mod5), if b =0 (mod5) and e =|b|
(mod 5) if a = 0 (mod 5). Then we have the following congruences modulo p:

21\ _, v () 2eaB
(f)—< V2es or (12,
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(13f) =(- l)f2eB2 or (- l)f+|2€a'8

6f 6]’
(6f)—( 1268 or (- 1)f+‘2%‘|33,

(l;f ) = (-1)2e8* or (- l)fz‘f;’ff ,

according as b = 0 (mod 5) or a = 0 (mod 5).

PRrROOF. For the duration of this section all congruences are interpreted modulo
p = 20f + 1 unless otherwise stated. By (3.11) and (2.2) we have

1 B '10FfY (2 11f
(20.5) 207D/ = ﬁz( ff)/( f)

o f)/(7)

so the first congruence in Theorem 20.1 follows at once from (20.3) and (20.4).
Next we have

ooy = LI (10 /(13
(20.6) (2 ) = ST = 5 / o )
and the second congruence follows as above, noting that 87* = (-1)/8% as (2/p) =

+1=p=1(mod8)=f=0(mod2).
Similarly,

(p—1)/10)3 M _(6f 13f s 10f
yielding the third congruence in Theorem 20.1, and
2f110f19f! _ [ 10f 11f
(p—h/10 == "¥J "7 * —
(20.8) 2 s =17 )/ (57):
completing the proof of Theorem 20.1.

ExAMPLE. Let p = 241 = 14% + 5(3)%. Note that f =12, 2?"Y/5 =1 (mod p),
2ea/|b|= 136 (mod 241). In agreement with Theorem 20.1 we have

(24) =_(72) :(132) 2_(156
12) 36/ \ 34 ) 72
THEOREM 20.2. Let p = 20f + 1 = a?> + b*> = e? + 5f? be a prime with the signs of

a and e chosen so that a =1 (mod4), e =a (mod5) if b =0 (mod5) and e =|b|
(mod 5) if a = 0 (mod 5). Then we have the following congruences modulo p:

af\ _ . \zess) (8f)= 251, mo
(Y) =cverzep (Y] =y e,

(131ff) = (1), (?;) = (1)1,

) =136 (mod?241).
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PRrROOF. To prove the first congruence in Theorem 20.2 we need to show that
4 2 e ess1|b
@ (Y)/ () =cvreet o iy el (moa p)

according as b = 0 (mod 5), e = a (mod 5), or @ = 0 (mod 5), e =|b| (mod 5).
The Jacobi sums J,,(1, 1) and J,y(1, 3) are related by (see [31, Lemma 3])

(20.10) udy(1,1) = Jy(1,3),
so by Lemma 6 of [45] we must have
(20.11) (‘;f)/ (2ff) =u (mod p).

Clearly (-1)2¢/3V= +1 if e =1 (mod5) and (-1)[**/°1 = —1 if e =4 (mod5).
We now use Lemma 4 of [31]. As e = a (mod 5) if b = 0 (mod 5), we have

(1Ya= +1 %fefl(modS),
-1 ife =4 (mod5)

((~1) arising from a ==(~1)/ (mod 5) in Lemma 4). Moreover, with B° = g% =
a/|b|(mod p), a = 0 (mod 5), we have

Vi |b)/a ife=1(mod5),
CDYE=3 061 ife =4 (mods5).

To prove the second congruence in Theorem 20.2 we first use (3.11) and (2.2) to

obtain
_ _8friof4r! _ [ 8f 14\ ([ 8f 10f
ey ooy = =)/ (4) =)/ ()
Next from Theorem 20.1, (20.3), and (20.4) we have
(20.13) (g;)/ ( 13?;) E(_l)f(z(p—l)/10)3.

Now we have

8f1 f13f1 6f1 311 _ [8f 10f
(20.14) FUIfU AFU 3f13717 107! _(4f)/(4f)’

SO

8f 4\ = (Z(P_l)/10)4 = p—1/10
(20-13) ( f )/( f) - (_l)f(z(p—l)/10)3 o (—1)f2( e,

proving the second congruence in Theorem 20.2.
Next using (3.11), (2.1) and (2.2) we have

(2= D/10Y2 = 4f110f1 _ 4f'8f16f!

(20.16) = 2f112f! ~ 2f1107 16/

25)/15)
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From Theorem 20.1, (20.3) and (20.4) we have
(20.17) ( 121ff)/ ( lgf) E(_l)f(z(p—l)/10)4

) =[5/ ()

(20.18) ( 131;)/ (‘}f) =(-1)/ (2t~ /10)?,

proving the third congruence in Theorem 20.2.
Finally, we have

/! fU7fY 8f1  4f16f! _ [I11f 10f
(20.19) 4717fT T B 2f16f1 101! _(2f)/( f)

so from (20.16) and (20.17) we deduce that

(20.20) ( 141;)/ (8;) = (~1)/ (2P~ 1/10)2,

completing the proof of Theorem 20.2.
Let (x, u, v, w) be a solution of

(20.21) 16p = x> + 50u® + 500 + 125w2, x =1 (mod5),

xw = 0% — 4up — u?.

EXAMPLE. Let p = 3121 so f =0 (mod2), 27" V/° = +1,a=-39, b=40=0
(mod5), and e = -49 = g = 1 (mod 5). We have

10f 10f 2f 6f 11f 13f
way (9)=()=()=(9 (3 -
GO ) =a ) =) =l = ar ) = ey
_(Af\ _(8F) (1) _(11f) _
=(F)=(7)=(5) =) =55 @moasan
Resolving the sign ambiguity in Cauchy’s congruence (see (20.2)) involves showing
that (') and (5/) differ multiplicatively by 5~"/* =+1 (mod p). The con-
gruences in the followmg Theorem are related by a fourth root of unity, u, which
does not arise from any expression of the form (n?~D/™) e = mn, t > 1. Thus

Muskat’s and Whiteman’s determination of u in Lemma 3 of [31] is an important
and valuable result. In our notation this determination takes the form

(20.24) g | CDE if 5 = 0 (mod5),
(_1)f+[2€/5]a/|b| lfaEO(mOdS),
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THEOREM 20.3. Let p = 20f + 1 = a® + b? = e + 5f? be a prime with the signs of

a and e chosen so that a =1 (mod4), e =a (mod5) if b =0 (mod 5) and e =|b|
(mod 5) if a = 0 (mod 5). Then we have
( 13f )

71/ (7)=00)/ () = ()
=)/ (5 =00/ () =5/ )
=5/ ()= () =0/ )
=)/ =0/ () =1/ () = moar

of Theorems 20.1 and 20.2. The next two congruences follow from the first as
(20.25)

)/ (35)= G/ 5V = (s ()= 7))

Next we have, using (2.2) and Theorems 20.1, 20.2
(20.26)

(s (3= () () = (2o (o
=[5)/ [ = 3]/ () =cve

s:ae::t: \

(20.27)
(3 (= (51 () o4/
(e (el )=

(20.28)

e/ (= (20 (30) = 2/ (o=

completing the proof of Theorem 20.3.

COROLLARY. For every prime p = 20f + 1 we have

) (5 i (2)(2) (2 i
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As 27~ V/5 s given explicitly by (4.13) we have, if (2/p)s # 1

8 e
(20.29) ( f) = (-1)/ 2]
f
2e(w(125w? — x2) + 2(xw + Suv)(25w — x + 20u — 10v))
w(125w? — x?) + 2(xw + 5uv)(25w — x — 20u + 10v)

a =1 (mod4), e = a (mod5) if b =0 (mod5) and e =|b| (mod ) if a = 0 (mod 5),
u =0 (mod?2), x + u — v =0 (mod4). Moreover, we have the following (using the
result of Emma Lehmer in formula (48) of [23]):

(20.30) ( 141]{) = (—1)2/%)

2e(w(125w? — x2) — 2(xw + Suv)(25w + x + 10u + 200))
w(125w? — x2) — 2(xw + 5uv)(25w + x — 10u — 200v)

if 2/p); # 1 (= replace (x, u, v,w) by (x,-v, u,-w) on the right-hand side of
(20.30)).
EXAMPLE. Letp = 4lsox = -9, u = 0,v = 3, w = -1, e = —6. Then we have

(8;) = ( 126) = 38 (mod 41)

and

(sf) = (1 L1251 -12(=1(125 — 81) + 2(9)(=25 + 9 — 30))
7] =6 “1(125 — 81) + 2(9)(=25 + 9 + 30)

=12(-3+33)/ (-3 + 6) =38 (mod4l).

Moreover, we have

(141;) = (282) =11 (mod4l)

and

1F) _ oy =12(-13125 = 81) — 2(9)(-25 = 9 + 60)
( 4f ) =D Z1(125 — 81) — 2(9)(-25 — 9 — 60)

=12(-3—17)/(-3+ 11) =11 (mod41).
Now (¥) = (3) = 28 and, replacing (x, u, v, w) by (x, v,~u, -w), we have
(4f) :(_1)[-12/5]—12(125 — 81) + 2(=9)(25 + 9 + 60)
fl (125 — 81) + 2(=9)(25 + 9 — 60)
=123—11)/(3+17) =28 (mod4l).

Finally we have

(l;ff) = (262) =34 (mod41)
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and, replacing (x, u, v, w) by (x, —u, —v, w), we have

f) _pys =12(=10125 — 81) + 2(9)(-25 + 9 + 30))
( 3f) =1 —1(125 — 81) + 2(9)(-25 + 9 — 30)

=12(-3+6)/ (-3 +33) =34 (mod4l).

The binomial coeffcients in the above corollary are of Cauchy-Whiteman type.
Moreover it is clear from the above congruences that

(7050 (7))
Py
are expressible in terms of the parameters in (20.21) rather than the parameter e in
— 2 2
p=e"+5f"
Before proceeding to determine the binomial coefficients which may be given
explicitly in terms of the system (20.1) we note that the above theorems yield a large
number of congruences relating products and/or quotients of representative bi-

nomial coefficients (as in (20.1) or in Theorem 14.1) and the parameter e in
p = e% + 5f% We cite only a few.

o (= ()

Y L TL P,

w9 =) ()2

cr () s imn

according as b = 0 (mod 5) or a = 0 (mod 5).

(A (Y]
(20.34) (7;)(4;)/(3?) =2eor2ea/|b| (mod p),

according as b = 0 (mod 5) or a = 0 (mod 5).
The congruence (20.32) may be obtained from Theorem 20.2 after noting that

(/00 1)
/() i
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(20.31), (20.32), and (20.33) are clearly immediate consequences of Theorems 20.1
and 20.2. Also we note in view of Gauss’s congruence given in Theorem 7.1 that we
have

(20.36) ( I?f) ( ISOff) =2eaor -2e|b| (mod p)
according as b = 0 (mod 5) or @ = 0 (mod 5).

Apart from (‘;}f ) all 8 lower order binomial coefficients are given explicitly by the
congruences in §§8 and 13. We now prove that 6 representative binomial coefficients
of order 20 may be given explicitly in terms of the system (20.21).

THEOREM 20.4. For each primep = 20f + 1 = a®> + b?> = e? + 5f%,a = 1 (mod 4),
with (x, u, v, w) a solution of (20.21), set v, (x, u, v, w) (upper signs) andy_(x, u, v, w)
equal to

%[—x = w(x? — 125w?)/4(xw + Suv)]

if 2/p)s = 1, and to
1| w(125w® — x?) + 2(xw + 5uv)(25w — x + 20u — 10v)
2 w(125w? — x%) + 2(xw + S5uv)(25w — x — 20u + 10v)

1L we? — 125w?)
~ 4(xw + Suv)

if 2 is a quintic nonresidue of p. Then with e =a (mod 5) if b =0 (mod5), e =|b|
(mod 5) if a = 0 (mod 5), with a fixed primitive root g such that g/ = a/|b| (mod p),
and with u =0 (mod2), x + u — v =0 (mod 4), we have the following congruences
(mod p).
7
(3jfr) =y, (x,u,0,w)

for the solution (x, —v, u, -w) of (20.21), and
M\ — [ = (_qy+zess)
(7)== (3] =0 e oo
or

0" a/1b1)y (x, u,0,w)
according as b =0 (mod 5), in which case the + sign holds and e = a (mod5), or
a = 0 (mod 5), in which case the — sign holds and e =|b| (mod 5).
Moreover, we have
9
( ff) =(-1)"y_(x, u, v,w)

for the solution (x, —u, —v, w) of (20.21), and

()= (3] =er e nm
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or

1) a/1b)y (x, u, 0, w)

according as b =0 (mod 5), in which case the + sign holds and e = a (mod5), or
a =0 (mod5), in which case the — sign holds and e =|b| (mod 5); (x, u, v, w) is
replaced by (x, v, u,—w).

ProoF. The first congruence follows directly from Theorem 20.2 noting that
7f/ 8f\ _ 7fl4fr4f1111 _ llf/ 11f
f af| = 3f14f18f111f! 3f 4f |-

The Cauchy-Whiteman type congruences

(7)=+(3) (1) =+(8)

holding with the + sign if 5 = 0 (mod 5) and the - sign if @ = 0 (mod 5), are proved
in [17]; the congruences stated in Theorem 20.4 for (7) and (}f ) follow immediately
from Theorems 13.1 and 20.3.

Finally, the congruence for (?f ) follows from Theorem 20.2, noting that (using

(2.2) and B3 = (-1)/82),
()res (5 )or=(7)/ ()
o (5)/ ()= e

EXAMPLE. Let p = 41 so (x, u, v,w) = (-9,0,3,-1) and

(;j;)z(l:)zm (mod 41), (?)=(lf)z9 (mod41),

(2;) = (168) =9 (mod4l).

We have

1] 125 =814 2(-9)(25 + 9 — 60) Hg L (81— 125)]
¥ (60,4, w) = 5[ 125 — 81 + 2(-9)(25 + 9 + 60) 4(29)

=10 (mod4l);
(D" a1y, (xu,0,w)

9 -1(125 — 81) + 2(9)(=25 + 9 — 30) (81 — 125)] o (o
B 5[—1(125 —81) + 2(9)(~25 + 9 + 30) ][9 T |70 (mod41).

Moreover,

(9ff) = (128) =30 (mod4l), (3ff) = (g) =15,

2/

(lf) =-15 (mod4l),
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and we have

(_l)fy_(x’ —u,-v, W)

1[-1(125 — 81) +2(9)(-25 + 9 +30) |[, (81 —125)] _
_[ ~(125 — 81) + 2(9)(-25 + 9 — 30) | _9 a9 |~ 30 (mod4l),
()2 a1 b))y (x, 0, u, —w)
9[ (125 —81) + 2(-9)(25 +9—60) |[, _ (81 —125)] _
_[ (15 —8) + 2925 +9+60) |0 a9 |~ ° (mod41).

Having explicitly determined 16 of the 24 representative binomial coefficients of
order 20 in Theorems 20.1, 20.2, and 20.4 there remain

)G G057 G- (G e (5]

In light of Theorem 20.3 it suffices to determine

(7)1 e 5]

In the following theorem we determine these 4 binomial coefficients up to sign.
Clearly such complicated determinations are almost solely of theoretical interest.
However, we make no apology, as the same may be said of far simpler determina-
tions. Moreover, the proof of Theorem 20.5 yields some neat explicit determinations
for certain products and quotients of the remaining 8 representative binomial
coeffcients; these are enumerated in Theorem 20.6.

THEOREM 20.5. Let p = 20f + 1 = a? + b> = e? + 5f2, define v, (x, u, v, w) and
y.(x, u, v, w) as in Theorem 20.4, and for a fixed primitive root g with g/ = a/|b|
(mod p), choose the signs of a, e, x, u, and v so that e = a (mod5) if b =0 (mod 5),
e =|b| (mod5) if a=0 (mod5), u=0 (mod2), and x + u — v =0 (mod4). The
following congruences determine the binomial coefficients

()G e (5)

( l)f v, (x,—u,—v,w)y_(x, u, v, w)) ” if b =0 (mod5),

modulo p up to sign.

H

(1) Sy, (x,—u,~v, w)y_(x, u, v, w) v ifa =0 (mod5),
|b]

(4eay, (x,—v,u,-w)/y.(x,u,0,w))""*>  ifb=0(mod5),
4e|b|\(+(x,—v,u,—w)/y_(x,u,v,w))l/2 ifa =0 (mod5),

(7f)E (( 1) y+(x, —u,—v,w)y_(x,u, v, w)) 2 if b =0 (mod5),
2f (

)f+ll )1/2 o
vo (x,—u,—v,w)y_(x,u,0,w) ifa =0 (mod5),
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( 12f) = ((_l)f4ea7—(x’ v, —u, —W)/‘Y+ (X, u,vo, W))l/2 lfb =0 (mod 5).
>f ((—l)f4e|b|y_(x, v, -u,-w) /v, (x,u,v, w))l/2 ifa =0 (mod>5).

e (3)/7)= 371/ (5]
A=) 5

according as b = 0 (mod 5) or @ = 0 (mod 5) in view of (20.3), (20.4) and Theorem
7.1. Moreover,

(20.38) (Sf)(z}’) _ (9;)(3?) = (1) v (x4 —0, w)y.(x, 2, 0, W)

in view of Theorem 20.4 (the mapping (x, u, v, w) - (x,-u, -v,w) for either
Y. (x, u,v,w) or y.(x, u, v,w) has the effect of multiplying by 83 = (2(r~D/10)3),
Combining (20.37) and (20.38) we have the first congruence in Theorem 20.5.

Next, we have

o (/(5)- (2 ()t

in view of Theorems 8.1 and 20.4. Also, using (2.2), we have
(20.40)

s (o= (3)/ () =co 3/ co

=>(2§)(152ff) =4ea or 4e|b|

according as b = 0 (mod 5) or a = 0 (mod 5) in view of (20.3), (20.4), and Theorem

7.1. Combining (20.37) and (20.38) we have the second congruence in Theorem 20.5.
Now we have

(20.41)

27/ (57 =371/ (5]}
BV G = (5) =6

according as b =0 (mod5) or a =0 (mod5) by (20.3), (20.4), and Theorem 7.1.
Also,

SAN(TFN _ (T (4f) _ !
(20.42) (Zf) ( 2f) = (3f) ( 2f] = -1y, (x,-u,—0,w)y_(x,u,v,w)
in view of Theorem 20.4 and (13.8) (noting that 8% = (~1)/83). Combining (20.41)
and (20.42) we have the third congruence in Theorem 20.5.
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Finally, combining (20.39) and (20.40) and noting that (x, u, v, w) — (x, -0, u, -w)
has the effect of multiplying by 8%, (x, 4, v, w) - (x, v, —u, -w) of multiplying by 8,
and 1/8* = (-1)/B, we have the last congruence in Theorem 20.5.

The following theorem is an immediate consequence of (20.37), (20.40), (20.41)
and similarly derived congruences together with Theorem 20.3.

THEOREM 20.6. Let p = 20f + 1 = a® + b* = e? + 5f? with a and e chosen as in
Theorem 20.4 and with g a fixed primitive root such that g/ = a/|b| (mod p). Then

211/ =- ()7 (8) =1

according as b = 0 (mod 5) or a = 0 (mod 5). Moreover,

0 <Aoo

[S57) = ()57 ) =sem

according as b = 0 (mod 5) or a = 0 (mod 5),
5f i\ _[5f N f+1€
71/ (1) =0/ (5] =g o o
(6f)(8f)54ea or -4ea

S )=

according as e = 1 (mod 5) or e = 4 (mod 5).

e
a

or

or

and

EXAMPLE. Let p = 641 so (x, u, v, w) = (16,4, 12,-4), 27"V/3 =1 (mod 5) (= x
=0 (mod2)), a=25 b=4, e=-6, and f= 32. We have, in agreement with
Theorem 20.5, the following congruences modulo 641:

) 160 =13 and '76(434)(191) =13,

f
2
ilf‘ ) 256 =443 and (4)(=6)(4)(434) /191 = 443,
2
;) 224 =564 and -4(434)(191)/-6 = 564,
56\

12f
5f

¥
|
|
|

)2 156) =70 and (4)(-6)(4)(191),/434 = 70,
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for it is easily checked that

16 —4(256 —2000) _ 199 _
Yo (X, u,0,w) = —= + 8647 240) = 126 =434 (mod641),

y_(x, u, v,w) = 191 (mod 641).

Moreover, we have as e = 4 (mod ),

)= =) )= == i
/(1) ==/ ()= =5 = oo

7] T

( 152ff)( 1y ) = (460)(280) = ~4ea = (6ff) ( ;”;) =(330)(468) (mod 641).

21. ¢ = 24. For p = 24f + 1 there are 33 representative binomial coefficients of
order 24 and 15 lower order representatives. An astonishing 43 of these 48 binomial
coefficients may be related to at least one other by what we henceforth call a
Cauchy-Whiteman type congruence, that is, a congruence relating two representative
binomial coefficients of the type.

(1)l ()= (]

for all p = ef + 1. (The name derives from the facts that Cauchy proved

(9] (5] tmtr

for all p = 20f + 1 and Whiteman showed how to remove the sign ambiguity in this
congruence).

We begin this section by using the Davenport-Hasse relation in the form given by
Yamamoto (3.11), together with (2.1), (2.2), and (2.6), to prove all Cauchy-White-
man type congruences for e = mn = 24 in which representatives are related by a
term of the form (n?~D/m) = =1, ¢t > 1.

For the rest of this section, all congruences are understood to be taken (mod p =
24f + 1) unless otherwise stated.

(468)(460) = de|b|= — ( ) =(330)(280) (mod 641),

THEOREM 21.1. The following congruences hold for all prime p = 24f + 1 = a? + b?,
a=1(mod4); a =1ifa=0(mod3)anda =2if b =0 (mod3).

(-9}

()5 (),
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N\ _, f+b/4(9f) (10f) —( b/4( 13f)
[r = (G () =eo (5
[37) =) (57) = ()
2
(7 =055 = (57,
e ) (7= G0 =)
f|- af |’ £l \sfl ey 6f )’
(i) = (5 = () (57) =)
of ibsaral 12f el 12f 101\ [ 16f
(o) =5 = (&) (5] =(%)
ProOF. The theorem follows directly from the following 19 congruences, noting
that 2 and 3 are quadratic residues of every prime p = 24f + 1, 2(P~D/4 = (_1)b/4

(mod p) (Gauss) and 3»""/* =1 or -1 (mod p), according as b = 0 (mod 3) or
a =0 (mod 3).

Congruence Reason
(21.1) (g’;) ;( 1) (165;) Theorem 11.2
(21.2) (g;) E(—l)f“’/“( 132ff) Theorem 11.2
(21.3) (2;) E(—l)f”’/“( 162ff ) Corollary 4.1.3
(21.4) (;J;) E(—l)"( lfff ) Theorem 15.1
(21.5) (lzsz ) E(—l)"‘( 162 ff ) Corollary 4.2.2
(21.6) ( 120ff ) z( 186; ) Corollary 4.4.1
(21.7) ( Z) z( 164ff) Theorem 11.2

Next, using (3.11), (2.1), and (2.2) we have
so-nss = 187116 3!

FI9fITTfT — FIOfIT7f!

o 3f123f 114 10f 10f
=03 =o' () ()

1 __ 9f18f!16f! 13f f 13f 14f
6 =3 i e = l)f( )/(9f) (3f)/( Sf)‘
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It follows that

_aw-ny2 — (/[ 1B} 10f 141\ [ 10f
] =30-0/2 =(_1) ( 3f)( f )/( Sf)( 3f)
=(-1)/ 13! 5£19f! 3f17f! 101!
VU3 0101 140 10! f19f!

=5f!_7f!_m=(7f/ 1f
T fUaIfteft T\ f sf ]
Moreover,

12f 127\ 12f' SfIfvef  (f 11f
(f)/(Sf)_f!llf! 12f16f! _(f)/(Sf)

71 SfL6f14f1 _ (Sf)/(llf)

T f16f! 11f14f1 f af )
Combining these we have
)-(%)
)=
()

Next using (3.11) and (2.2) we have
Jrvp = 2120 ( 12f) / ( 13f),

BN ARKIARRYA f 2f
s 10F112f1TfY 12f\ /(14
ooy = Sk = ()5

Taking g = 12, h = 1, k = 2 in (2.6), and using (2.2), gives

(T 1= = (A7)

Making use of (21.9) we obtain
1 =20—1/2 E(2<p—1)/|2)(2<p—1)/12)5

” -G )
)-=(4)

In establishing the remaining congruences we will use (21.8)-(21.11) without
specifically citing them.
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Takingg = 14, h = 7, k = 12 1n (2.6) we have
(14f)(10f):(12f)(12f)
VAR RN AN

SO
12f 13f) = 2(p- /12

()0 = ()07 =)/

St

from which follows

(21.12)

(57} = la)

Appealing to (3.11), we get
2p=11/3 — (2<pfn/lz)4 = 811271871
41116f18f!

_(12f l6f):’12f) (IOf)'
1)/ (=057 157
moreover,

10f! 4719fF1 FLI1f1 13f1

(10f)(13f)/(13f)(12f) _
ar )\ f FYoft 13f1 12f! 2f!11f!

VAW
_Afr10f12f (12f)/(10f)
o2fr12f8f | 4f 2f )

and it follows that

VIREH!

(21.13) p af

Since
(IOf / 13f\ _ 10f'4f13f!  10f'4f!14f!
f) (4f)_ FUI3£13f0  fUI3f114f !

we obtain, using (2.2),

)3

(21.14) p y
(21.15) (l}f) z(—l)“”/“( 1:;).

Next, using the previously established congruence for 27~ D/12,

/(2112007 4 - 2z
(%)) =z

If
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From (15.7) we have
=31
SO
a1\ _ s+osa| T
a0 (4] = (2).
Since

(4f)/(7f) _Af1S5F19f1  4f15713f1

2f 2f)  2fVIF19fY T 21T 13f Y
we have at once that
O\ _ (yrora|
(21.17) (Zf) =(-1) (4f)’
5\ _ s+osa( T
(21.18) (Zf) =(-1) (3f)'

Now, appealing to (2.1), (2.2), and (3.11) we have
(6("_”/“)3 _ 18f14f18f112/116f!120f!
TO3fVTIVILf 15601911231
=( 1)f+1( 18f!12f!5f!f!13f!6f!)
v 3fVTFVILf13f 161!

E(-l)f(lfff)(163]{)12f!5f!f!6f!/6f!18f!

=31/ ()
\3f)\ 6f 6f J\ f )
Thus, using Theorem 11.2, we obtain
6f —(_ f+a( 13f)
(21.19) (f) =(-1) 6 |

This completes the proof of Theorem 21.1.

The number of Cauchy-Whiteman type congruences in Theorem 21.1 exceeds that
of all such congruences for all lower order cases (e < 24). Perhaps, even more
surprisingly, it does nor include all the Cauchy-Whiteman type congruences for
e = 24. In contrast to the lower order cases (and anything we can find elsewhere in
the literature), there are Cauchy-Whiteman type congruences for e = mn = 24 for

which the =1 relating
rf r'f
(,Sf) and (s’f) modulo p
is not an expression of the form (n‘?~Y/™)", t = 1. We have, instead, the following
theorem which, in conjunction with Theorem 21.1, gives all Cauchy-Whiteman type
congruences for e = 24.
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THEOREM 21.2. The following congruences hold for all primes p = 24f + 1 = a* +
b*=x*+3y’=u’+ 6v* ,a=u=1(mod4), x =1 (mod 3): '

e (l) (7)-c(2)
e ) (ot

3]
7

;
refy) (2)=or()
(1

(IOf) E(_l)f+v/2( 15f) 3f) _( 1)0/2( 13f).

f 5f
PrOOF. From Berndt [3, p. 3.23] we have
5a(1,4) = (1) 72207 0/12, (8, 8),

so that, appealing again to Theorem 5.1 we have that for a prime ideal divisor 7 of P
in Q(e2m/24),

( Sff) = (_1)/ "2 (a0 |>/12)5( l;ff) (mod =)

_ ( Sff) E(_l)f+y/4(2(p—1)/6)( 186ff) (mod )

(as 2P7D/4 = (~1)*/% and (-1)?/4**/2 = (~1)>/* follows from [3, pp. 317, 3.25)).
Next Theorems 6.2 and 9.2 give

5752

in view of 4.5 (and (2(»~D/3)2 = 2(r=D/6) Tt follows at once that

)= ) mn
Moreover, we have using
7)=(4)
from Theorem 21.1,
)/ =)/ =G/ ()

giving all congruences for which =1 = (-1)//4,
Next, using Theorem 21.1,

(/-7 ()-8 o
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71=(%)
f 5f
from Theorem 21.1, we have
7/ =00/ (7)=17)7 i)
(f)/(Zf f /(f f/ 2f
giving all congruences for which +1 = (-1)°/%
Finally, using (2.2) and
147\ [ 8f
(6f)=(2f)
from Theorem 21.1, we have
15f 10f) _ [ 15f 157\ _ 7 14f
1)/ V)= (5 /()= 7714
8 +v
= (—l)f(7ff)/(2§) E(_l)f /2,

completing the proof of Theorem 21.2.

and, using

571/ 57)

THEOREM 21.3. Let p = 24f + 1 = a®> + b> = u? + 60* with a = u =1 (mod 4).
Then we have, according as b =0 (mod3), or a =0 (mod 3), the following con-
gruences:

(lif) = ( 152ff) E(—l)qu or (—1)f+'2u (mod p).

PrOOF. From Berndt and Evans [4, pp. 374, 377] we have
J,(12,23) = u — ivf6  foru =1 (mod4);

moreover, applying Theorem 5.1 and using (2.2), we have

5,,(12,23) = - ( ‘;f) s(_1)f+'( ‘;f) (mod 7).

As J,,(1,12) = 0 (mod =) we obtain, as before,

12f = s mo oru = mo
(f)_(—l) 2u(mod p) foru =1 (mod4).

From Berndt [4, Theorem 3.18] we have u = 1 (mod 4) iff a = 0 (mod 3) and u = -1
(mod 4) iff b = 0 (mod 3), completing the proof of Theorem 21.3 in view of Theorem
21.1.

Using previously established congruences from §§5,6,7,9, 11,15 and Theorems
21.1-21.3, we now prove the following theorems.
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THEOREM 214. Let p=24f+ 1 =a>+b*=x?>+3y2 a=1 (mod4), x=1
(mod3). Leta=1ifa=0ifa=0(mod3), 8=1ifaorb=2 (mod3), a =2 if
b=0 (mod3), B=2 if a or b=1 (mod3). We have the following congruences
modulo p.

reoa[ ) o e[ 12} _(12f) _
o) = 5] =) =2
v/2+ 7 8 v/2+ 11
el ey
=(—1)B( 164ff) =2a or 2b
according as b = 0 (mod 3) or a = 0 (mod 3),
2a ify =0 (mod 3),
2ax — 6ay .. _
«f 4\ rvara| I _ | == ify =1(mod3),
ol 575
X——3y—}i ify=2 (mod 3),
2a ify =0 (mod 3),
(_l)f+b/4+a(11f) E(—l)a(14f) = % lnyI(mOd3),
. 4f _
%‘Q ify =2 (mod 3).

PrROOF. The first three congruences follow immediately from Theorems 11.1, 15.1,
and 7.1, respectively. The congruences for

(21 (7] e ()

follow from Theorem 15.1 and the remaining congruences then follow from Theo-
rems 21.1 and 21.2.

THEOREM 21.5. Let p = 24f + 1 = ¢* + 2d?, ¢ = 1 (mod 4). Then we have
6f 12f +b/a( 151
b/4 =(_1\ = (_1)/" =
{5 =6n ( o) = 6f) 2¢ (mod p).
PROOF. This is immediate from Theorem 11.2.

THEOREM 21.6. Let p=24f+ 1 =a>+ b2 =x>+3y%, 4p=A4>+27B%, a =1
(mod4), A=x=1(mod3). Let B=1ifaor b=2 (mod3),B=2ifaorb=1
(mod 3). Then we have the following congruences modulo p.

12f

4f

(_1)ﬁ(§§) =2x or 2bx/a E(—I)B(

)EZx,

10/

4f)52x or 2ax/b
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according as b = 0 (mod 3) or a = 0 (mod 3),

2x lfy = 0 (mod 3),
(IZOff)E(I;ff)E_AE —x — 3y ify =1(mod3),
—x+ 3y ify =2 (mod3),

()=o)

2x ify =0 (mod3),
-x + 3y ify =1 (mod3),
-x—3y ify =2 (mod3).

Proor. The first congruence in Theorem 21.6 follows from Corollary 4.1.1 and
Theorem 9.2 (also from (15.4) and Theorem 15.1). The rest of the congruences in this
theorem follow easily from Theorems 6.1, 6.2, 15.1, and 21.2.

THEOREM 21.7. Let p=24f+ 1 =a’>+b>=x*+3y?=u’+ 60>, a=u=1
(mod4), x =1 (mod3). Let «a =1 if a=0 (mod3), =1 if a or b =2 (mod 3),

a=2 if b=0 (mod3), 8=2 if a or b=1 (mod3). We have the following
congruences modulo p.

) ) o

(—1)f+°/2+ﬁ(6ff) = (—1)°/2+°’+ﬁ( 163ff) =2u or 2au/b

according as b = 0 (mod 3) or a = 0 (mod 3),

4+a 10f _ f+tb/4+a 13f — fty/4+a 13f
I P S VI R b

2u ify =0 (mod 3),

=2 (2xu—6yu)/(x+3y) ify=1(mod3),

(2xu + 6yu)/ (x — 3y) ify =2 (mod3),

Crbara 2f) f+y/4+a(8f —( f+b/4+a(l4f
o) =y () = )

2u ify =0 (mod 3),

(2xu + 6yu)/ (x —3y) ify =1 (mod3),

(2xu — 6yu)/ (x + 3y) ify =2 (mod3).
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ProoOF. Theorem 21.3 constitutes the first two congruences in this theorem.
To prove the last six congruences in Theorem 21.7 we use (3.11) and (2.2) to
obtain

2(‘,_1)/1252f!12f!11f! 12f / 13f
fr13f111f! f 2f
_2frufrfr 72f 12f
_f!13f!11f!_(_1) f / -
The last six congruences follow immediately from the above congruence and
Theorems 21.1-21.3.

To prove the third and fourth congruences in Theorem 21.7 we note that earlier
(see (21.3) and the congruence following (21.7)) we showed that

2(p=1/4 E(_l)f( i;)/ ( 162ff)

and
(=18 =(_1} IOf) (IOf)
3(» =(-1) ( f / 3f |-
Using (2.2) we have

(2P~ 1/4) (3= 1/%) = 9f! 6f16f! 10f! 3f17f1 5f!
3161 1211 f19f1 10f! 51!
_[6f 12f
“[5)/15)
The result now follows from Theorems 21.1 and 21.3.

ReMark. The first author has shown (unpublished) that the criteria of Hudson
and Williams [16] for 3 to be an eighth power (mod p) is derivable from the above
theorems (in a more general form). This derivation is neater than the one given in
[16] requiring cyclotomy. A complete determination of the Jacobi sums of order 40
would, in our opinion, undoubtedly lead to a criteria for determining when 5(»~D/#
= +1, -1, b/a, or -b/a (mod p) in terms of the parameters a, b, /, m in p = a® +
b* = [* + 10m?. This would be of interest if it is new and as simple as the classical
criteria.

Finally, the remaining binomial coefficients of order 24 can be determined up to
sign as in §§18-20. We cite just one example, as the details are easily obtained.

THEOREM 21.8. Let p =24f+ 1 =a’>+ b?> =2+ 2d> = x? + 3y? = u? + 602,
a=c=u=1(mod4), x =1 (mod 3). Then we have

7= SN ()

=1 (- mod p),

) = (TN /(&) moar

where the binomial coefficients on the right-hand side of the congruence are given in
Theorems 21.4-21.7.
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PrOOF. The theorem follows immediately from the easily established congruences
I = (§)1)
AN 8f )\ f

7/ (=01
( f / ")\ f / 6f)
REMARK. As before each of the binomial coefficients, which we are only able to

determine up to sign, is completely determined if the sign ambiguity can be removed
for any one of these.

and
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