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An Observation on Binary Quadratic Forms of Diseriminant — 32¢

By PrLP A. LEONARD and KENNETE S. WILLIAMS¥)

Abstract: It is shown that a result of the authors yields an improvement
on a theorem of PIERRE BarrUCAND and HarvEY CoHN.

Throughout, we let ¢ =1 (mod 8) be a fixed prime for which the class
number of & of Q()—2q) satisties h = 4 (mod 8); thus, the 2-Sylow subgroup
of the ideal class group of this field is cyclic of order 4. If p = 1 (mod 8) is a
prime such that the Legendre symbol (p/q) has the value +1, then for an odd
positive integer z dividing 2 we have either

= u(z) + 897-’(2)’ (4o, ) = 1, (1
or
pF = 8ul + g,  (uy, 1) = 1. (2)
Using results of P. Kapran [4], the authors have shown [5] how the parities
of v, and u, in (1) and (2) are determined. We shall restate our result and show
how it strengthens a theorem ([2], Theorem 5.1) of P. BARRUCAND and H. Comx.
Suppose 2¢ = A% 4 B%, and consider the Legendre symbol ((A + Bi)/p),
where i is interpreted rationally as a solution of the congruence z? = —1(mod p).
Let A(p) be O or 1 according as the value of this symbol is -1 or —1.

Theorem 1 (see [5]). If (1) holds, then vy = A(p) (mod 2); if (2) holds, then
u = Ap) + (¢ — 1)/8 + 1 (mod 2).

Let ¢, denote the fundamental unit of Q(m The 4-class field of Q(}/—_q)
is Q(]/_——q, ]/;, }/;) (see for example [2]). Thus, for a prime p = 7% 4 852 such
that (p/g) = +1, we have (g,/p) = +1 if, and only if, the ideal class P of a
prime ideal divisor of (p) in Q(J —¢) is a fourth power in the ideal class group
of this imaginary quadratic field. (We write P ¢ H* for this last condition.)
On the other hand, a residuacity result for ¢, due to ScroLz [6] (see also [8])
and the rational biquadratic law of BUrDE [3] (see also [7]) give

(eo/P) = (PI9)4 (¢/P)s = ((a + 2b3)/p), 3
where ¢ = a? + 4b% Now
(4 + Bi/p) = ((1 + 1)/p) ((a + 2b9)/p),

and

(A +d/p) = (=1 (see[1]),
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80 we have
Ap)=s(mod 2) & I ¢ H4. (4)

Combining (4) with Theorem 1, we obtain the following result (using the
notation introduced above).

Theorem 2. If (1) holds, then s = v,(mod 2) if, and only if, P ¢ H4 If (2)
holds, then s = %; + (¢ — 1)/8 4 1(mod 2) if, and only if, P ¢ H4

Theorem 2 is to be compared to ([2], Theorem 5.1), & result identical except
in (2), where Barrucand and Cohn have the congruence s = 1w, + (¢ — 1)/8 + L"”
(mod 2), with L'’ a constant, for a given g, equal to 0 or 1. Thus our assertion
is that L’ = 1 for all primes ¢ under consideration. (We note that example
{8.19¢) of [2] indicating that L = 0 for ¢ = 97 1s in error as 881 = 282
+ 97.12)

The constant L’ of [2] comes into the diophantine problem we have con-
sidered by way of certain ideal congruences ([2], Theorem 4.7) describing the

primes of Q()/—2g) which split in Q()—2¢, Vg, V=), where ¢ = r? + 8s2 gives
rise to = = 7, + 28 ]/—2, normalized by requiring ry, + 2s, = 1 (mod 4). The
derivation of these ideal congruences is not carried out explicitly in [2]. Our
approach has been to treat the diophantine problem directly and thereby
avoid the slight imprecision in the earlier calculation of L".
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