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ON THE DIVISIBILITY OF THE CLASS
NUMBER OF Q(/—pq) BY 16

by PHILIP A. LEONARD and KENNETH S. WILLIAMS*
(Received 29th January 1982)

1. Introduction

Let d(<0) denote a squarefree integer. The ideal class group of the imaginary
quadratic field Q(\/E) has a cyclic 2-Sylow subgroup of order =8 in precisely the
following cases (see for example [5] and [6]):

() d=—p, p=2g>~h*=1(mod8), (g/p)= +1;

(i) d=—2p, p=u®—2v*=1(mod 8) with u chosen so that u=1(mod 4), (u/p)= +1;
(iti) d=—2p, p=15(mod 16);
(iv) d=—pg, p=1(mod4), g=3(mod 4), (g/p)= +1, (—q/p)a=+1,

where p and g denote primes and g, h, u and v are positive integers. The class number of
Q(\/E) is denoted by h(d) and in the above cases h(d)=0(mod 8). For cases (i), (ii) and
(1i1) the authors [6] have given necessary and sufficient conditions for h(d) to be divisible
by 16. In this paper we do the same for case (iv) extending the results of Brown [4].

As the ideal class group of Q(,/ —pq) is isomorphic to the group (under composition)
of classes of integral positive-definite binary quadratic forms (a, b, ¢)=ax*+bxy+cy* of
discriminant b* —4ac= —pq, we can work with forms rather than ideals. In order to
determine h(—pq) modulo 16 we construct explicitly a form f of discriminant — pg
whose square is in the ambiguous class containing the form (p, p, 2(p+ q)) (see Theorem 1
in Section 2). The form f is given in terms of a solution in positive integers X, Y, Z of
the Legendre equation

pX*+qY*~2Z*=0 (1.1)
satisfying
X, V)=(Y,2)=(Z2,X)=1,p¥ YZ, qt XZ, (1.2)
and
X odd, Y even, Z=1(mod 4). (1.3)
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That there is a solution of (1.1) satisfying (1.2) follows immediately from Legendre’s
theorem in view of (iv). However we must justify that we can always find a solution with
Z=1(mod 4). In order to see this we let R+S\/E be the fundamental unit (> 1) of the
real quadratic field Q(\/E). As g=3(mod 4) we have
R?2—gS?=+1.

It is well known that

R=2(mod 8), S=1(mod 2), if g=3(mod8),

R=0(mod 8), S=1(mod 2), if g=7(mod8),

and hence

R,=R?+¢5?=7(mod8), S, =2RS=0(mod4), @ R?—gS?=+1.

Hence if Z is even (so that X and Y are both odd) we can replace the solution (X, Y, Z)
of (1.1) by the solution (X, Y;,Z,) given by

X,=X,Y,=RY+SZ, Z,=qSY +RZ,

for which Z, is odd. Further if Z=3(mod4) (in which case X is odd and Y is even) we
can replace the solution (X, Y, Z) by the solution (X ,, Y,, Z,) given by

X=X, Y,=R,Y+8,Z,Z,=49S,Y+RZ,

for which Z,= 1(mod 4).
Our main result is the following theorem.

Theorem 2. If p and q are primes such that
_ - p —q
4

and (X, Y, Z) is any solution in positive integers of (1.1) which satisfies (1.2) and (1.3), then

h(— pq)=0(mod 16)<»<§> = (27X)
PJa

We remark that (Z/p), is well-defined as (Z/p)=+1 and p=1(mod4). To see that
(Z/p)= +1 we perform the following calculation: letting Y=2"Y], Y; odd, we have, using
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50506606
(

- i) §><ﬂ> (as n=1 when p=5(mod 8))

MG e

(1.1) and (1.2),

2. Square root of (p, p, (p +q)/4)

In this section we construct a form f of discriminant — pq such that f2~(p, p,Xp + q)).
As (X,Y)=1 there exists an integer u, such that u,X=1(mod Y). If the integer
e=(uyX —1)/Y is odd we set u=u,. If the integer (uoX —1)/Y is even then the integer

+Y)X -1 X—1
e=(“o ) =“0 "
Y Y

X

is odd and we set u=u,+ Y. Thus the integers u and e satisfy
uX=1(modY), u odd, e=(uX —1)/Y odd. (2.1)

Next, appealing to (1.1) and (2.1), we have

X(pX —uZ*)=0mod Y)
so that, as (X, Y)=1, we have

pX —uZ?*=0mod Y).

Hence we can define a positive integer a and an integer b by

a=Z,b=(pX —ua?)/Y. (2.2)
From (2.2) we obtain

pX —bY =ua’. (2.3)
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Also using (1.1), (2.1) and (2.2) we get

bX +qY = —ea?, (2.4
and

b+ pq=(pe* + qu?)a*. (2.5)

From (1.4) and (2.1) we see that pe?+ qu? =0(mod 4) so we can define an integer ¢ by

c=(pe?+ qu?)/4. (2.6)
Thus, from (2.5) and (2.6), we have

b*—4a’c= —pq, 2.7
showing that the form (a, b, ac) has discriminant —pq. We note that (2.7) shows that b is

odd.
With a, b and ¢ as defined in (2.2) and (2.6) we prove the following theorem.

Theorem 1. (a, b, ac)*>~(p,p,(p+q)/4).
Proof. We define integers v, « and f by
v=2Y, a=(u+e)2, pf=X+Y (2.8)
Appealing to (1.1), (2.3) and (2.7) we obtain, on completing the square for u,
a*u® + buv+ cv* =p, (2.9

and appealing to (2.3), (2.4), (2.7) and (2.8), we obtain

1
bu+2cv =3 (bua® +4a’*cY)
1 2 2
=aﬁ(bua +(b*+pq)Y)
1 2
=a~2(b(bY+ua )+pqY)

1
=—(bpX +pqY),
a
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that is
bu+2cv= —pe. (2.10)

Hence from (2.3), (2.8) and (2.10) we have
a=(pu—bu—2cv)/2p, B=(2ua*+bv+ pv)/2p. (2.11)
Thus from (2.9) and (2.11) we obtain

ufp—va=1 (2.12)
and

2a%ua + buf + bva+ 2cvf =p. (2.13)

Hence from (2.7), (2.9) (2.12) and (2.13) and the identity
(2a2uc+ buP + bvat + 2cvf)? — 4(a*u? + buv + cv?)a2a® + baf + cf?) = (up — va)*(b* — 4a’c),

we deduce

a*a? +baf+cp?=(p+q)/4 (2.14)
Hence the unimodular transformation with matrix[; §] changes the form (a?,b,¢) into

(@*u* + buv + cv?, 2a*ua+ buf + bvo + 2cvf, a*oe® +baf +cf)=(p, p,(p + 9)/4).
Thus we have (see for example [3, p. 185])
(a,b,ac)* ~(a?,b,c)~(p, p,(p+9)/4),

which completes the proof of Theorem 1.

3. Determination of #(— pg)modulo 16; Proof of Theorem 2
By Theorem 1 the class of the form (a,b,ac) is of order 4 and so as the 2-Sylow
subgroup of the class group of forms of discriminant — pq is cyclic, the form (a, b, ac) is
equivalent to the square of a form (r,s,t), where we may take (r,2pqac)=1. Hence
(a, b, ac) represents r? primitively so that there are integers x and y such that
r’=ax?+bxy+acy?, x>0, (x,y)=1. (3.1

We define non-negative integers S and T by

S=[2Xx—aey|, T=[2Yx—auy| (3.2)
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Appealing to (1.1), (2.1), (2.2), (2.6) and (3.1) we obtain
dar’* =pS?+qT> (3.3)
From (3.3) we easily deduce that S and T are positive.
We now show that S and T have no odd common divisors greater than 1. Suppose k
is an odd prime divisor of both S and T. Then k divides
u(2X x —aey)—e(2Yx — auy)
=2x(uX —eY)
=2x  (by (21)),
that is k|x. Further from (3.3) we have k|ar® so that k|a or k|r. If kla from (3.1) we have
k|r contradicting (r,a)=1. If k|r by (3.1) we have k|acy contradicting (r,ac)=(x, y)=1.

Similarly we can show that T and apr have no odd common divisors greater than 1.
We note that as a is represented by (a, b, ac) and the class of the form (a, b, ac) is in the

principal genus we have
(9)= i (34)
p

a=1(mod 4). (3.5)

G-I,

2
ZT—) (by (3.3)

Further by (1.3) and (2.2) we have

Then

T=2", todd. 3.7)

where
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(6)-C)
%)
_ (4?2) (by (3.3)
)
W e
-0/ oD
()
() o
0
R e

[y|=2"y,, v, 0dd, y,>0,

so appealing to (3.1) and (3.5) we have
()-(-C G- G)-C)
ORGENG)

giving
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e
-7 )
-0

Taking (1.1) modulo 8 we obtain p+qY?2=1(mod 8), so that

SO

giving

p=1{(mod 8)=Y =0(mod 4),
p=5(mod 8)=Y =2(mod 4).
We now treat the case p= 1(mod 8): we have
m=0=y odd=T odd=n=0;
m=1=2||y=2|T=n=1;

m= 2=>4”y=>4HT=>n =2;

m23=8|y=x odd=>a=1(mod 8):(%) =41

S

m=0=>y odd=T odd=n=0;

so that in each case

For the case p=5(mod 8) we have

S,2

m=1=>2Hy=>4 |T:pS2+qTZEI2(mOd 16)

=ar?=3(mod 4), which is impossible;

2
m=2=>x odd, 4||y=>a=5(mod 8)3(2) =—1;
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2
=1 ds8 —|=+1
smtimoy ~(2)- 1

4T =n=2,

By
-,

Now by a theorem of Bauer [1] (see also [2, Theorem 6])

m=3=x odd, 8|y=>

so that again in each case we have

Hence by (3.8) we have

h(—pq)=0(mod 16)¢(§> =41

so we have

_ AN P24
h(— pq)=0(mod 16)@(5)4 = (7)

This completes the proof of Theorem 2.
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We remark that Theorem 2 of Brown [4] is the special case of our Theorem 2 which

arises when (1.1) has a solution with X =1.

4. Examples
Example 1. p=5, g=109.

Here
6l G-
p 5 D Ja 5 Ja
A solution of (1.1}+1.3) is given by

X=1, Y=2, Z=9

SO
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and Theorem 2 implies h(— pq)=h(—95)=8(mod 16). Indeed h(—95)=38.

Example 2. p=37,g=11.

Here
11 37 4 — —11 100 10
(A7), (2) () Z(190) (10,
p 37 11 11 P /s 37 J4 \ 37 /), \37
We start with a solution of (1.1) and (1.2) for which Z is even, say,

X=1, Y=17, Z=24,

in order to illustrate how to obtain a solution which satisfies (1.3) as well. Since the
fundamental unit of Q(ﬁl) is 10+3\/ﬁ we have

R=10, S=3, R,;=199, S§,=60.
First we transform the solution (X, Y, Z) into a solution (X, Y;,Z,) with Z, odd:
X, =X=1, Y,=RY+SZ=142, Z,=qSY+RZ=471.

As Z,=3(mod 4) we transform the solution (X,, Y;,Z,) into a solution (X,, Y,,Z,) with
Z,=1(mod 4).

X,=X,=1, Y,=R,Y,+5,Z,=56518,
Z,=qS,Y, +R,Z, = 187449,

Z, 187449 7 81 2X, 2
. = = — =] — =+ 1’ = =+ 1’
p 1.\ 37 ).7\37).7\37), Z, ) \187429

and Theorem 2 implies h(— pq)=h(—407)=0(mod 16). Indeed h(—407)=16.

so that

Example 3. p=5, ¢=79.

(B (A

A solution of (1.1) and (1.2) is given by

X=3, Y=2, Z=19.
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As Z =3(mod 4) we transform this solution into one for which Z = l1(mod 4) obtaining

X =3, Y=52958, Z=470701,

(2w ()

and Theorem 2 implies h(— pq)=h(—395)=8(mod 16). Indeed h(—395)=8.
This example illustrates Theorem 2 in a situation where (1.1) has no solution with
X=1as

so that

u?—792=35

is insolvable in integers u and v (see for example [7, Theorem 109]).
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