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1. Introduction and summary. Let % > 2 be a positive integer and
let p be a prime such that p =1 (mod 2k). The Jacobsthal sum @, (D)
is defined by

»—1

x(5* 4+ D)
(1) oup) = 3 (HE2),
x=1 ‘p
where D is an integer not divisible by p anc (5) is the Legendre symbol.

When k = 2, Jacobsthal ([5], pp. 240-241) evaluated @,(D) when D
is a quadratic residue (mod p) but left a sign ambiguity in its evaluation
when D is a quadratic non-residue (mod p). Recently, the authors [3]
have shown how to remove this ambiguity by using the law of quartic
reciprocity in a form given by Gosset [2]. When k = 3, von Schrutka
([9], p. 258) evaluated @,(D) when D is a cubic residue (mod p) but left
an ambiguity in its evaluation when D is a cubic non-residue (mod p),
and the authors [3] have shown how to remove this ambiguity by using
a form of the law of cubic reciprocity given by Emma Lehmer [6].
When % = 4, Whiteman [12], [13] has shown that

—4(—1)P"PB¢. it D is an octic residue (mod p),
+4(—1)®~PB¢ if D is a quartic but not
an octic residue (mod p),

(1.2) @,(D) =30, if D is a quadratic but not
a quartic residue (mod p),
+4d, it D is a quadratic non-residue
(mod p),

where p = ¢2-+2d° = 1 (mod 8), ¢ =1 (mod 4).
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262 R. H. Hudson and K. S. Williams

Since 2 is a quadratic residue of a prime p = 1 (mod 8), @,(2) is
known from (1.2). In Section 4 of this paper we show how to remove
the sign ambiguity in the evaluation of @,(q), where ¢ is an odd prime
which is a quadratic non-residue (mod p), by means of a form of the
law of octic reciprocity given by Western [11] (see Section 2). For example,
we prove the following:

THEOREM 2 (b). Let p = a®+b* = ¢*+2dg (a = ¢ = 1 (mnod 4)) be a
prime = 1 (inod 8) such that 5 is a quadratic non-residue (mod p). Then

D,(5) = —4(—1)PVieg,

where b and d are chosen to satisfy one of a =b = d (mod 5) or a =b
= —2d (mod 5).

In order to evaluate @,(q) by this method, it is necessary to determine
¢? "®(mod p) when ¢ is a quadratic non-residue (mod p), i.e. when
¢? V% iy a primitive eighth root of unity (mod p). In Section 3 we ex-
plicitly evaluate ¢ "®(mod p) for ¢ = 3,5, 7,11, 13, 17 and 19 when
(—q—) = —1, p =1 (mod8), in terms of the representations p = a2+
P
+b* = ¢*4-2d°, by giving necessary and sufficient criteria in terms of
a,b, ¢ and d, for ¢ to satisty

(1.3) q? " = ((a—b)d/ac) (mod p),

j =1,3,5,7. We state our results only for j = 1 as the analogous results
for j = 3, 5 and 7 may be obtained from these by self-evident trans-
formations. INlustrative of the results in this section is the following

THEOREM 1 (d). Let p = a®+b* = ¢*+2d° = 1 (mod 8) be a prime
with a and ¢ chosen so that @ — ¢ =1 (mod 4), and let k = 1, 5, or —3
according as ¢ =0, +2d, or +4d (mod 11). Then

If

b = —kd (mod 11),
3b = —2kd (mod 11),
4b = 3kd (mod 11).

(L4) (—=11)?VE = (a—b)d/ac (mod p)={ a -

1

S 8 8
I

I

The results in Section 3 complement those of von Lienen [8] who
gave necessary and sufficient criteria for each prime ¢ < 41 to be an
octic residue (mod p), given that ¢ is a quartic residue (mod p). This
leaves the problem of evaluating ¢” "*(mod p) when ¢ is a quadratic
but not a quartic residue (mod p), in other words, when ¢¥ "*
= +b/a (mod p). In Section 5 we give necessary and sufficient criteria for
each prime ¢ < 19 to satisfy ¢? "® = +b/a (mod p).

INlustrative of these results is the following:

THEOREM 3 (d). Let p = a*+b* = ¢2+2d° =1 (mod 8) be a prime
= 1 (mod 8) with a and ¢ chosen so that a = ¢ =1 (mod 4), and let k = 1,
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b, or —3 according as d =0, ¢ = +d, or ¢ = +5d (mod 11). Then

—ke (mod 11),

' b
- g @»-D/8 __ 3
(L.5)  (-—11) = b/a (mod p)é{b —5ke (mod 11).

Il

The fact that the values of k¥ in Theorem 3 (d) coincide with those
in Theorem 1 (d) in magnitude, sign, and order is fascinating —it is not
a coincidence. In Section 6 we include a proof that this phenomenon,
apart from a possible ambiguity in the sign of the k’s, occurs for all primes
q > 3 which are = +3 (mod 8). ’

2. Western’s formulae. Let p = 1 (mod 8) be a prime. Set & = *™/8

= (L+14)/¥2 and let R denote the ring of integers of the quartic field
Q(%). The elements of R are of the form a,+a,f-+a,l*+ay%, where
ay, a1, a,, az are rational integers; moreover, R is a unique factorization
domain. In R, p factors as a product of four primes

(2.1) D = A TT3T05 7074
where
(2.2) m =) (i =1,3,5,7), =a(l) =a+a;+a,0+a,l%

Replacing #z(f) by a suitable associate, we can suppose that
(2.3) n=ma, =x(f) =1 (mod 2)

(see, for example, [1], p. 69), so that

(2.4) a, =1 (mod 2), a, =a, =a; =0 (mod2).
Next we note that

(2.5) ang =a--bi, amy—=c-+divV2,
where

(2.6) P =at+b = 2+ 2d%,

(2.7) a = a;—a;+2a,a, = 1 (mod 4),

(2.8) ¢ =a—alt+a;—al =1 (mod4).

For ¢ an odd prime and j = 0,1, ..., 7, it follows from Western’s
formulae ([11], p. 248) and (2.5) that for ¢ = 1, 3, 5, and 7 (mod 8) respect-
ively, we have
(2.9)  ¢7 "% = ((a—Db)d/ac) (mod p)

if PO VB (g —bi)T V(e —diY2) 2 = P (mod q),
(2.10)  (—q)* V" = ((a—b)d/ac) (mod p)
if pO Y8 (a+bi)?tV (e —diyV2) V2 = F(mod g),
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(2.11) ¢?~"® = ((a—b)d/ac) (mod p)

if p(q—S)/a(a—-—bi)‘q_”“(c—{—dil/;‘;)‘q“”lz = C’(mod 9,
(2.12) (—q)*"7"® = ((a—b)d/ac) (mod p)

if p‘q_ms(a—}—b’i)‘qH’“(c—:—dil/2—)‘q+w2 == C’(mod q).

3. Evaluation of ¢* "/*(mod p) when (l) = —1. Let p = a%+
+b = ¢ +2@ =1 (mod 8) be a prime with f: and ¢ chosen so that
a=c¢=1(mod4). Let ¢ be an odd prime such that (_q_) = —1. In
this section we give necessary and sufficient conditions fg)r g to satisfy

((—1)@PRg)?~V% = (a—b)d/ac (mod p)

for each prime ¢ <19. When ¢ = 41 (mod 8) these conditions involve
congruences of the form a = b (mod ¢) and ¢ = ud (mod ¢) (see Theorem
1 (c), (f)), and when ¢ = +3 (mod 8) they involve congruences of the
form @ = Ab = rd (mod ¢) (see Theorem 1 (a), (b), (d), (e), (g)).

We just give the details of the proof of Theorem 1 for part (g) as,
apart from the differences mentioned above, the other parts are proved
similarly.

THEOREM 1. Let p = @*+ b = ¢+ 2d* = 1 (mod 8) be a prime with
a and ¢ chosen so that a = ¢ =1 (mod 4). Then we have

(a) (—3)P V% = (a—b)d/ac (mod p)<> a = —b = d (mod 3),

(b) 5PV = (a—b)d/ac (mod p)é{ Z i Z i d—(;;o((xln‘:)))({ 5),
(¢) (—T)® V8% = (a—b)d/ac (mod p)

¢.] a = 2b (mod 7) and ¢ = kd (mod 7),
la =3b(mod 7) and ¢ = —kd (mod 7),

where k = 1,5, or —3 according as ¢ =0, =2d, or -+4d (mod 11),

a = —b = —kd (mod 13),
() 13% V8 = (a—b)d/ac (mod p)<>{ a = —2b = 5kd (mod 13),
a = 6b = —4kd (mod 13),

where k = 1, 4,5, or —3 according as ¢ = 0, +2d, +3d, or --id (mod 13),
(f) 17%° V8 = (a—b)d/ac (mod p)

—2b (mod 17) and ¢ = —kd (mod 17),

3b (mod 17) and ¢ = kd (mod 17),

—6b (mod 17) and ¢ = kd (mod 17),
—8b (mod 17) and ¢ = —kd (mod 17),

S 8 & 8
e

1l
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where k = 1, —2, 3, or 5 according as ¢ = +d, +2d, +3d, or +5d (mod 17),

—b = —kd (mod 19),
3b = —6kd (mod 19),
—6b = 2kd (mod 19),
70 = 9kd (mod 19),
—8b = —4kd (mod 19),
where k =1,17,3, —2, or —4 according as ¢ =0, +d, +4d, +5d, or
+7d (mod 19).

Proof of Theorem 1(g). For brevity, all congruences will be
assumed to be modulo 19 in the following proof unless otherwise stated.

It is straightforward to check that for each congurence on the right-
hand side of (g), we have

P (a+bi)f(c—diV2)P® =101 +4)V2 = ¢
and so, by (2.10), with ¢ = 19, we have
(—19)?~"® = (¢ —b)d/ac (mod p).

(8) (—19)*7V® = (a—b)d/ac (mod p) <

’9—9 S & 8
(T

For example, for a = —b = —d, ¢ =0, we have, as b"® =1,
P (a+bi)(e—diV2)® = 4(—1414)°(—iV2)
= —4(4—49)(16iV2) = 10(1L+4)V2 = ¢.
Conversely, suppose that
(3.1) (—19)?~P® = (a4 —b)d/ac (mod p).

Then (—19)?~"2 = _1 (mod p), and by the law of quadratic reciprocity,
we have

¥4
3.2 —] = —1.
(3.2) (19) 1
It is clear from (3.2) and p = a*+b*> = ¢*+2d° that b £ 0 and @ = 0.
Setting ¢ = ud in (3.2) we obtain

P2
(3.3) ( " )_ 1,
so that x =0, +1, +4, +5, +7.
Next, from (3.1), we have (—19)?~"* = b/a (mod p). Setting a = Ab,
and appealing to the law of quartic reciprocity (see for example [2]),
we obtain

a—bi\’ A—i\
(3.4) (a+bi) =(2.+i) o

so that 1 = -1,3, —6,7, —8.
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Next by the law of octic reciprocity, see (2.10), we have
(3.5) pra+bi)(c—diV2) = ¢.

Using the congruences @ = b, ¢ = ud, and setting & = pb, so that
¢ = upb, in (3.5), we obtain

L

(3.6) (BH1)E A+ (u—iV2) (19

)E —9(1+i)V2,

abt=1 4= (%) Next, as

(3.7) (A+4)° = (A°+94° +54) + (52 + 922 +1)4

and

(3.8)  (n—iV2)" = (u®+ 4" +10p5 +12p% +-11p) —

— (98 3u® +10p4 + 1642 +16)i V2,

we obtain
: 3430, . A= —1,8, «6,7
2 “(A - ,5 = ’ 3“2 b ’
(3.9) AR (A1) _{3_&,, A ey
and : .
(3.10) (p—iV2) = 3iV2, if p=0, 1, +5,
—3ivV2, if ‘w= 44,147.
Since

(—3--30)(+35¥2) = FOA+i)V2, (3—3i)(£3iV2) = +£9(1L+1i)V2,
we must have from (3.6), (3.9), and (3.10), that 4'
(3.11) B _ 11 i A= —1,83, —6,7 and p =0, £1, £5, or
0% b hAdd S0 la=-8and u= +4, 47,

and

(3.12) (i o1 {}. = —1,3, —6,7 and u = +4, £7 or
19 A= —8 and y =0, £1, +5.
From a?+b* = ¢2+2d*> we obtain
o g, SORe= S B0 2l
(B3hplqmaz ) o jgro iy
ur+2

Appealing to (3.11), (3.12), and (3.13) we have the following table of
values of f: i sl
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2 L
\ -1 3 =@ [ 7 —sl
al ——|

0 1 9 | 16 5 2

(3.14) +1 11 4 5 | 17 3
+4 13 3 | 18 8 7
+5 9 5 | 11 7 | 18 |
+7 14 | 12 | 15| 13| 9 |

The rth row in this array is determined by niultiplying the entries of
the first row by the first entry in the rth row, » = 1, ..., b (and similarly
for the rth column).

Finally set
(3.15) k=1,7,3, =2, or —4

according as u = 0, +1, +4, +5, or +7 respeetively. Then from (3.14)
and (3.15) we have for all 25 values of f,

(3.16) % = -1, -6,2,9, or —4
according as A = —1,3, —6,7, or —8.

This completes the proof of Theorem 1 (g).

Remark.Set ¢ = Ap = pdif ¢ = 43 (mod 8) and set a = Ab, ¢ = ud,
it ¢ = 41 (mod8). If (a—b)d/ac on. the left-hand side of Theorem
1 (a)—(g), is replaced by ((a —b)d/ac)’, j = 3, 5, or 7, then the congruences
on the right-hand side are satisfied if and only if A is replaced by —A
if j = 3, pisreplaced by —p if j = 5, Aisreplaced by —A2 and u is replaced
by —pif j=T1.

EXAMPLE 1 (¢ = 5, see Theorem 1 (b))." - ' .

(i) Let p = 1297 = 1°+436° = (—35)°+2-6*sothata = b = d (mod 5).
Then we have ' hy : L

(a—b)d _ (—35)(6) .
ac ol =35

= 6 (mod 1297),

and it is easily checked‘tha,t for p = 1297 we have,
5PUR = 512 = 6 (mod p).

(11) Let p = 137 = (—11)2+4:2 = (=3)°+2(8sothat a = b = —24
(mod 5). Then we have : ' '
—b — —120 .
(a—b)a _ (—16)@8) _ =120 _ o0 mea1sy),
art ) S (—11)(—3) 33" /T
and it is easily checked that for p = 137 we have

5({-1)/8 = 5'7"= 96 (mod p).
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(iii) Let p = 17 = 1°+4° = (—3)*+2(2)* so that the right-hand

side of (b) is not satisfied, rather, a = —b = —2d (mod 5). Setting
a = b and noting that only the sign of 1 differentiates a = —b = —2d
from the congruence a = b = —2d in (b), we must have
+b)d
5O=bE — (a+b)a (mod p),
ae

and it is easily checked that this is, indeed, the case.

4. Evaluation of ©,(q) when (%) = —1. We now use the results
of Section 3 to show how to evaluate @,(¢) for a prime ¢ which is a quadratic
non-residue (mod p). Explicit results are obtained for ¢ < 19.

" From the work of Whiteman ([13], p. 90) or Lehmer ([7], p. 65),
we have

_ »—1)/8 (p '—1)/2 p—1)/(8 (P—l)/2
(4.1) @,(D) = — {D / ((p—l)/8)+D3P / (3(1) _1)/8)}(mod P).
-1)/2) _ [((@p-1)/2) _ :
As (p —1)/8) = (3(p —1)/8) we obtain
(4.2) ®,(D) — — (g :i;;é) {D(p—l)/s+D3<p—1»IB}(Inodp)'
Next as
(4.3) (g :1;@) = 2¢(—1)?""® (mod p),

see, for example, Jacobi [4], p. 168, Stern [10], or Whiteman [13], p. 97,
we obtain

(4.4) D (D) = —2¢(—1)P VD@Dt D3@-DI8Y (mod p).

The congruence (4.4) can be used to evaluate @,(D) when |@,(D)| and
D®YB(mod p) are known. Appealing to Theorem 1, we use (4.4) to

evaluate ®,(q) for ¢ = 3, 5,7, 11, 13, 17, 19, (-q—) — —1. We just give

the details for ¢ = 5 as the details are similar f(P;r the other values of q.
For a prime p =1 (mod 8) with (l) = —1 we can choose the

signs of b and d so that ?

(4.5) a=b=d(mod5) or a=»>b= —2d(modbH),

and it follows from Theorem 1 (b), that

(a—b)
¢

(4.6) 5@-18 — a_d— (mod p).
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Hence we have

(4.7) 5(12—1)/8+53(p—l)/8 = 2d/0 (ll]Od_’p),
and thus from (4.4) and (4.7) we obtain
(4.8) D,(5) = —4(—1)?"8q (mod p).

Since @,(5) = +4d, by (1.2), we must have
(4.9) D,(5) = —4(—1)»Viq,

This completes the proof of the case ¢ = 5 of the following theorem.
THEOREM 2. Let p = a®*+b* = ¢2+2d° (& = ¢ = 1 (mod 4)) be a prime

= 1 (mod 8) such that (—;—) = —1. Then

(4.10) 45‘(( —1)@DRg) = _4(—1)®-V8q

provided b and d are chosen to satisfy the congruences (mod q) given in
Theorem 1 (a)-(g).

ExAMPLE 2. Let p =17 = 1*+(—4)* = (—3)*+2(2)°. Note that
a =c¢ =1(mod 4) and the signs of b and d have been chosen so that

(4.11) a=b= —2d(mod 5).
By (4.9) we must have
(4.12) D,(5) = —4d = —8.

Indeed for p = 17 we have, appealing to (1.1),

16

o.(5) =Z(&;ﬂ)

R CRCRCRCMERCRCNE)

We complete this section by briefly illustrating the ideas involved
in explicitly evaluating &,(D) for composite D. We just treat the case
D = —6.

—6 -3
Let p be a prime = 1 (mod 8) such that (——p—) = —1. As (—;—)

= —1, we can choose b and d so that ¢ = —b = d (mod 3). Then by
Theorem 1 (a) we have

(4.13) (—3)P~P% — (g —b)d/ac (mod p).
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Since (see for example [1] and [7])

(—=1)?~V8(mod p) if = 0 (mod 16),

(414) 20~V — (—1)‘1"*1>{8b/a (mod p) if b = 4 (mod 16),

) T (—=1)PTPE(mod p) if b =8 (mod 16),
(=1)?*78pja (mod p) if b = 12 (mod 16),

we obtain from (4.13) and (4.14)

(—1)P V% ((a—Db)d/ac)(mod p) if
b = 0 (mod 16),

(—1)*"V%((a+b)d/ac)(mod p) if
b = 4 (mod 16),

(—1)®*?%((a—b)d/ac)(mod p)  if
b = 8 (mod 16),

(—1)"""%((a+b)d/ac)(mod p) if
b =12 (mod 16).

(4.15) (—8)P~8 =

It follows at once from (4.15) that

(—1)¥"Y%2d /¢ (mod p) if
b = 0, 4 (mod 16),

(—1)®*7%2d /¢ (mod p) if
b = 8,12 (mod 16),

(4.16) (—6)®—2fe ¢ —6)3w-DIs =

so that, by (4.4), we have @,(—6) = —4d (mod p) if b = 0 or 4 (mod 16)
and P,(—6) = 4d (mod p) if » =8 or 12 (mod 16). Thus, by (1.2), we
have
_|—4d if b =0, 4(mod 16),

(4.17) Py(—6) = {+4d if  b=8, 12 (mod 16).

ExamMpLE 3. Let p = 17 = 12+ (—4)* = (—3)*+2(—2)*  so that
¢ =c¢=1(mod4),a = —b =d(mod 3),and b = 12 (mod 16). From (4.17)
we have @,(—6) = +4d = —8, and, indeed,

16

&,(—6) = Z (&17_&)
{55 ) o)« )+ )

5. Evaluation of ¢” "*(mod p) when (%) = +1. Let p = a®+0b*

= ¢2+42d” = 1 (mod 8) be a prime with a and ¢ chosen so that @ = ¢
= 1 (mod 4). Let ¢ be an odd prime such that (%) = -+1. In this gection
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we give necessary and sufficient conditions for g to satisfy ((—1)¢ "¢~/
= b/a (mod p) for each prime ¢ < 19. When ¢ = +1 (mod 8) these con-
ditions involve congruences of the form a = Ab (mod q) (see Theorem
3 (c), (f)), and when ¢ = 43 (mod 8) they involve congruences of the
form b = ye (mod ¢) (see Theorem 3 (a), (b), (d), (e), (g))- Apart from
this difference, the proofs of (a)—(g) are similar, and may easily be written
down by analogy with the proof of (g) which is given below.

THEOREM 3. Let p = a*+b* = ¢ +2d° = 1 (mod 8) be a prime with
a and ¢ chosen so that a = ¢ = 1 (mod 4). Then we have

(a) (—3)?7V"® = pa (mod p)ab = ¢ (mod 3),

—c¢ (mod 5),

E(@—-D/8
(b) 5 = bla (mod p)< 1 b 2¢ (mod B).

Ml Hl

b (mod 7) and cd = 0 (mod 7),
—b(mod 7) and od % 0 (mod 7),

—ke (mod 11),
—5ke (mod 11),

d =0(mod1l), ¢ = +d or

() (= ‘)”’_”’B*b/a(modp)ﬁ

J——

[l

HI IH

a
a
(d) (—11)*"P® =pla (mod p)< {

w

where k =1, 5 or —3 according a
+5d (mod 11), :

= ke (mod 13),

®»—D/8
(e) 13 =bla (1n0dp)¢>{ b = 6ke (mod 13),

where k& = 1,4, —5, or —3 according as d =0, ¢ = +d, ¢ = +5d, or
;tb'd (mod 13), ' ' ‘

; rw-DI8 a = 5kb (Ifl()d 17),

(f) Rt =¥jd (m"dp)‘”{a — _17kb (mod 17),

where k =1ifed =0 or ¢ = +6d (m0d17), k= —1 if ¢ = +4d or
+8d (mod 17),

= ke (mod 19),
(g) (—19)?7V® = p/a (mod p)<>} b = 2ke (mod 19),
b= 7kc (mod 19),

where k =1, 7,3, —2, or —4 according as d=0, c = 424, :{:Qd +8d,
or +3d (mod 19) respectwely '
! Proof of Theorem 3 (g). For brevity, all congruences are to be
taken modulo 19 unless otherwise stated.

Case (i): d = 0. Tt is easy to check that for each congruence on the
right-hand side of (g), we have

pia+bi)(c—divV2) =
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and so by (2.10), with ¢ = 19, we deduce that
(—19)*7V® = p/a (mod p).
For example, for a =0, b = —2¢, we have
pi(a+bi)(c—diV2)® =i*(9+6iV2) =i,
as a =0, ¢ = 9b imply b* = 5b+2d°, that is, d = +6b; b'® = 1;

6
and, appealing to (3.8) and noting that 6° = (E) = +1,

(94+6iV/2)° = 6°(+iV2)° = 1.
Conversely, suppose that
(5.1) (—19)?"P% = p/a (mod p).

Then (—19)?~"? = +1 (mod p), and by the law of quadratic reci-
procity, we have

2 p
5.2 —) = +1.
(5.2) (19) +
Setting ¢ = ud in (5.2), we obtain
w+2)
( & )_ e
so that
(5.3) u = +2, £+3, +8, +9.

Also, from (5.1), we have (—19)?~"* = _1 (mod p), and so by
the law of quartic reciprocity, see [2], we have

(5.4) (a—b": )5 = _1.
a+bi
Clearly b 20 and we can set ¢ = 1b in (5.4) to get
(5.5) A=0, +2, 4+5.
Next, by the law of octic reciprocity, sec (2.10), we have
(5.6) pia+bi)y(c—diV2) = .
Using a = A, ¢ = pd, and setting b = ye so that a = Juyd and b = uyd

Lt

in (5.6) we obtain, as d"® =1 and (uy)® = (19 ,

(6.7) (R +1P(A+4)° (u—13V2) (%—) = .
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From (3.7) and (3.8) we obtain

2, 1)\2 ool % i A=0, 45,
(5.8) (1) (2 +1) { SR A
and
i ?_49 _ [ +1 if u= -2, +3, —8, —9,
(5.9) (u—iV2) = S e T e

From (5.7), (5.8), and (5.9) we must have

, /=0, £5 and p = -2, +3, —8, —9,
(5.10) (—"l) - 41 i or
=0 A= +2 and p = 12, —3, +8, 49,
and
A=0, 45 and u = -2, —3, +-8, +9,
(5.11) (ﬂ) — 1 if or
19 A= 42 and u = —2, +3, —8, —9.

From a*-+b* = ¢2}-2d* we obtain
w2
pE(AA+1)
Next, from (5.10), (5.11), and (5.12), we have the following table of values
of y:

(5.12) p? =

| \\7 Z I
S ‘ 0 | +2 | +5
—
(5.13) | 12 | 7| -5| -8
| x3 l —4| -8 -9
|48 -2 | —4 5
| ie | 3| 6| 2
Finally, setting v
(5.14) k=17 —4, —2, or 43 according as ¢ = +-2d, +3d, +8d,
or +9d,
we obtain for all 12 values of y,
(5.15) 7 —1,9, or 7 according as A =0, +2, or +5.

k

This proves Theorem 3 (g) in case (i).

Case (ii): d = 0. The proof is the same as in case (i) except that
we clearly cannot set ¢ = ud. However, setting b = ye, (5.6) becomes
in this case,

(5.16) (22 1) (A 4-4)° (_7-) =i.
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Hence by (5.8) we have

-~ y — 4
Next from a%-+b* = ¢2--2d* we have

5.18 2 = :

(5.18) 2 = FENR R

Putting (5.17) and (5.18) together, we get (just as in (5.15) taking k¥ = 1),
(5.19) y =1,2, or 7 according as 2 =0, +2,or +5.

This completes the proof of Theorem 3 (g) in case (ii).

ExXAMPLE 4. (¢ = 5: see Theorem 3 (b).)
(i) Let p = 281 = 5*+16* = 9*+2(10)* so that b = —e¢ (mod 5).
Then we have

— = — = 228 (mod 281),

and it is easily checked that for p = 281 we have
5P~ V= 5% = 2928 (mod 281).
(i) Let p = 1289 = (—35)2+8% = 332+2(10)%2s0 that b = ¢ (mod 5).
Then we have
8 b

P8 == B0l == f70 = = — — (mod p).
’ ‘ 35 a ( 2

(i) Let p = 89 = 5>+ 8% = 97+ 2(2)* so that b = 2¢ (mod 5). Then
we have

~m—1/8 __ =11 _ e
5@ /8 — U1 = B5 =

(mod p).

(iv) Let p = 241 = (—15)*+4* = 13°+2(6)* so that b = 2¢ (mod 5).
Then we have

b
BP-UB =50 = 177 = — = — — (mod p).
a

Remark. Although the number of cases to be considered grows
quite rapidly as ¢ increases, there are no technical difficulties in using
the methods given in the proofs of Theorems 1, 2, and 3 to extend the
results in this paper beyond ¢ = 19.

6. Values of % in Theorems 1 and 3 when ¢ = +3 (mod 8). We observe
with eonsiderable interest that the values of &k which occur in Theorem
1 (d), (e), (g) are identical with the values of £ which occur in Theorem
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3 (d), (e), (g), both in magnitude and sign. The values of % in Theorem 3
have been written in an order which corresponds to their order in Theorem 1.
In this section we investigate the pattern which underlies this ordering
for every ¢ >3 which is = -3 (mod 8).

Let k, ;. ,(g) be the value of L corresponding to ¢ = +7;d (mod q)

when (_q) = —1,j =1,2,..., and let k, ;.,(¢q) be the value of k corre-
sponding to ¢ = +s;d (mod ¢) when (%) = —+1, where k, ,(¢) and k,,(q)

are equal to 1 and correspond to ¢ = 0 (mod ¢) and d = 0 (mod q) respec-
tively. For example, when ¢ =19 we have from Theorem 1 (g) and
Theorem 3 (g) that k,; = k,; =3, r, = 4, s, = 9. Observing that 72-s2
= (—3)(5) = 4 (mod 19) and that the same congruence is satisfied (mod g)
for every choice of j in Theorem 1 and 3, parts (d), (e), (g) as well as in
part (b) when reformulated in analogy to (d), (e), and (g), we are led
(with the above notation) to a general theorem relating the values of ¢
in Theorems 1 and 3 when ¢ is a prime = +3 (mod 8), ¢ > 3.
THEOREM 4. Let q be a prime > 3 which is = 43 (mod 8). Then

(6.1) (l‘"l,j+1)2 = (kz,jr-1)2<>(7'j)2(3j)2 = 4 (mod gq), Ji=1,2, u»
Proof. Let ¢ be > 3 so that »; and s; exist. Applying (3.4) with the

~

exponent 5 replaced by (¢-+1)/4 if ¢ = 3 (mod 8) and by (¢—1)/4 if

¢ = 5 (mod 8), one can show that one of 2 =1 or 2 = —1 is always
a solution. Then, by (3.13) and (3.16), we have (r; replaces u in (3.13)),
(6.2) (k1 0(@) = 3((5(@f +2)(mod @), j=1,2, ...

Similarly, applying (5.4) with the same replacement, it is obvious that
this congruence is always satistied if 2 = 0 (a = 4b). Taking y/k,; = 1
(mod q), 7 =1,2,... (see (5.15)), and using (5.12), we have (s; replaces
s In (5.12))

(6.3) (busa(@F = =20 (modq), =12, ..

The result follows then from (6.2) and (6.3), as the k, ; , and k, ;,, are
chosen in the range —ig <k < iq.

References

[1] Alexander Aigner, Kriterien zum 8. und 16. Potenzcharakter der Reste 2 und
— 2, Deutsche Math. 4 (1939), pp. 44-52.

[2] Thorold Gosset, On the law of quartic reciprocity, Mess. Math. 41 (1911),
pp. 65-90.

[3] Richard H. Hudson and Kenneth 8. Williams, Resolution of ambiguities,
in the evaluation of certain Jacobsthal swms, Pacific J. Math. (to appear).



(8=}

76

[4]
(5]
(6]

(7]
£8]

(9]
[10]
[11]
[12]

(13]

R. H. Hudson and K. S. Williams

C.G.J. Jacobi, Uber die Kreistheilung und ihre Andwendung auf die Zahlen-
theorie, J. Reine Angew. Math. 30 (1846), pp. 166-182.

Ernst Jacobsthal, Uber die Darstellung der Primzahlen der Form 4n+1 als
Summe zweier Quadrate, ibid. 132 (1907), pp. 238-245.

Emma Lehmer, Criteria for cubic and quariic residuacity, Mathematika 5
(1958), pp. 20-29.

— On Euler's criterion, J. Austral. Math. Soc. 1 (1959), pp. 64-70.

Horst von Lienen, Primzahlen als achte Potenzreste, J. Reine Angew. Math.
266 (1974), pp. 107-117.

Lothar von Schrutka, Fin Beweis fir die Zerlegbarkeit der Primzahlen von
dre Form 6n--1 in ein einfaches und ein dreifaches Quadrat, ibid. 140 (1911),
pp. 252-265.

M. Stern, Eine Bemerkung zur Zahlentheorie, ibid. 32 (1846), pp. 89-90.
A.E. Western, Some criteria for the residues of eighth and other powers, Proc.
London Math. Soc. 9 (1911), pp. 244-272.

Albert L. Whiteman, Theorems analogous to Jacobsthal’s theorem, Duke Math.
J. 16 (1949), pp. 619-626. :

— Cyclotomy and Jacobsthal sums, Amer. J. Math. 74 (1952), pp. 89-99.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF SOUTH CAROLINA
Columbia, South Carolina, U.S.A.

DEPARTMENT OF MATHEMATICS AND STAIISTICS
CARLETON UNIVERSITY '
Ottawa, Ontario, Canada

Received on 2. 6. 1980 (1209)



