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I. Q(Vp) and Q(V —p)

1. Introduction. Throughout this paper p denotes a prime congruent
to 5 modulo 8. We set p = 81+5. The fundamental unit (> 1) of the

ring A of integers of the real quadratic field Q()/z_)) is denoted by e,.
We have
(1.1) e, = Ht+u/p),
where ¢ and « are positive integers satistying ¢ = « (mod 2). The norm
of ¢, is —1 so
(1.2) *—put = —4.

We let 5, be the fundamental unit of the subring B of A of integers

of the form m+yl/1_) (#,y € Z), that is, 7, is the smallest power of ¢, in B.
It is a result going back to at least Dirichlet ([1], p. 249) that
€ if t=u=0(mod?2
(1.3) T z‘ il ( h
&, U t=u=1(mod2),
and that the ideal class number of A4, written h(p), is related to the ideal
class number of B, written k = k(p), by
{3]7’(17)7 if 7y =&,

(1.4) k = }
h(p), if Np = e;.

*Research supported by the Natural Sciences and Engineering Research Council
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It follows immediately from (1.3) and (1.4) that
(1.5) '@ = gk

It is well known that h(p) (and thus k) is odd.
As 7, € B we have

(1-6) Ny = 2+ U‘/;7
where T -+ Ul/]-) is the least positive integral solution of
(1.7) —pU0* = —1,

and T, U are related to ¢, u by
T =12, U=u2, if t=wu=0(mod?2),
T =t#+3)/2, U =uwu+1)/2, if t=mu=1(mod2).

Taking (1.7) modulo 8 we see that

(1.8)

(1.9) T = 2 (mod 4),

and that U is odd. Clearly all prime factors of U are congruent to 1 modulo
4, so that U = 1 (mod 4). Then, taking (1.7) modulo 32, we obtain
(1.10) U = 41-+1 (mod 16).

Now we let h = h(—p) denote the class number of the imaginary
quadratic field Q(V —p). Tt is well-known that & = 2 (mod 4), as p =5
(mod 8).

It is the purpose of this paper to relate the class number h modulo
16 to the class number k and the integer T. We prove

THEOREM 1. If p is a prime congruent to

5 modulo 8, then:

(1.11) h = Tk (mod 16).
The congruence
(1.12) h = Tk (mod 8)

has already been established by one of us [11] in notation involving h,
h(p) and ¢. The congruence (1.12) will be reproved in this paper in a dif-
ferent way and use of it will be made in proving (1.11). The proof of (1.11)
follows the ideas of [9] but with considerable difference in details. The
congruence (1.11) can be expressed in the equivalent form

hk = T (mod 16),

and this is analogous to the congruence obtained in [9] for primes p = 1
(mod 8), which can be formulated

hk = T+p—1 (mod 16),

since the class numbers of the rings 4 and B coincide when p = 1 (mod 8).
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Before starting the proof, we mention that in the second part of
this paper we will prove an analogous formula modulo 16 for the class
numbers b’ and k' of Q(V —2p) and Q(V2p). (See Theorem 2, Section 9.)

To prove Theorem 1 we will make use of Dirichlet’s class number
formulas for h(p), h( —p), and h( —2p). For h(p) we use:

(1.13) Ve = [[a—d),

where o = exp(2wi/p). (A £ sign under a product (or a sum) symbol will
always indicate that the product (or the sum) is taken over those integers
J satisfying 1 <j<<p—1 and (jlp) = +1.) Formula (1.13) is proved in
[10], Lemma 1, the square of (1.13) appears in Dirichlet [2], p. 494. From
(1.5) and (1.13) we obtain

(1.14) Pl = [[a—ey.

For h(—p) and h(—2p) we will use the following formulas ([1],
P. 2765 [2], p. 493):

(1.15) h =h(—p) =2(8,+8,),

(1.16) ' = h(—2p) = 2(8,—8,),

where

(1.17) 8; = (—8—), j=0,1,...,7.
jpls<s<(i+1)p/s \ P

2. The polynomials G, (2) and G_(z). Formula (1.14) suggests intro-
ducing the polynomials

(2.1) G @) = [[(z—0, 6_(z) = [[ (==
+ p—
With this notation (1.14) can be rewritten
(22) G_(1) = p*u.
Setting
p-1 '
(2.3) G2) = [[z—d'f = @, ()G_(2),
J=
and noting that
(2.4) G(1) =p* =G, (1)G_(1),
we have (as k is odd)
(2.5) @.(1) = -y,

where 7, = T—Ul/; = —n'.
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Next, as in the proof of Lemma 2 of [9], we obtain
G:};(l)G:!:( _l) = G:{:(l)a
from which we deduce, by appealing to (2.2) and (2.5)
(2.6) G .(-1)=xF, @G_(-1)= k.

Further, following the proof of Lemma 3 in [9] we obtain, using here
(1.15):

(2.7) G, (1) = —ein,y, G_(3) = —eint,
where
(2.8) g = (—1)r-2,
We note that
(2.9) h = 2e¢(mod 8), eh =2 (mod 8).
We also note that, if o = exp(2ni/8) = (1 +i)/l/§ (so that w?® =1,
oy = —1, 0+ w® = iV/2, » —w® = V/2), then:
(2.10) Gi(0)Gy(—w) = G(i)

follows easily from the definition (2.1), as p = 5 (mod 8). Finally we
observe that

Yk 4+ k) = HT+ UVp) + 3(T — UVp)*
and

|
2Vp

k_oky L ik o —UVp)*
(mp "”)_21/5 (T+UVp) e (T —UVp)

are rational integers. Moreover, as k is odd and T = 2 (mod 4) we have:

(k—1)/2
2% k ! DI\ (e —1)/9
B+ = 3 (5,5 ,) T+ (o ye-ve—s
§=0

= kT (pU*)*=12 4 (’;) T3 (pU*)*~3”2 (mod 16)
= ET5%-D2 4 4(’2‘) T (mod 16)

= kT{2k —1+2k(k —1)) (mod 16),
that is

(2.11) %(172—%—77;]‘) = kT (mod 16).
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Similarly we obtain
1 =
(2.12) ———(nf—nF) = U = 41+1 (mod 16).
2Vp
3. The polynomials Y (z) and Z(2). The polynomials [](z— ¢’) are
each of degree }(p —1) = 41+2 and their coctficients belong—' to the ring

of integers of Q(l/z_)). It follows that G, (2) and G_(2) are polynomials
of degree 121+ 6 which can be expressed in the form

(3.1) G, (2) = }HY(R)—Z@Vp), G_(2)=13}(X()+Z@)Vp),

where Y (z) and Z(z) are polynomials of degree at most 121+6 with

ational integral coefficients. From (3.1) we have

i

7]

It is easily deduced from (2.1) that for z = 0
SHG (1]z) = GL(2),

(3.2) Y(2) = G_(2)+G. (2), Z(2) (G_(2) =G (2))-

so that by (3.2)
Y (1[2) = Y(z), #%TZ(1[e) =Z(2).

Hence the coefficient of 2" (n = 0,1,2,...,60+2) in Y (2) (resp. Z(2))
is the same as that of 2'#+6~", Using (2.2), (2.5) and (3.2) with z =1,
we see that ¥ (1) and Z(1) are both even. Hence the middle coefficients
rthe coefficients of 2%+3) of ¥ (2) and Z(z) are both even. Thus we can set

6143

Y(Z) — 2 an(zn_{_zl?.l+6—n),
(3.3) [

61+3

Z(z) = 2 b7l(zn_|_zlzl+6—n)’
n="0

where the a, and b, are integers.

We now state three relations between the polynomials Y (z), Z(2) and
their derivatives (equations (3.4), (3.5), (3.10) below), which we will
make use of later. The first two of these are trivial, the third is an extension
of a result of Liouville [8].

From (3.1) and (2.5) we have (cf. [4], p. 427)

(3.4) Y2 (2) —pZ*(2) = 46(2),
and by differentiating (3.4) we obtain
(3.5) Y(2) X' (2) —pZ(2)Z' () = 26 (2).
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Taking 2 = w in (3.4) and (3.5) we obtain
(3.6) Y () —pZ* (w) = —200 —28i —20wi,
3.7)  Y(0)Y'(0)—pZ(w)Z (w)
= (51 =9p) +21(1 —p)w —21 (1 +p) w*— (51 + 9p)w®.

Next we introduce the polynomial

[ s
3.8 K@)y = » =)
(3.8) (?) 2(p) :
s=1
Using the Gauss sum
Zgj—zgj = }/pr
we casily deduce the following partial fraction decomposition:
K(z) 1 1
3.9 - Z : —Z %
(3-9) 2P —1 l/p - z—0’ < z—¢’

Since by (2.1), (3.2) and (3.9)

2 6G 1 1
Vo Vp Z s—¢ Z s—¢

we obtain

(2" —1)?

(3.10) YZ-YZ —6-——
(#—1)

K(z).

In order to apply (3.10) with 2 = o we must first evaluate K(w).
This is done as in the first part of § 7 of [9]. We have

p—1 p—1
T R O
8=1 s=1

For j =0,1,2,...,7 we set s = 8r—j.
As 1 <8 —j< 8l+5, we have
r =1, .1, for j=0,1,2,3,
r=1,...,1+1, for 4§ =4,5,6,T7.
8r—j \ _ [2r+(2141)j
P )_( 2

Then, as ( ), we find that

7
K(w) = —2 o' T;

j=0
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where
2r+(2 .
= 2
Z( ), =012,
;L S
i~ 141 N
2( A ) j—=4,5,6,7.
r=1
Noting that, with definition (1.16), §; = 8,_;, we find that
—'So7 j 0 3
Tj - _Sl7 .7 & 55 67
_Szy .7 1s 2,
_Ssy .7 = 47 Ta
so that
(3.11) K(w) = (14 0?)(Sy—8;3)+ (w-+w?) (S, —8,).

Now it has been proved by Gauss and Dedekind ([3], p. 301 = [4],
p. 694), as well as by Dirichlet ([2], p. 493), (cf. also [5]) that:

(3.12) 48, = —h+N'; 48, =Bh—F; 48, = —h—K.

As 8y =1l (mod 2) and 8, = 8; = 1+1 (mod 2), each of these relations
proves the well-known result:

(3.13) h' = h+41 (mod 8).
Using (3.12) in (3.11) we have (as S,+8;+8,+8; = 0):
2K (0) = —2h(0+ 0?)+h'(1+ o+ o+ w?)
from which we deduce, after changing o into —w:
(3.14) 4h = K(0)(1 -0+ o*+ 0®)+ K(—o0)(1+ o+ 0 —?),
(3.15) 20 = K(0)(1—o0)+K(—o0)(l+o).

Taking 2 = + w in (3.14) and (3.15) we find:

(3.16) (5( 0?) —To) (Y (0)Z(w) — Y(m)z’(w))+

+(5(1 +w)+70))(Y'(—w)Z( w)—Y(—0)Z (—w)),
(3.17) 120" = (T(1+ 0?) —100) (Y (0)Z(0) — Y (0)Z' (o)) -+

T+ 0?)+100) (Y (—0)Z(—0)— Y (—0)Z'(—w)).

Both expressions (3.16) and (3.17) have the form:
H = (a(1+4 w?) —po) (Y (0)Z(0) = Y(0)Z' (o)) +()~( )7,
where ()~ is the same expression with — o instead of w.

4 — Acta Arithmetica XL.4
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In Sections 7 and 8 we will find (see (7.30) and (8.29))
Y (0)Z(0) =Y (0)Z' (0) = a(l —w?)+bw?
with the expressions for a and b depending on the parity of I. Then, clearly:
(3.18) H = 4aa+2bp.

4. Congruences for the coefficients of Y (z) and Z(z). We begin by
introducing the following notation. Whenever we write >a,,., it will
be understood that e and f are fixed rational integers such that 0 <f<e
and that the variable of summation # varies so that 0 < en+f<C 61+ 3.

From (3.3), (3.2), (2.2), (2.5), (2.12), we have

Da, = 1Y) = 3G (1) +6G, (1)) = 3p*2(nf —nF) = p*(41+1) (mod 16)
that is

(4.1) D) a, = 4149 (mod 16).

Similarly we obtain

(4.2) NMb, = 5Tk (mod 16).

p
Similarly, making use of ¥ (—1), Z(—1), Y (¢) and Z(¢), we obtain

(4.3) D a,(—1)" = 9 (mod 16),
(4.4) Db, (—1)" = —2Tk (mod 16),
(4.5) 2 Aypir(—1)" = —&Tk (mod 16),
(4.6) D) by (—1)" = —e(4l+1) (mod 16).
Adding and subtracting these congruences appropriately, we get
(4.7) Z a,, = 21+1 (mod 8),
(4.8) Dby, = 3? (mod 8),
(4.9) 2 Qyni1 = 21 (mod 8),
Tk
(4.10) Dby = ——— (mod 8),

Tk
(4.11) Zaml == 62 (mod 4),
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2e+ Tk
IZ—w(modet), if 1 odd,
(412) M, =
— (2e-+ Tk) ,
———— (mod 4), if 1 even,
eTk
(4.13) Zamg = U+ —5— (mod 4),
2 — Tk
24 (84—1 (mod 4), if 1 odd,

4
" Z R (2e — Tk)

(mod 4), if 1 even.

383

5. Evaluation of Y (w) and Z(w). Taking z = » in (3.3) we obtain

(5.1) Y(0) = L+2Mo+(—1)"'Li+2Nwi,
(5.2) Z(w) = L'+2M 0+ (—1)"'L'i+2N"wi,
where

(5.3) L= Y om(—1)"+ (=1} Yty (1),
(5.4) M= 3L+ (1) Y tya (1),
(5.5) N = 314 —1)’)2a4m+3(—1)"‘.

L'y M’, N' are defined as in (5.3), (5.4), (5.5) by replacing a, by b,

(equations (5.3)", (5.4)", (5.5)"). Clearly
M =M =0, if 1 even,

(5.6) , .
N =N =0, i 1odd,

suggesting that we treat the two cases I odd and ! even separately.

Case (i): 7 odd. From (5.1), (5.2) and (5.6) we have

(5.7) Y(w) = L+2Mow+Li, Z(w)=L +2M o+L'.
Appealing to (3.6) we obtain

(5.8) D20 —pL? —2pM"? = —14,

(5.9) LM —pL'M = —5.

Further using (2.7), (2.10), (2.11), (2.12), (3.1) and (5.7), we get

(5.10) L —2M° 4 pL"”? —2pM"™ = —2¢Tk (mod 32),
(5.11) LL' —2MM' = s(41+1) (mod 16).
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Finally we have
L= Yap(—1)"+ D gy, (—1)"  (by (5:3))
= Nagt+ Yty (mod2) = }lay, (mod 2),
=1 (mod2) (by (4.7)).

Similarly we obtain L' = 1 (mod 2) and M = 0 (mod 2). Then, appealing
to (5.8), we get M' = 1 (mod 2). Summarizing we have

(5.12) L=L =M =1(mod2), M =0(mod2).
Case (ii): I even. From (5.1), (5.2) and (5.6) we have
(5.13) Y(w) = L—Li+2Nowi, Z(w) = L' —L'i+2N wi.
Appealing to (3.6) we obtain
(5.14) I*4+2N2 —pL’? —2pN" = 14,
(5.15) LN —pL’N’' = —5.
Further using (2.7), (2.10), (2.11), (2.12), (3.1) and (5.13),
(5.16) I? —2N*4pL* —2pN"* = 2¢Tk (mod 32),
(5.17) LL' —2NN' = —eg(41-+1) (mod 16).
As in the case when [ is odd, we obtain
(5.18) L=L =N =1(mod?2), N =0(mod2).
It is convenient to note here that
(5.19) I} =3 —¢Tk (mod 16), if 1 is odd,
and
(5.20) L'? = —1—3¢Tk (mod 16), if 1 is even,

follow from (5.8), (5.10), (5.12) and (5.14), (5.16), (5.18) respectively.

6. Proof of i = Tk (mod 8). We consider the two cases.
Case (i): I odd. From (4.12), (5.4)" and (5.12), we have

1=M = by = —+2e+Tk) (mod 2),
80, as 2¢ = h (mod 8), we have
Tk = —2¢—4 = 2¢ = h (mod 8).
Case (ii): ! even. From (4.14), (5.5)" and (5.18), we have

0

f

N' = Ybiuss = $(2e—Tk) (mod 2),
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§0
Tk = 2¢ = h (mod 8).

We close this section by noting that the congruence h = Tk (mod 8)
enables us to obtain from (4.11), (4.12), (4.13), (4.14):

(6.1) N1 =11 (mod 4),
(6.2) Dby =1 (mod 2),
(6.3) g,y =141 (mod 4),
(6.4) D'byuss = 0 (mod 2).

7. Proof of = Tk (mod 16). Case (i):! odd. Differentiating (3.3)
with respect to z and setting 2 = w we obtain

(7.1) Y (0) = 2P +2Qo +8Ri+48wi,
(7.2) Z'(0) = 2P"+2Q v +8R"i + 48 wi,

where P, Q, ..., 8" are integers given by the following formulae:

(7.3) P = (61+3)2a4m+1(—1)"‘,

(7.4) Q = D) ((61+3 —2m) ayy + (2m+1) @40 (—1),
(7.5) R = Z(m—%l)a4m+3(—1)’",

(7.6) 8 = D (— My — (8L —m+1) typn ) (—1)™,

and P',Q', R', 8" are given by the corresponding formulae (eqns. (7.7)-
(7.10)) where each a, above is replaced by b,. We note that (6.3) and (6.4)
guarantee that R and R’ are integers.

From (5.4) and (5.4)", we see that
(7.11) P = (61+3)M, P = (6143)M,
and, from (5.3) and (5.3)', that
(7.12) Q =28+(61+3)L, Q" =28 +(61+3)L .

These two equations show that, of the quantities P,Q, R, S, P’, Q’,
R’ and 8', we need only consider R, R', 8 and 8. It will suffice to deter-
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mine them modulo 2. From (7.9), as (2m+1)(—1)™ = 1 (mod 4) and as
3l+1 is even, we have

2 = ' (@m+1)(—1)"bimss —(31+1) Y by s (—1)™

2¢ —Tk
= Zb4m+3 _(3l+1)2b4m+3 = 12 bimis =1 (2+ LT)“) (mod 4),

by (4.14), that is:

(7.13) R’ = 1+4+3(2¢ —Tk) (mod 2).
Similarly we obtain

(7.14) R = {(1+1) (mod 2),

(7.15) S

(7.16) 8 =3I —1)+(

We will now show that
(7.17) 8 = 8§ (mod 2).
From (5.11) and (5.12) we have
L+L' —1 = LL' = ¢ (mod 4).
Hence, from (7.15), (7.16) and the result Tk = 2¢ (mod 8), we have

(2 + Tk)

S+8 =}L+L)+ Z

= §(1+¢&)+%(2+2¢) = 0 (mod 2).
Next we replace Y (w), Y' (o), Z(w), Z’' () in (3.7) by the formulae given
in (5.7), (7.1), (7.2) obtaining (in view of (5.8) and (5.9)):

(7.18) LR +2MS —p(2L'R' +2M'S') = 31—9,

(719) 8MR--ALS —p(8M'R' +4L'S')

= —(61+3) (L2 —pL'®) —48 —361.

We have used (7.11) and (7.12) to eliminate P, P',Q,Q’.
The next step is to use (5.9) and (5.11) to obtain L' and M in terms
of L and M’ modulo 8. We get:

(7.20) L' = 3eL+2M' (mod 8),
(7.21) M = —3L—eM' (mod 8).
Using (7.13), (7.14), (7.15), (7.17) and (5.12) in (7.18), we obtain
(7.22) 4L = 44 Tk —2¢ (mod 16).
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Next using (5.19) and (7.20) we obtain

(7.23) L' —pL* = 8+4eLM' = 4¢L+4sM’' +8 —4¢ (mod 16).

Writing (7.19) modulo 16 we obtain by using (5.12), (7.13) and (7.23)
(7.24) 4(L8 —L'S") = 4L +4M' -+ 6c —41 — Tk (mod 16).

| As 4(L+L')(8—48) =0(mod16) by (5.12) and (7.17), (7.24) gives

(7.25) 4(L'S—LS') = —4L—4M' —6ec+ 41+ Tk (mod 16).

We need also the following which follow easily using (5.12), (7.13),
(7.14), (7.15) and (7.17):

(7.26) 8(LR' —L'R) = 41 —4+2¢ —Tk (mod 16),
(7.27) 8(M'R—MR') = 41+4 (mod 16),
(7.28) 8(MS' —M'S) = 4L -+4 (mod 16),

and using (7.20) and (7.21) we have
(7.29) L'M—-LM' = —2L—2M'—3¢+2(mod8).

Using the expressions for Y (o), Z(w), Y'(»), Z'(») given in (5.7), (7.1)
and (7.2), we obtain

Y (0)Z(0) —Y(0)Z' (0) = a —aw?+bo?,
where
a = 8(LE' —L'R)+8(M8' —M'S) +2(61+3)(L' M — L"),
(7.30)

b =8(L'S—L8')+16(M'R—MR').
Then using (3.16), (3.17) and (3.18) we obtain:
(7.31)  3h =10(61+3)(L'M —LM')+40(MS —M'S)+
+40(LR' —L'R) +28(L'S —L8')+ 56 (M'R —MR'),

(7.32) 3h'=56(LR'—L'R)+56(MS8 —M'S)+14(61+3)(L'M —LM') +
+40(L'S —LS')+80(M'R —MR').

Using (7.22), (7.25), (7.26), (7.27), (7.28) and (7.29) in (7.31), we obtain
3h = 8 —Tk (mod 16)

which for I odd, is equivalent to our main result (see (1.11))

h = Tk (mod 16).
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Using now (1.11), (7.22), (7.25), (7.26), (7.27), (7.28) and (7.29) in (7.32),
we have:

(7.33) ' = h+4M' (mod 16).

We will use (7.33) in Sections 9 to 12. We note that it is consistent
with (3.13), as M’ is odd.

8. Proof of i = Tk (mod 16). Case (ii): ! even. Differentiating (3.3)
with respeet to z and setting 2 = o we obtain

(8.1) Y (w) = 4P +2Qo +2Rw?+ 4803,
(8.2) Z'(0) = 4P +-2Q' 0+ 2R o +48'0®,

where P, Q, ..., 8" are integers given by the following formulae:

(8.3) P = D'(@m—38l—1)a4.(—1)",

(8.4) Q = Y ((2m—3—6l)ay, +(2m+1)ay, ) (—1)",
(8.5) B = (61+3) ) typs( 1),

(8.6) 8 = (= Mg+ (BU+1 —m) gy o) (—1)",

and P’,Q’, R’, 8’ are given by the corresponding formulae (equs. (3.7)-
(8.10)) obtained from the above by replacing each a, by b, . From (5.5) we
see that

(8.11) R = (61+-3)N, R = (61+3)N’,
and
(8.12) Q = —28—(61+3)L, Q = —28 —(61+3)L .

These show that, of the quantities P, Q, R, S, P',Q", R and 8, we need
only consider P, P’, § and 8. It suffices to determine P and P’ modulo
4 and 8 and 8" modulo 2.

From (8.7), as (2m —1)( —1)™ = —1 (mod 4) and [ is even, we have,
using (4.12)

PR Z(2m Ly —1)"‘bm+1—312b‘,m+1(_1)"'
= — Yy =3l D by, (mod 4)
—(1+30) meH (mod 4)

2¢+ Tk
Ledes —)(mod 4),
4

l

[

a-0
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that is
_ 2e+ Tk

8.1 b
(8.13) n

—1 (mod 4).

Similarly, using (6.1) for P; using (4.7), (8.4) and (8.12) for §; and
. using (1.12), (4.8), (8.8) and (8.12) for 8’; we obtain

(8.14) P =1 (mod4),
(8.15) S = }(L—1) (mod 2),
’ ’ (h _2)
(8.16) S =L +1)+ vy (mod 2).

We now use (5.17) to show that
(8.17) 8 = 8 (mod 2).
From (5.17) and (5.18) we have
L+L —1 = LL = —&(mod 4).
Hence from (8.15) and (8.16)

S+ 8 = (=l | + =2 — (1_8)+(s_1) = 0 (mod 2).

2 4 2

Next we put the expressions for Y (w), Z(w), Y'(w), Z'(w) given in (5.13),
(8.1) and (8.2) into (3.7) obtaining (in view of (5.14) and (5.15))

(8.18) LP+2N8 —p(L'P'+2N'S’) = 24+271,
(8.19) 2NP+2LS —p(2N'P’+2L'8’') = (61+3)(N? —pN'?) —45 —60l.

(We have used (8.11) and (8.12) to eliminate @, @', R, R'.)
The next step is to use (5.15) and (5.17) to obtain L’ and N in terms
of L and N’ modulo 8. We get:

(8.20) L' = —eL+2N' (mod 8),

(8.21) N = 3L+ 3eN’ (mod 8).

Using (1.12), (5.18), (8.13), (8.14), (8.15), and (8.20) in (8.18) taken modulo
4, we obtain

(8.22) 4L = —6c¢—Tk-+4 (mod 16).

Next from (5.18) we have:

(8.23) N?—pN? =1—5N"? =1+2N’ (mod 8),
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so that (8.19) gives:

(8.24) LS —L'S8" = L+N'+1—1 (mod 4),
which, combined with (L+L')(8—8’) = 0 (mod 4), gives
(8.25) L'S—L8" = —L+N'—1-+1 (mod 4).

We note also the following:
4(L'P—LP’') = 41 —6eL — LTk (mod 16),
(8.26) 4(N'P—NP') = 41 —6eL —3LTk (mod 16),
4(L'P—LP')—4(N'P—NP') = 4L+ 4¢—4 (mod 16),
(8.27) 8(N'S—NS’) = 4L —4 (mod 16),
(8.28) LN'—L'N = 3¢—2N"' (mod 8).

Using the expressions for Y (o), Z(w), Y'(w), Z’'(w) given in (5.13),
(8.1), (8.2) we obtain (eliminating @, @', R, R’ with the help of (8.11),
(8.12))

Y (0)Z(w) - Y(0)Z'(0) = a —aw?+bw?,

where
a = 4(L'P—LP)—2(61+3)(L'N—LN')+8(N'S—NJ'),

(8.29) , | ) ,
b = 8(N'P—NP')+8(L'S—LS').

Then, using (3.16), (3.17) and (3.18) we obtain:
(8.30) 3h = 20(L'P—LP')+28(N'P—NP’)+28(L'S —L8') +
+40(N'8S —N8')+30(21+1)(LN' — L'N),
and
(8.31) 3k’ = 28(I'P—LP')+56(N'S —NS')—14(61+3)(L'N —LN")+
+40(N'P — NP')+40(L'S —LS").
Using (8.22), (8.25), (8.26), (8.27) and (8.28) in (8.30), we obtain
3h = Tk+ 4e (mod 16),
which, for I even, is equivalent to our main result (see (1.11))
h = Tk (mod 16).

Now, using (1.11) in (8.31) together with (8.22), (8.25), (8.26), (8.27) and
(8.28), we obtain

(8.32) AN' = W —h+¢h—2 (mod 16).
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We note that (8.32) is consistent with (3.13), as ¢h = 2 (mod 8) and
as N is even. Use will be made of (8.32) in Sections 9 to 12.

1. Q(V2p) and Q(V —2p)

9. Introduction to the second part. In this part (Sections 9, 10, 11, 12)
. we consider the ideal class numbers b’ = h(—2p) and k' = h(2p) of the

quadratic fields O (V —2p) and Q(l/2?) respectively. It is well known that
B =T =2 (mod4) and we have already mentioned that b’ = h-+41l
(mod 8) (see (3.13)).

The fundamental unit of Q(V 517 ) is:
(9.1) &y = V+WV2p,
where V, W are the smallest positive rational integers such that
(9.2) V:—_2pW? = —1.
The positive integers V, W are both odd and:
(9.3) V = +3(mod8); W =1 (mod4).

The aim of the second part is to prove the following
THEOREM 2. Let p — 8145 be a prime. Then

(9.4) B = 2(W —1)+3k'V +8l (mod 16).
Modulo 8 this result reduces to:
(9.5) B o=k +2V+2 (mod 8),

which has already be proved by one of us [10]. We reprove (9.5) and use it
in the proof of (9.4).
To prove (9.4) we will evaluate [1(w—¢’) as:

(9.6) ” (0— o) = ( _1)ln;k16 8;;;4_1-(7»—11')/460(1_{_‘/2“)112.

The proof of (9.6) is similar to the proof given in [6], Lemma, to
evaluate F_(w) when p = 1 (mod 8), and will be given in the next section.
We will need the sixth power of (9.6) which will be written as:

90.7)  3[X(0)+Z(@WDF = (—1)+ 2in; "8 (T+5V2) = (—1)'sf
where we define the rational integer g by

(9.8) 3k'[2 = 2g+1.
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We note that &’ = 2 or 6 (mod 8) according as g = 1 or 0 (mod 2) so that:
g = (—1)FM = (1Y = —1+2¢° (mod 8);

2¢" = k' (mod 8).
Rational integers T,, U,, V,, W, are defined by:

(9.9)

(9.10) T+ UVp = —np*% Vit Wi2p = &gt
Then we have:
A = 2(Ty+ UVp)Vi+ W, (0 —o®Wp)[5(0+ 0?) + To],
that is
(911) o = (10T, V,+14pU,W,)(w + w®) + (14T, V,+20p U, W,)i +
(10U, V, 14T, W,) (0 + 0®Vp + (14U, V, + 20T, W,)iVp.
Applying the binomial theorem in (9.10) written in the form:
(912) Ty +TUW/p = (T—UVp); Vit WaV2p = (V+WV2pyo,

we find the following congruences:

(9.13) T, = h (mod 16); U, = —(4+1) (mod 16),
(9.14) V, =V (1—2¢% (mod 8); W; =1 (mod 4),
(9.15) W, = W(1+29-+2¢%) = W+2¢(g-+1) (mod 8).

Using (9.13), (9.14), (9.15) we obtain congruences modulo 16 or 8 for
the coefficients of i, o+ w?, iVp, (0 +o®)Vp in 1:

(9.16)  TT,V,+10pU, W, = Th V(1 —2¢2) —2W (1 +2g + 2¢%) +
+ 81 (mod 16) = 3h V(1 —2¢%) —2 (mod 8),
(9.17)  5T,V,+TpU,W, = 5LV (1L —2¢%) +5W (1 +2¢g +2¢2) +
+ 41 (mod 8),
(9.18) TU,V,+10T,W, = V(1 —2¢?) +2h+ 41 (mod 8),
(9.19) 53U, V,+7T, W, = 3V (1—2¢%) —h-+4l (mod 8).
10. Calculation of [] (w—¢’). In this section we make use of the

following class number formulae of Dirichlet, namely:

2 —~ 1/ —4
(10.1) hzh(—p)———;l/pZ;( p),

n

n=1
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3‘@ 1 (p
(10.2) 3h(p)loge, = klogn, = — Z%(%),
2 — \al({—8p
' h(—2p) =—V2 =
(10.3) B = h(—2p) Ttl/p;%( - ),
— \1/8p\ 1
' —y/2 ' 4 =
(10.4) k'logé,, —V2p Z_;( ! ) -
One finds easily:
(10.5) [] (=2 = (=1 [[ @ +a®d).
We set:
. ad (_1)n—1 wan Q"j
10.6 T: =
(10.6) ; ; = :
so that exp(x;) = 1+ oe’ and:
(10.7) (—1)"'iF c-xp(z )

We caleulate D a;:

ﬁ 1n—1 3n nJ 0 1n—lw3n )
S’xf=zz/" el
— - n AJ N

1
B
n

n=1 n=1 25

) o™ (n 1 * 1)11, 3np
o e P T v

4
I
H
3
‘é’
N”*m
nMg

that is
1+w3 Vo O
(10.8) Z o = ——log —2—2 T,
] u=0
where

T, =

> (—1)* (470——10

=1,2,3,4
4 0w » ) (u 12,3,4),

and where we have used the formula valid for all n:

S35
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Using (10.1)—(10.4) one finds easily, as in [6], Proof of Lemma:

k Er T wh
=i = >N 2 = =3
’ 3Vp ol na
—xh’  k'loges,, —7th’ k'loge,,
T == =} 3 = — — —
4V2p 2v2p 4/2p 2y2p
Using these values in (10.8), we obtain:
klogyw, = k'loge,, =i 1 1+
o ' 2 4 5 (h—h)— = log ——_
Zx’ 6 4 TgWTM—gles—5

which is (9.6).

11. Case 1: I odd. Using the values of Y (w) and Z(w) as given in
(5.7) one finds:

(111)  3[Y(0)+Z(e)VpT
= —of = (L*+pL?+2M>+2p M?)i +2(LM + pL' M') (0 + w?®) -
LW P[(LL +2MM' )i+ (L'M +LM')(0+ ?)].
Comparing (11.1) and (9.11) we get:

(11.2) L pL?+2M>+-2pM™? = —14T,V,—20pU,W,,
(11.3) LM+pL'M' = —5T,V,—7pU,W,,

(11.4) LL'+2MM’ = —1U,V,—10T,W,,
(11.5) LM +L'M = —5U,V,—7T,W,.

Using (5.10), (5.12), (7.20), (7.21) we evaluate the left-hand sides as
follows:

(11.6) L*4+pL”+2M*+2pM'"? = —2:Tk-+ 4 M*+ 4pM'* (mod 32)
= —h?*+4 = 0 (mod 16),

(11.7) LM+pL’M' = —1—2eLM’ (mod 8),
(11.8) LL'+-2MM' = ¢+ 4 (mod 8),
(11.9) LM'4+L'M = —3¢e (mod 8).

From (11.6), (11.2), (9.16) we obtain

(11.10) RV (1—2¢%) = 6 (mod 8).
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’

Introducing k' by equations (9.9), (11.10) becomes g—I;—VE 1 (mod 4)
that is:
(11.11) h =E'V (mod 8).

Remembering that k" = h-+4 (mod 8), and linearizing we obtain:
(11.12) h =k +2V+2(mod 8).

Now we use (5.12) and (5.19) to solve (5.9) and (5.11) modulo 16,
obtaining L’ and M as linear functions of L and M':
(11.13) L' = (bh+¢)L+10M’'+ 8481’ (mod 16),
' = —(eh+1)L+ (9h —3&) M’ + 8+ 81’ (mod 16),

where the integer I’ is defined by

(11.14) 1 =20U'"+1,
so that
(11.15) 414+1 = 8I'+5.

Thus, using (7.22) and (7.33), we find
(11.16) LL' +2MM’' = —2h+3e+h'--80' (mod 16),
(11.17) L'M+LM' = 3h-+Te+8+ 8l (uod 16).

Now, using (9.13), (9.14), (9.15) and (11.15), we make more precise
(9.18) and (9.19) as:

(11.18) U, V,+10T, W, = —3V,+2h+8l' (mod 16),

(11.19) 5U,V,+7T,W, = TV +2hg(g+1)+ 81" —hW (mod 16).
Comparing (11.16) with (11.18) and (11.17) with (11.19) we get:

(11.20) e = V,—3h' (mod 16),

(11.21) e= —V,+3h+8—hW-+2gh(g+1) (mod 16).

The comparison of (11.20) and (11.21) gives, remembering that
h+h' = 0 (mod 8),

(11.22) h+h" =2V +hrW+2gh+8 (mod 16).
Noting that »W = (h—2)(W —1)+2(W —1)+h, we find

(11.23) B =2V +2(W —1)+2gh+8 (mod 16).
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Now, we note that A’ = —h (mod 8),2¢ = L(3k’—2) so that finally:
(11.24) W = 3k'V+2(W—1)+8 (mod 16),
completing the proof of Theorem 2 when 1 is odd.

12. Case 2: [ even. Using the values of Y (») and Z (o) given in (5.13),
we find

(12.1)  3[Y(0)+Z(e)Vp]
= —(L*+pL"*4+-2N*4pN'?)i+2(LN +-pL'N') (0w + w3) +
+2Vp[ —(LL' +2NN")i+ (LN’ + L' N) (0 + o?)].

Comparing the coefficients of 7, w + w?, zl/]—z and (o-+ w")}/g—) in (9.11)
and (12.1) we obtain:

(12.2) L*+pL?+2N*4+2pN"”? = —14T,V,—20pU,W,,
(12.3) LN +pL'N' =53T,V,+7pU,W,,
(12.4) LL'+2NN' = —7U0,V,—-10T, W,
(12.5) LN'-L'N =5U,V,+7T,W,.
Using (5.15), (5.16), (5.17), (5.18), (8.20), (8.21) one finds:
(12.6) L*4+pL'* 1+ 2N* 1+ 2pN'? = 2eTk+4N*+4N"? (mod 32)
= 2¢h+4 (mod 16),
(12.7) LN +pL'N" = 342N’ (mod 8),
(12.8) LL'+2NN' = —¢&(mod 8),
(12.9) L'N+LN'" = —3¢(mod 8).
We first use (12.2), (12.6) and (9.16) to get:
(12.10) RV (1 —2¢% = 2 (mod 8).
As in the case 1 odd, this can be written, using (9.9):
(12.11) h =h = —Fk'V (mod 8),
or equivalently:
(12.12) h =k +2V+2 (mod 8).

Now we use (12.3), (12.7), (12.10) and (9.17) to get
3+2N' =2—-3W+2¢9(g9-+1) (mod 8).
Using (8.32) for 4N’, we have:
h' = h—eh—6W-+4¢(g+1) (mod 16).
Now we use (12.8), (12.4) and (9.18) to obtain
e = V(1—2¢%) +4 (mod 8).
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Ellminating ¢ we find, as 2’ = h (mod 8):
(12.13) B V(1 —2¢2) = 2W +4g(g-+1) (mod 16).
Noting that 1 —2¢* = +1 (mod 8),

(12.14) MV =2W(1—2¢% +4g(9-+1) = 2W +4g (mod 16),
“that is:

we find:

(12.15) MV = 2(W—1)+3k" (mod 16).
Multiplying by V we get the result of Theorem 2 for I even:
(12.16) W =3k'V4+2(W-—1) (mod 16).
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