On the class numbers of $Q(\sqrt{\pm 2p})$ modulo 16, for $p \equiv 1 \pmod{8}$ a prime

by

PIERRE KAPLAN (Nancy, France) and KENNETH S. WILLIAMS* (Ottawa, Canada)

1. Introduction. This paper is a sequel to the paper [4] of the second author and should be read in conjunction with it. For the prime p=8l+1, we consider the ideal class number h(-2p) of $Q(\sqrt{-2p})$ and the ideal class number h(2p) in the narrow sense of $Q(\sqrt{2p})$. It is well known that $h(-2p) \equiv h(2p) \equiv 0 \pmod{4}$. Let $\eta_{2p} = R + 8\sqrt{2p} > 1$ be the fundamental unit of norm +1 of the real quadratic field $Q(\sqrt{2p})$, so that

$$(1.1) R^2 - 2pS^2 = 1.$$

Clearly R is odd and S is even. Our aim is to prove the following theorem.

THEOREM.

(1.2)
$$h(-2p) + \frac{S}{2} \cdot h(2p) + p - 1 \equiv 0 \pmod{16}.$$

This theorem establishes a conjecture of the first author given in [3], p. 285.

It is known (see for example [1], p. 600) that exactly one of the three equations $x^2-2py^2=-1, -2, +2$ is solvable in integers x and y. We set $E_p=-1, -2, +2$ accordingly, so that

$$V^2 - 2pW^2 = E_p$$

has rational integral solutions V, W. The following congruences involving h(2p), h(-2p) and h(-p) modulo 8 are known (see for example [1]):

$$(1.3) h(-2p) \equiv h(-p) + 4l \pmod{8},$$

(1.4)
$$h(2p) \equiv 0 \pmod{8} \Leftrightarrow h(-p) \equiv 0 \pmod{8}$$
 and $p \equiv 1 \pmod{16}$,

^{*} Research supported by grant no. A-7233 of the Natural Sciences and Engineering Research Council Canada.

(1.5)
$$h(-p) \equiv 0 \pmod{8}, \ p \equiv 9 \pmod{16} \Rightarrow E_p = -1,$$

$$(1.6) h(-p) \equiv 4 \pmod{8}, \ p \equiv 1 \pmod{16} \Rightarrow \mathbf{E}_p = +2,$$

(1.7)
$$h(-p) \equiv 4 \pmod{8}, \ p \equiv 9 \pmod{16} \Rightarrow E_p = -2.$$

In fact (1.5), (1.6), (1.7) are parts of Lemma 5 in [4], and (1.3) follows from (7.5) in [4], as $h(-p)+h(-2p)=4S_0$, and $S_0\equiv l\pmod{2}$. We will reprove (1.4), and then make use of it to prove the theorem.

Next we consider (1.1), written in the form

$$(R+1)(R-1) = 2pS^2.$$

As GCD (R+1, R-1) = 2, there exist positive integers V and W such that one of the following four alternatives holds:

$$\left\{egin{array}{lll} R+1=2p\,W^2, & \{R+1=V^2,\ R-1=V^2; & \{R+1=p\,(2\,W)^2,\ R-1=2\,W^2; & \{R-1=2\,V^2;\ R-1=p\,(2\,V)^2, \end{array}
ight.$$

where W is odd. The last alternative is impossible, as then $W^2 - 2pV^2 = 1$ with W < R and V < S. The three first possibilities give respectively:

(1.9)
$$-2 = V^2 - 2pW^2$$
, $R = 1 + V^2$, $S = VW$, $V \equiv S \equiv 0 \pmod{4}$,

$$(1.10) \quad 2 = V^2 - 2pW^2, \ R = V^2 - 1, \ S = VW, \ V \equiv S \equiv 2 \pmod{4},$$

(1.11)
$$-1 = V^2 - 2pW^2$$
, $R = 1 + 2V^2$, $S = 2VW$, $W \equiv 1 \pmod{4}$, $S \equiv 2 \pmod{4}$.

We note that (V, W) is the smallest positive solution of $V^2 - 2pW^2 = E_p$ and that

$$(1.12) S \equiv 0 \pmod{4} \Leftrightarrow E_p = -2.$$

2. Evaluation of $F_{-}(\omega)$. In this section we make use of the following class number formulae of Dirichlet (see for example [2], p. 196):

(2.1)
$$h(-p) = \frac{2}{\pi} \sqrt{p} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{-4p}{n} \right),$$

(2.2)
$$h(-2p) = \frac{2}{\pi} \sqrt{2p} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{-8p}{n} \right),$$

(2.3)
$$h(2p)\log n_{2p} = 2\sqrt{2p}\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{8p}{n}\right).$$

One finds easily from the definition of $F_{-}(z)$ given in [4], (1.9), that

$$F_{-}(\omega) = (-1)^{(p-1)/8} \prod_{j=1}^{p-1} (1+\omega^3 \varrho^j),$$

where $\omega = (1+i)/\sqrt{2} = \exp(2\pi i/8)$, $\varrho = \exp(2\pi i/p)$, and the minus (-) indicates that j is restricted to those j satisfying (j/p) = -1. Hence we have

$$(2.4) \qquad (-1)^{(p-1)/3}F_{-}(\omega) = e^{S_1},$$

where

$$(2.5) S_1 = \sum_{j=1}^{p-1} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \omega^{3n} \varrho^{nj}}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \omega^{3n}}{n} \sum_{j=1}^{p-1} \varrho^{nj}.$$

Using the familiar Gauss sum (expressed so that the case $n \equiv 0 \pmod{p}$ is included)

$$\sum_{j=1}^{p-1} e^{nj} = \frac{1}{2} \left(1 - \left(\frac{n}{p} \right)^2 \right) p - \frac{1}{2} \left(\frac{n}{p} \right) p^{1/2} - \frac{1}{2} ,$$

we obtain

(2.6)
$$S_1 = \frac{1}{2} p^{1/2} \sum_{n=1}^{\infty} \frac{(-1)^n \omega^{3n}}{n} \left(\frac{n}{p} \right).$$

Collecting terms on the right-hand side of (2.6) having the same residue modulo 4, we obtain

$$2p^{-1/2}S_1 = T_0 + T_1\omega + T_2\omega^2 + T_3\omega^3,$$
 where

(2.8)
$$T_{j} = \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4k - j} \binom{4k - j}{p} \quad (j = 0, 1, 2, 3).$$

Now

$$egin{align} 4T_0 + \sum_{k=1}^\infty rac{1}{k} inom{k}{p} &= \sum_{k=1}^\infty rac{(-1)^k}{k} inom{k}{p} + \sum_{k=1}^\infty rac{1}{k} inom{k}{p} \ &= \sum_{k=1}^\infty rac{(1+(-1)^k)}{k} inom{k}{p} &= \sum_{k=1}^\infty rac{2}{2k} inom{2k}{p} &= \sum_{k=1}^\infty rac{1}{k} inom{k}{p} \ &= \sum_{k=1}^\infty rac{1}{k} \inom{k}{p} \ &= \sum_{k=1}^\infty rac{1}{k} \inom{k}{p} \ &= \sum_{k=1}^\infty rac{1}{k} \inom{k}{p} \ &= \sum_{k=1}^\infty rack{1}{k} \inom{k}{p} \ &= \sum_{k=1}^\infty \frac{1}{k} \inom{k} \inom{k}{p} \$$

80

$$(2.9) (2.9) T_0 = 0,$$

and

$$T_2 = rac{1}{2} \sum_{k=1}^{\infty} rac{(-1)^k}{2k-1} igg(rac{2k-1}{p}igg) = \ -rac{1}{2} \sum_{n=1}^{\infty} rac{1}{n} igg(rac{-4p}{p}igg),$$

80

$$T_2 = \frac{-\pi h(-p)}{4\sqrt{p}},$$

by (2.1). In a similar manner, using (2.2) and (2.3), we find that

(2.11)
$$T_1 = \frac{-\pi h(-2p)}{4\sqrt{2p}} + \frac{h(2p)\log n_{2p}}{4\sqrt{2p}},$$

$$T_3 = \frac{-\pi h(-2p)}{4\sqrt{2p}} - \frac{h(2p)\log n_{2p}}{4\sqrt{2p}}.$$

Putting (2.9), (2.10), (2.11), (2.12) into (2.7), we obtain (as $\omega^2 = i$, $\omega + \omega^3 = i\sqrt{2}$, $\omega - \omega^3 = \sqrt{2}$)

$$(2.13) F_{-}(\omega) = \eta_{2n}^{h(2p)/8} i^{-(h(-p)+h(-2p))/4} (-1)^{(p-1)/8},$$

$$(2.14) F_{-}^{2}(\omega) = \eta_{2p}^{h(2p)/4}(-1)^{(h(-p)+h(-2p))/4}.$$

Making use of (1.3) we obtain

$$(2.15) F_{-}^{2}(\omega) = (-1)^{(p-1)/8} \eta_{2n}^{h(2p)/4}.$$

3. Proof of the theorem. We consider four cases according to the values of h(-p) modulo 8 and p modulo 16. As in each case p is fixed modulo 16, we need not mention the subscripts 1 and 9 used in [4], and we omit them.

From (7.9) of [4] we deduce, proceeding as for (7.13),

$$(3.1)$$
 $4h(-2p)$

$$= (1-\omega^2) \left[Y(\omega)Z'(\omega) - Y'(\omega)Z(\omega) + Y(-\omega)Z'(-\omega) - Y'(-\omega)Z(-\omega) \right].$$

Case (i). $p \equiv 1 \pmod{16}$, $h(-p) \equiv 0 \pmod{8}$. (Here $h(-2p) \equiv 0 \pmod{8}$ by (1.3).) From § 6 of [4] we have

(3.2)
$$\begin{cases} Y(\omega) = 2A, & Y'(\omega) = 2E + 4F\omega + 2E\omega^2 - 4lA\omega^3, \\ Z(\omega) = 2D\sqrt{2}, & Z'(\omega) = 2L + 4M\omega + 2(L - 4lD)\omega^2, \end{cases}$$

and

(3.3)
$$A^2-2pD^2=1, D+L\equiv 0 \pmod{4}.$$

From (2.5) of [4], (3.2) and (3.3) we deduce

$$(3.4) F_{-}(\omega) = \frac{1}{2} [Y(\omega) + Z(\omega)\sqrt{p}] = A + D\sqrt{2p},$$

$$(3.5) A \equiv 1 \pmod{2}, D \equiv L \equiv 0 \pmod{2}.$$

Using (3.2) in (3.1), and then applying (3.3) and (3.5), we find

(3.6)
$$h(-2p) = 4AL - 8DF - 8lAD \equiv 4AL \equiv 4AD \pmod{16}$$
.

By (3.4) and (2.13) we have

(3.7)
$$F_{-}(\omega) = A + D\sqrt{2p} = (-1)^{(h(-p)+h(-2p)+p-1)/8} \eta_{2p}^{h(2p)/8}.$$

Now (3.3) shows that $A + D\sqrt{2p}$ is a unit of norm +1 of $Q(\sqrt{2p})$; but η_{2p} is the fundamental unit of norm +1 of $Q(\sqrt{2p})$, so that h(2p)/8 must be an integer, proving that $h(2p) \equiv 0 \pmod{8}$, which is (1.4) in this case. Now by (3.4) and (2.15) we have

(3.8)
$$(A + D\sqrt{2p})^2 = (R + S\sqrt{2p})^{h(2p)/4}.$$

As (3.6) suggests, we consider the coefficients of $\sqrt{2p}$ modulo 8 in (3.8). We obtain

(3.9)
$$2AD = \frac{h(2p)}{4}R^{h(2p)/4-1}S \equiv \frac{h(2p)}{4}S \pmod{8},$$

where we have used $h(2p)/4 \equiv S \equiv R-1 \equiv 0 \pmod{2}$. Then, from (3.6), we obtain

(3.10)
$$h(-2p) \equiv h(2p)\frac{S}{2} \pmod{16}$$
.

This completes the proof of the theorem in this case.

As $S \equiv 0 \pmod{4}$ if and only if $E_p = -2$ by (1.12), (3.10) can be expressed in the following equivalent ways:

(3.11)
$$h(-2p) \equiv 0 \pmod{16} \Leftrightarrow h(2p) \equiv 0 \pmod{16}$$
 or $E_p = -2$;

(3.12)
$$\begin{cases} \text{if } E_p = -2, & h(-2p) \equiv 0 \text{ (mod 16)}, \\ \text{if } E_p = -1, 2, & h(-2p) \equiv h(2p) \text{ (mod 16)}. \end{cases}$$

Case (ii). $p \equiv 1 \pmod{16}$, $h(-p) \equiv 4 \pmod{8}$. (Here $h(-2p) \equiv 4 \pmod{8}$ by (1.3).) From § 6 of [4] we have

$$\begin{array}{ll} (3.13) & \begin{cases} Y(\omega) = 2B\sqrt{2}, & Y'(\omega) = 2E + 4F\omega + 2(E - 4lB)\omega^2, \\ Z(\omega) = 2C, & Z'(\omega) = 2L + 4M\omega + 2L\omega^2 - 4lC\omega^3, \end{cases}$$

5 - Acta Arithmetica XL.3

and

(3.14)
$$2B^2 - pC^2 = 1$$
, $B + E \equiv 0 \pmod{4}$, $M \equiv 1 \pmod{2}$.

From (3.14) we have $(2B)^2-2pC^2=2$, so that $E_p=2$, and also

$$(3.15) \quad B \equiv C \equiv 1 \pmod{2}.$$

From (3.13) we have the contract of the second seco

$$(3.16) F_{-}(\omega) = B\sqrt{2} + C\sqrt{p}.$$

Using (3.13) in (3.1), and then applying (3.14) and (3.15), we find

$$(3.17) h(-2p) = -4CE + 8BM + 8lBC \equiv 4BC + 8 \pmod{16}.$$

From (2.14) and (3.16) we have

$$(B\sqrt{2} + C\sqrt{p})^2 = (R + S\sqrt{2p})^{h(2p)/4}.$$

As S is even, we obtain by considering the coefficients of 1 and $\sqrt{2p}$

$$(3.18) 2B^2 + C^2 \equiv R^{h(2p)/4} \pmod{8},$$

(3.19)
$$2BC \equiv \frac{h(2p)}{4} R^{h(2p)/4-1} S \pmod{8}.$$

From (3.15) and (3.18) we deduce that $R^{h(2p)/4} \equiv 3 \pmod{4}$, so tha $h(2p) \equiv 4 \pmod{8}$, proving (1.4) in this case.

Then, in (3.19), we have $R^{h(2p)/4-1} \equiv 1 \pmod{8}$, and so by (3.17) we obtain

(3.20)
$$h(-2p) \equiv h(2p)\frac{S}{2} + 8 \pmod{16},$$

which completes the proof of the theorem in this case.

Case (iii). $p \equiv 9 \pmod{16}$, $h(-p) \equiv 0 \pmod{8}$. (Here $h(-2p) \equiv 4 \pmod{8}$ by (1.3).) From § 6 of [4], letting $p \equiv 16k+9$, we have

$$(3.21) \begin{cases} Y(\omega) = 2Ai, & Y'(\omega) = 2E(1-\omega^2) + 4(2k+1)A\omega + 4H\omega^3, \\ Z(\omega) = 2Di\sqrt{2}, & Z'(\omega) = 2L(1-\omega^2) + 8(2k+1)D\omega^2 + 4P\omega^3, \end{cases}$$

and

(3.22)
$$A^2-2pD^2=-1$$
, $D+L\equiv 0\ (\mathrm{mod}\ 4)$, $H\equiv 0\ (\mathrm{mod}\ 2)$.

From (3.22) we see that $E_p=-1$ and $A\equiv D\equiv 1\ (\mathrm{mod}\ 2)$. Then, as before, (3.1) gives

(3.23)
$$h(-2p) = 4AL + 8DH - (16k + 8)AD \equiv -4AD + 8$$

 $\equiv 4 AD \pmod{16}$.

By (2.15) we have

$$(3.24) (F_{-}(\omega))^{2} = -(A + D\sqrt{2p})^{2} = -(R + S\sqrt{2p})^{h(2p)/4},$$

which gives the two congruences

$$A^2+2pD^2\equiv R^{h(2p)/4}\ (\mathrm{mod}\ 8),$$

and and and to

$$2AD \equiv \frac{h(2p)}{4} R^{h(2p)/4-1} S \pmod{8}$$
.

As A and D are odd, $A^2 + 2pD^2 \equiv 3 \pmod{8}$, so that $h(2p) \equiv 4 \pmod{8}$, proving (1.4) in this case. Then we have, from (3.23),

(3.25)
$$h(-2p) \equiv h(2p) \frac{S}{2} \pmod{16},$$

which completes the proof of the theorem in this case.

Case (iv). $p \equiv 9 \pmod{16}$, $h(-p) \equiv 4 \pmod{8}$. (Here $h(-2p) \equiv 0$ (mod 8) by (1.3).) From § 6 of [4] we have

(3.26)
$$\begin{cases} Y(\omega) = 2Bi\sqrt{2}, & Y'(\omega) = 2E(1-\omega^2) + 8(2k+1)B\omega^2 + 4H\omega^3, \\ Z(\omega) = 2Ci, & Z'(\omega) = 2L(1-\omega^2) + 4(2k+1)C\omega + 4P\omega^3, \end{cases}$$

and

(3.27)
$$2B^2 - pC^2 = -1; \quad B + E \equiv 2 \pmod{4}.$$

From (3.27) we deduce that $E_p = -2$. Also we have

(3.28)
$$B \equiv C - 1 \equiv 0 \pmod{2}$$
.

Now, by (3.1), (3.26) and (3.27), we have

(3.29)
$$h(-2p) = -4CE - 8BP + (16k + 8)BC \equiv 4BC + 8 \pmod{16}$$
.

From (2.13) we obtain

(3.30)
$$B\sqrt{2} + C\sqrt{p} = (-1)^{(h(-p) + h(-2p) - 4)/8} (R + S\sqrt{2p})^{h(2p)/8}$$

which shows that $h(2p) \equiv 4 \pmod{8}$. This proves (1.4) in this case. Squaring (3.30) and equating coefficients of $\sqrt{2p}$, we obtain

$$2BC \equiv \frac{h(2p)}{4} R^{h(2p)/4-1} S \pmod{8}.$$

Then, as $S \equiv 0 \pmod{4}$ by (1.12), we obtain

$$h(-2p) \equiv h(2p)\frac{8}{2} + 8 \pmod{16},$$

which completes the proof of the theorem in this case.

The authors would like to thank Mr. Lee-Jeff Bell, who did some computing for them in connection with preparation of this paper.

References

- [1] Pierre Kaplan, Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), pp. 596-608.
- [2] Edmund Landau, Elementary number theory, Chelsea Publishing Company, New York 1958.
- [3] Bernard Oriat, Sur la divisibilité par 8 et 16 des nombres de classes d'idéaux des corps quadratiques $Q(\sqrt[4]{2p})$ at $Q(\sqrt[4]{-2p})$, J. Math. Soc. Japan 30 (1978), pp. 279-285.
- [4] Kenneth S. Williams, On the class number of $Q(\sqrt{-p})$ modulo 16, for $p \equiv 1 \pmod{8}$ a prime, Acta Arith. 39 (1981), pp. 381-398.

10 Allée Jacques Offenbach
54420 — Saulxures les Nancy
France

DEPARTMENT OF MATHEMATICS AND STATISTICS CARLETON UNIVERSITY Ottawa, Ontario, Canada KIS 5B6

> Received on 27.3.1979 and in revised form on 21.12.1979

 $A(-2\pi) = -4CE - 8EP + (16k + 8)BC = 4BC + 8 \pmod{16}$.

(1151)