ACTA ARITHMETICA
XL (1982)

On the class numbers of @(V +£2p) modulo 16,
for p=1(mod 8) a prime

by

PIERRE KAPLAN (Nancy, France) and KENNETH S. WILLIAMS * (Ottawa,
Canada)

1. Introduction. This paper is a sequel to the paper [4] of the second
author and should be read in conjunction with it. For the prime P = 8141,

we consider the ideal class number h(—2p) of Q(V_—Tp) and the ideal
class number A(2p) in the narrow sense of Q(@) It is well known that
h(—2p) = h(2p) = 0 (mod 4). Let 5, — R+8V/2p >1 be the funda-
mental unit of norm +1 of the real quadratic field Q(]/z_p), so that

(1.1) R2—2p82 =1.
Clearly R is odd and 8 is even. Our aim is to prove the following theorem.
THEOREM.
S
1.2) h(—2p)+ & *h(2p)+p —1 = 0 (mod 16).

" This theorem establishes a conjecture of the first author given in [3],
p. 285.

It is known (see for example [1], p. 600) that exactly one of the

three equations 2 —2py* = —1, —2, +2 is solvable in integers # and Y.
We set B, = —1, —2, +2 accordingly, so that
V2—-2pW?* = B,

has rational integral solutions ¥, W. The following congruences involving
h(2p), h(—2p) and h(—p) modulo 8 are known (see for example [1]):

(1.3) h(—2p) = h(—p)+ 41 (mod 8),
(1.4) h(2p) =0 (mod 8) < h(—p) =0 (mod 8) and p =1 (mod 16),
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(1.5) h(—p) =0 (mod 8), p =9 (mod 16) = E, = —1,
(1.6) h(—p) =4 (mod 8), p =1 (med 16) = B, = +2,
(1.7) h(—p) =4 (mod 8), p =9 (mod 16) => B, = —2.

In fact (1.5), (1.6), (1.7) are parts of Lemma 5 in [4], and (1.3) follows
from (7.5) in [4], as h(—p)+k(—2p) = 48,, and 8, =1 (mod 2). We
will reprove (1.4), and then make use of it to prove the theorem.

Next we consider (1.1), written in the form

(R+1)(R—1) = 2p8=.

As GCD (R+1, BR—1) = 2, there exist positive integers V and W
such that one of the following four alternatives holds:

(R+1 =2pW2, [E+1 = V7, (R+1 =p(2W):, [RB+1 =2W?,
IR=1 =72  |R—1 =2pW? |R—1 =2V7 lR—1 = p(2V)3,

where W is odd. The last alternative is impossible, as then W2 —2pV2 =1
with W< R and V < 8. The three first possibilities give respectively:

(1.9) —2=V2—2pW2, R=14V% 8§ =VW, V =8 =0 (mod 4),
(110) 2 =V2—2pW% R =V2-1, 8 =VW, V =8 =2 (mod 4),
(111) -1 =V2—-2pW?2 R =142V% 8 =2VW,

W =1 (mod 4), 8§ =2 (mod 4).

We note that (7, W) is the smallest positive solution of VZ—2pW?
= E, and that

(1.12) S =0(mod4) < K, = —2.

2. Evaluation of F'_ (). In this section we make use of the following
class number formulae of Dirichlet (sce for example [2], p. 196):

2 — 1 —4p
2.1 B(—p) ==vp M=
(2-1) v(—p) nlp%n( - ),
2 — vl (/-8
(2.2) h(—2p) = =V2p 2_( ,p),
w o n 1
— 11 /8
(2.3) k(2p)logn,, = 2 V2p Z‘ 3 (%)

n=1
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One finds easily from the definition of F_ (2) given in [4], (1.9), that

p—1

F_(0) = (1)@ [ T™ (140 l), .

§=1

where w = (1--14) /1/5 = exp(2=n%/8), ¢ = exp(2ni/p), and the minus (—)
indicates that J is restricted to those j satisfying (j/p) = —1. Hence we
have

(2.4) () P2 W Bt) s

where

p—l

e } — 1)1 g3n P=o )
i=1

n=1 n=1 j=1

Using the familiar Gauss sum (expressed so that the case n = 0 (mod p)

is included)
p—-1
- .1 n\* 1(n 1
Ly Y S e o
,.Zl ) 2(1 (p))p 2(10)10 2’

we obtain

__1 it 0 (—1)"(1)3" 71,
(2.6) 8 =5p Z—_n__p .

n=1

Collecting terms on the right-hand side of (2.6) having the same
residue modulo 4, we obtain

(2.7) IpIBY 5 Ty+Tio+T0®+T50?,
where
O (—1) (4 —j _
2.8 301 % o b — 2,3).
(2.8) T, ,ﬁ‘-‘k—f( =) =0,1,2,3)
Now
1
1k O (— 1) (T 1 /%
ar,+ N (%) = Y % _(_
o+ 236 = XS0 + D3
k=1 k=1 k=1
N L (R 2 2k o °°1(k
_Z k —_22701) —ka’
k=1 k=1 k=1
80

(2.9) T, =0,
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and

1 v (—1)* [2k—1 1yl —4
T2=_2<_> 1) _ 1wl

2 2k—-1\ »p 2 n\ p
k=1 n=1

80

-y ¥
(2.10) Tz:_"_(_p),

Wp
by (2.1). In a similar manner, using (2.2) and (2.3), we find that

—nh(—2p)  h(2p)logn,,

2.11 T i og

( ! ' 4v2p 4Y/2p

(2.12) 7. —Th(=2p) h(2p)logn,,
3 4/2p 4V2p

Putting (2.9), (2.10), (2.11), (2.12) into (2.7), we obtain (as ? — i,
o+ o =iV2, 0o—o® =V2)

(2.13) F_(0) = ,7;»;210)/8,,;—(h(—p)+h(—2p))/4(_1)(11—1)18’
(2.14) P (0) = ,72;21:)/4(_1)(h(—p)+h(—2p))/4.

Making use of (1.3) we obtain
(2.15) P2 (0) = (—1)@-Dis peys,

3. Proof of the theorem. We consider four cases according to the
values of h(—p) modulo 8 and p modulo 16. As in each case p is fixed
modulo 16, we need not mention the subscripts 1 and 9 used in [4], and
we omit them.

From (7.9) of [4] we deduce, proceeding as for (7.13),
(3.1) 4h(—2p)
=1 —-0)[Y(0)Z'(0) —Y'(0)Z(0) + Y (—0)Z'(—0) ~Y'(—0)Z(—w)].

Case (i). p =1 (mod16), h(—p) = 0 (mod 8). (Here h(—2p) =0
(mod 8) by (1.3).) From §6 of [4] we have

Y(0) =24, Y (0)=2E+4Fo+2E0*—4lA0?,

3.2 £
) Z(w) = 2DV2, Z'(0) = 2L+4Mw+2 (L —41D) 0?,

and
(3.3) A2—2pD? =1, D+L =0 (mod 4).
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From (2.5) of [4], (3.2) and (3.3) we deduce
(3.4) F_(0) = }[¥ (o) +Z(0)/p] = A+DV2p,
(3.5) A4 =1(mod2), D =1L =0(mod?2).
Using (3.2) in (3.1), and then applying (3.3) and (3.5), we find
(3.6) h(—2p) = 4AL —8DF —8IAD = 4AIL =44D (mod 186).
By (3.4) and (2.13) we have
(3.7) F_(o) = A+Dl/% A (_1)(h(—p)+h(—2p)+p—1)/87&211)/::.

Now (3.3) shows that 4 +DV2p is a unit of norm -1 of Q(V2p);

but ,, is the fundamental unit of norm -1 of Q(l/2—p), so that (2p)/8
must be an integer, proving that &(2p) = 0 (mod 8), which is (1.4) in
this case. Now by (3.4) and (2.15) we have

(3.8) . (4 +DV2p)* = (R +8V2p)reo)s,

As (3.6) suggests, we consider the coefficients of I/?E modulo 8 in
(3.8). We obtain

h(2
(3.9) 24D = %E)RMZP)/4-IS = —7%1’) 8§ (mod 8),

where we have used A(2p)/4 =8 =R—1 =0 (mod 2).
Then, from (3.6), we obtain

(3.10) h(—2p) = h(2p)§(mod 16).

This completes the proof of the theorem in this case.
As 8 =0 (mod 4) if and only if E, = —2 by (1.12), (3.10) can be
expressed in the following equivalent ways:

(311) h(—2p) = 0 (mod 16) < h(2p) =0 (mod 16) or B, — —2;

i, llf E, = -2, h(—2p) = 0 (mod 16),

it B, = —-1,2, h(—2p) = h(2p) (mod 16).
Case (ii). p =1 (mod 16), h(—p) =4 (mod 8). (Here h(—2p) =
4 (mod 8) by (1.3).) From § 6 of [4] we have

Y(w) =2BY2, Y'(w) = 2B+ 4Fw 42 (F — 41B) w?,

(3.13)
Z(w) =20, Z'(0) = 2L+4Mo +2Lo? — 410,

6 — Acta Arithmetica XL.3
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and . .
(3.14) 2B*—pC2 =1, B+E =0(mod4), M =1(mod?2).

From (3.14) we have (2B)2—2p(? = 2, so that E, = 2, and also

(3.15) B =0 =1 (mod2).
From (3.13) we have
(3.16) T_(0) = BV2+0Vp.

Using (3.13) in (3.1), and then applying (3.14) and (3.15), we find
(3.17) h(—2p) = —4CE+8BM +8IBC = 4BC +8 (mod 16).
From (2.14) and (3.16) we have
(BY2+0Vp)® = (R-+8V2p)renlt,

As 8 is even, we obtain by considering the coefficients of 1 and y/ 2_1;

(3.18) 2B2 02 = RM*P)V4(mod 8),
h(2
(3.19) 2B0 = (Tp)zic"(ﬂm—1 8 (mod 8).

From (3.15) and (3.18) we deduce that R =3 (mod 4), so tha
1(2p) = 4 (mod 8), proving (1.4) in this case.

Then, in (3.19), we have R*®P4=1 =1 (mod 8), and so by (3.17) we
obtain

(3.20) h(—2p) = h(2p)§ +8 (mod 16),

which completes the proof of the theorem in this case.
Oase(iii). p =9 (mod 16), h(—p) =0 (mod 8). (Here h(—2p) =

4 (mod 8) by (1.3).) From §6 of [4], letting p = 16k+9, we have
(3.21) Y (w) = 244, Y (0) =2EB(1—0?)+4(2k+1)Aw +4Ho?,
' Z(w) =2DiV2, Z'(0) = 2L(1—w?) +8(2k+1)Dw?+ 4P,

and
(3.22) A2—2pD* = —1, D+L =0(mod4), H =0 (mod?2).

From (3.22) we see that E, = —1 and A =D =1 (mod 2). Then,
as before, (3.1) gives

(8.23) h(—2p) = 4AL+8DH —(16k+8)AD = —4AD+38
=4 AD (mod 16).
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By (2.15) we have
(3.24) (F_(o)) = —(4+ D;/sg)z - _(R_*_S’/%)h(zp)/«s,

which gives the two congruences

A2+ 2pD? = RMPA (moq 8),
and

_ h(2p)

2AD = 7 RM"CPIE-18 (mod 8).

As A and Dareodd, A2+2pD? = 3 (mod 8), so that h(2p) = 4 (mod 8),
proving (1.4) in this case. Then we have, from (3.23),

(3.25) h(—2p) = h(2p)§ (mod 16),

which completes the proof of the theorem in this case.
Case (iv). p = 9(mod 16), h(—p) =4 (mod 8). (Here k(—2p) =0
(mod 8) by (1.3).) From §6 of [4] we have

Y(w) = 2BiV2, Y'(») =2B(1 —?) 4 8(2k+1) Bo?+ 4Ho?,

3.26
(5.26) Z(w) = 2Ci, Z'(0) = 2L(1—?) +4(2k +1) Cw -+ 4Pos?,

and

(3.27) 2B*—pC* = —1; B+E =2 (mod 4).
From (3.27) we deduce that B, = —2. Also we have
(3.28) B =(—1 =0 (mod 2).
Now, by (3.1), (3.26) and (3.27), we have
(3-29) h(—2p) = —4CE —8BP+ (16k+8)BC = 4BC-+8 (mod 16).

From (2.13) we obtain

(3.30) BV240Vp = (—1)M-P+im-9is g +8V2p)rerys,

which shows that & (2p) = 4 (mod 8). This proves (1.4) in this case. Squar-
ing (3.30) and equating coefficients of V2p, we obtain

2BC = h(%) RMePIA-18(mog 8).
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Then, as § = 0 (mod 4) by (1.12), we obtain
8
h(—2p) =h(2p)5 +8 (mod 16),

which completes the proof of the theorem in this case.
The authors would like to thank Mr. Lee-Jeff Bell, who did some
computing for them in connection with preparation of this paper.
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