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AN ARTIN CHARACTER AND REPRESENTATIONS
OF PRIMES BY BINARY QUADRATIC FORMS II

*
Franz HALTER-KOCH, Pierre KAPLAN and Kenneth S. WILLIAMS

For any squarefree positive m there exists exact-

ly one solvable antipellian equation, which can be used
to construct a certain dihedral extension L/Q , cyclic
of degree 4 above k = Q(v-m). We calculate the con-
ductor of L/k and the value of the Artin character of
L/k on the corresponding congruence ideal classes of
order 2 of k. From this, we deduce results for the
representations of powers of primes by binary quadratic
forms, in the case where the norm of the fundamental
unit of Q(/m) is +1 .

1.

Introduction. Let m be a squarefree positive

rational integer. It is known (see, for instance, [6],
§1, a): for a proof, see [2, §258] or [1l, §153]) that

amongst the antipellian\equations

2 2

(1.1) X* - oW~ = dt ,

where d is a positive divisor of m, dt # 1 and
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2 HALTER-KOCH et al.

t=1, if m # -1 (mod 4),
(1.2) {

t

lor 2, if m= -1 (mod 4),

exactly one is solvable in rational integers.
Clearly (1.1) can be written as

(1.3) de - eW2 =t,

where de =m . In (1.3), we will suppose that V and
W are positive and minimal; then V and W , as well
as d, e and t are uniquely determined by m .

We define
=t-W-et, u=t+W-et,
(1.4) i
v =2t+2V/dt , v = 2t - 2v/dt ,

1 - \J

1 - V) -1
(1.5) w =2y, W =2u, v =5, V =

N <l

and consider the following fields
k = Q(/-m), K = Q(¥dt,/~et), L = K(Vw), L' = K(/u") .

Then, as up = V2dt, L and L' are dihedral exten-

sions of Q whose subfield structure is as shown.

//\\

Q) Q) K Q() Q)

Q(¥dt) k Q(/-et)

L7
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HALTER-KOCH et al. 3

The extensions L/k and L'/k are cyclic of
degree 4. As (dt,et) = 1l or 2 and as Y and Vv have
in K only divisors of 2 in common, the only ideals
which can ramify in L/k and L'/k 1lie above 2.
Therefore (cf. [3], Bsatz 7) the conductors f and f£'
of L/k and L'/k are powers of 2.

The first main result of this paper is the calcula-
tion of at least one of f and f' 1in all cases
(theorem 1, section 2).

The Artin reciprocity maps of the extensions L/k
(resp. L'/k) define characters x (resp. X') omn
composition class groups Cf (resp. Cf.) of binary
quadratic forms

2 2

F = aX~ + bXY + cY [a,b,c]

of discriminant A = b2 - 4ac -mfz (resp. —mf'z) or
-4mf2 (resp. -4mf'2) according as -m = 1 (mod 4) or
not. The second main result of this paper gives the

values of the characters X and x' on the classes of

order 2 (ambiguous classes) of C_. and C (theorem 2,

£ £'
section 3).

We now define ¢ by

e = V/Ef + W/-et
t L]

(1.6)

In section 2, we shall see that ¢ 1s a unit of K
and we relate it to the fundamental unit € of Q(V/m).
On the other hand, ¢ and v satisfy the following
easily checked relation

(1.7) eV = t(e-+-1)2 .
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4 HALTER-KOCH et al.

In section 5, appealing to section 2 of [7], we
give applications of the results of sections 3 and 4 to
the representations of powers of certain primes q by
ambiguous classes of Cf . As particular cases, we are

able to prove some conjectures of [8].

2. Relation between & and the fundamental unit em

of Q(ﬁiz

LEMMA 1. Let (R,S) be the minimal positive solution
of the pellian equation R2~m52=1 and set n=R+SV/m.
Then

(2.1) n=ce

PROOF. From (1.3) one finds that

2
(2.2) (—-—-——————V’IEE : w/é?) =R +s'Va,
where R', S' are positive integers such that R'?'--ms'2

=1 ., For a given m , the numbers d, e, t are fixed
and the numbers R' and S' increase with the positive
solution (V,W) of (1.3). Thus to prove Lemma 1 it is
enough to show that one can solve (1.3) and (2.2) when
(R',S') is the minimal positive solution (R,S) of
RZ-ns? = 1. We write (1.2) as R%-1 Tsz' If s

is even, R 1is odd and, as B%l and are coprime,

|

we have

R#L = 24V , R-1 = 2eW> , S = 2WW ,

giving (1.3) and (2.2) with t =1. If S 1is odd,
-1 (mod 4). Then

1]

then R 1is even, so that m
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R+l = dV2 » R-1= eW2 ’

giving (1.3) and (2.2) with t = 2. This completes the

proof.

We now consider the fundamental unit € of Q(fa).

If N(sm) = -1, the antipellian equation VZ--mW2 = -1
is golvable so that d = m, e=1, t =1, ¢ =V + w/n .
It is known (cf. [1], §151) that ¢ = 83 or €

2 m m

4 has or has not

according as the equations r2-mS
odd integral solutions (r,s). If N(sm) = +1 then

52 = si or e according as the equation r2-—ms2 =4
has, or has not, odd integral solutions (r,s).

Let now q be a prime such that
-1 dt -et

2.3 __=.__-_-_.__=l'
(2.3) (q) (q) (q)

Then the Legendre symbol Q? is well defined and
€
also, by (2.1), the biquadratic symbol (759 in the
4

case where N(em) = +]1 , and we have

€
€y o (D = —
(;? = ( 1 )> 1f N(e ) 1,

(2.4)

o
€ m =
&) - (T)[: 1f N(e) =+ .

3. cCalculation of the conductors f and f' . We

first consider the conductor fl of the extension K/k.
Let D, Dl’ D2 be the discriminants of the fields k,
kl = Q(/dv), k, = Q/-et) respectively. By a formula
of [3], p. 431, we have
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6 HALTER-KOCH et al.

D1Dy

2 _
(3.1) £ =5

From (3.1), we deduce

m=1 (mod 4),

f1.=14 if{m=-1(mod 4), t =1, d = = 1 (mod 4),
m=2 (mod 4), d oxr e = 1 (mod 4),

f1=4, TR = -1 (mod 4), t=1, d = -e = -1 (mod 4),
m= 2 (mod 4), d or —e = -1 (mod 4),

f.=8, if m= -1 (mod 4), t =2 .

1

If fl = 4 or 8, satz 12 and satz 13 of [3], give

the values of f and f'. We have

PROPOSITION 1. If m = -1 (mod 4), t = 2o0r t =1,
d = -e =-1 (mod 4), then f = f' = 16.

If m=2 (mod 4), d or -e = -1 (mod 4), then
f=f" =4,

Let 61 and 62 be the relative discriminants of

the extensions Q(vV)/Q(¥d) and Q(/1)/Q(/-e) respect-
ively and Al, 2 the discriminants of the fields
Q("V), Q(Vn) respectively.

By [3], satz 24, we have

= op.£2, A, = DD,E2 .

(3.2) A 1 2 2

We also have (see for instance [9], p. 148)

(3.3) A )Dl, A (62)D .

N /Q 2 = N /Q

From (3.2) and (3.3), we deduce
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HALTER KOCH et al. 7

D D

_1_ 2

(3.4) f (61) o) N /Q

k/Q
As f 1is a power of 2 , we have only to consider
the 2-parts of the intervening factors. The 2-parts of
Dl’ D2 and D are well-known. The 2-parts Nz(éi) of
k /Q(G ) (1=1,2) are given in the following lemma.

LEMMA 2. Let k be a number field, 2z a prime ideal

divisor of 2 in k, e, the exponent of z in 2,
o a number of k such that [k(¥a):k] = 2, vz(x) the

exponent of 2z 1in the prime ideal decomposition of the

ideal or number x of k , § the relative discriminant
of the extension k(va)/k .
Then

a) if vz(a) 1 (mod 2), then vz(G) = 2eo + 1;

0 (mod 2), let u be the greatest

1]

b) if v (o)
positive integer such that

1 (mod zu) ,

o]
NIHX

then u > 1 and¢ if u > 2eo, vz(G) =0 ; if
l<u<2,v()=2e -u+1l.
- o’ 'z o

PROOF. a) If vz(a) = 1 (mod 2), [5], satz 118 shows
that vz(s) > 0. Therefore [4], satz 32
give vz(d) = v+1 , where the number v 1is equal to
2eo by [4], satz 10, beweis 2a).

applies to

1]

b) 1If vz(a) 0 (mod 2) and u > 2e°, [5],
satz 119 shows that z 1is not ramified in the exten-
sion k(/a)/k , so that vz(G) =0 .
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8 HALTER KOCH et al.

c) If vz(a) 0 (mod 2) and u < Zeo , by [5] ,
satz 119, vz(é) > 0 ; then [a], satz 32 gives vz(B) =
v+1l , where the integer v 1is equal to 2e°-u by [4],
satz 10, 2. The fact that u > 0 1is proved in the
course of the proof of satz 119 of [5]. (III, p.153).

REMARKS. a) If k is galois over Q , then e, is

the same for all z|2 .

b) The meaning of a = 1 (mod zu) is that there

NN

exists x € k such that v (iL -1 >u.
z x2 —

1]

COROLLARY. If k 1is a quadratic field and a« = 1 (mod
4), vz(G) = 0 for any z|2 s that is 2 1is unrami-
fied in the extension k(va)/k .

Applying the lemma, we obtain the following results
(formulated to include proposition 1).

THEOREM 1. The values of f and f' are given by the
following table 1.

The symbol f_ in the case where m = 2 (mod 4)
is the value of the conductor of L/k where instead of
U, v one takes -y, -v to construct the field

extensions.

PROOF. We note that, when f. = 1, the equation (1.3)

1
can be written as

(3.5) 1 = av? + (~e)W? .

This equation is symmetrical in (d,V) and

¢ 364
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TABLE 1
m,t,d,e W, f v, f'
m=1(mod 4)
d=1(mod 8),ezl(mod 4) [W=0 (mod 4), f=1 Vodd, £' =4

d=5(mod 8),ez=1(mod 4)

d=-1(mod 4),-ez1(mod 8)

W=2 (mod 4), f=2

V=0 (mod 4), f'=1

Wodd, f = 4
d=-1(mod 4),-e=5(mod 8) V=2 (mod 4), f'=2
m=-1 (mod 4)
t =2 f =16 £' =16
t =1, dz-e =-1(mod 4) f =16 £' = 16
W=0(mod4) =>-e=1(mod8), f=1
W odd £ = 8

|

W=2(mod4) =>-e=5(mod8), f'=4

W=0(mod4)=>d=1(mod8), £=1
t=1,d=-e=1(mod 4) V odd, f' = 8

W=2(mod4)=>d=5(mod8), £=4|
m=2 (mod 4)
d=2, -e=-1 (mod 4)

f =4 f' =4
d=-1, ez2 (mod 4)
V=0(mod 4):f"=1,f'=2

d=2(mod 4),e=2(mod 4) W odd

dz1(mod 8), ez=2(mod 4)

W=0 (mod 4):f=1,f =2

V=2(mod 4):f'=2,f'=1

V odd

klwsz (mod 4):£=2,f =1
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10 HALTER-KOCH et al.

(-e,W), so that, as the determination of f and f' is
a 2-adic problem, it is enough to change (d,V) into
(-e,W) to obtain the value of f' knowing the value
of f .

We give the proof in one case, m = 2 (mod 4);
the other cases are similar.

Suppose d = 1 (mod 4), e = 2(mod 4). By (2.4) we
have

2_1 -

Now, the relation 1 = dV2 - eW2 shows that V

1 (mod 8). Also

1]

is odd, therefore W 1is even and d
(2 =22 in Q(/=e) .

Now, if W = 0 (mod 4), u =1
therefore 6§, = (1) and f = 1.

If W=2 (mod 4), ¥ =1 (mod z3) , so that

u>3.

W/-e = 1 (mod 4),

mn N

But one sees easily that u # square (mod 4), so
that u =3 and VZ(GZ) =2, f£f=2.

Also -1 + W/-e = square (mod 4) if, and only if,
W =2 (mod 4) so that f_= 2 or 1 according as
W=0 or 2 (mod 4).

Changing the role of d and -e , we see that if
d =2 (mod 4) and -e =1 (mod 4), then -e = 1 (mod 8)
and W 1is odd, V even, f' =1, f'=2 if V=0
(mod 4), f£' =2, £' =1 1if V =2 (mod 4).

4., Determination of the Artin character of L/k on

ambiguous classes

The ideal class group of conductor f of the
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ring of integers of k 1is isomorphic to the composition
class group Cf of primitive positive binary quadratic
forms
F = aX2 + bXY + ch = [a,b,c]

of discriminant A = b2-4ac = —mf2 if -m = 1 (mod 4),
-4mf2 if -m# 1 (mod 4).

Before stating theorem 2, we give a list of the
ambiguous classes and the generic characters for each
Cf.

tion m =rs or m= 2rs (r and s odd) by one form or

In table 2, each class is defined from a decomposi-

by two equivalent (=) forms in it; all decompositions
m=rs or m= 2rs are to be taken. For a proof, we
refer to [1], §153.

The generic characters ep(F) are the values of
the Legendre symbols (%) for plrs and any x prime
to p represented by F and also eventually the
supplementary characters ez(F) = (:39 and e;(F)==C%)
for any odd x represented by F . We indicate in
table 2 whether e

2
If the ambiguous class A contains a form

or eé (or both) appears.

[r,0,8'] or [r, r, E%é] where r 1is odd, we say that
the class A 1s odd. Otherwise, we say that the class
A 1is even. Concerning the even classes, we note the

following:

1, the class of

If m=1(4), f or f'
[2r, 2r, E;i] is the product of the class of [r,0,s]

and of [2, 2, E;E] . In the other cases, any even

class of [4r,4r,r+2ns] is the product of the classes

367




12 HALTER-KOCH et al.

TABLE 2

Generic cbaracters

Ambiguous classes ey e,

mz1l (mod 4), m=rs, A=—4mf2

[r,0,8] = [s,0,r]

2
[2r,2r,5?]=[2s,2s.£;—s]
f =2 [r,0,48] e,
£f=4 [r,0,16s], [4r,4r,r+4s] ey e'z
- 2
m=-1(mod 4),m=rs, A = -mf
f=1 [r’rﬂ—r{i]
f = 2 [r90’s]
f =4 [r,0,4s] e,
f=28 [r,0,168], [4r,4r,r+4s]) ey e;
f =16 [r,0,64s], [4r,4r,r+165] e, e
m=2 (mod 4), wm=2rs, A= -4mf2
e; if m=6 (mod 8)
f=1 [r,0,25]
eze; if m=2 (mod 8)
f=2 [r,0,8s8], [4r,4r,r+28] ey e,
f =4 [r,0,328], [4r,b4r,r+88] ey e;

C 368




HALTER-KOCH et al. 13

of [r,0,2n+zs] and [4,4,1-—%%] , so that it is enough
to know the value of the Artin characters on the odd

classes, on the class of [2,2,1;2] if m =1 (mod 4),

f or f'=1 and on the classes of [4,4,1-—{%] when
they appear. We have

THEOREM 2. (i) Let A be an odd ambiguous class

containing [r,0,s'] or |[r,r,s'] , where r 1is odd.

Let r = uv where u|d, v|le . Then we have
2 ' 2
if t=1, x(&) =@ » x (A) = ;
2 ' 2
if t=2, x(4) = ) , x"(A) = @

(ii) For the even ambiguous class Ao’ containing
the form [4,4,1-—{%] , the values of x(Ao) and x'(Ao)
are both -1 .

(iii) If m

1]

1l (mod 4) and A is the class of

[2,2,538] , then if £ = 1, x(A) ¥ and 1f £'=1,
W
x'(&) = (-1* .

PROOF OF (i). Clearly it suffices to calculate the

values of x and x' on a class Ap containing the

form [p,O,ﬁéﬂ (or [p,p,B;E] in the case m=-1(mod4),
f =1). The class AP corresponds to the ideal class ;f
conductor f of the ideal P of k such that p=P
in k . Therefore X(Ap) (respectively x'(Ap) =1 or
-1) according as the ideal P 1is completely decom-
posed or not in the extension L/k (respectively L'/k).
In K we have P = P;P, .

369




14 HALTER-KOCH et al.

Suppose that p|d. Then, as d'V2 =t - e'w2 = up
and as u and ﬁ have no common odd divisor we have,
say, that P2|ﬂ and leﬁ' . As L =K(/) and Pllu
so that W/=e' = t (mod Pl) we have, denoting by [ ]K
the quadratic residue symbol in K :

u vV-e' 2t 2t
(a) = [H] =[E¥=e g -2 - (&Y,
e Pk PI "k 1k P
(4.1)
' = Aty _ (bt
Xa) = EH = d

as N(Pl) =p and u' = 2p'

1f p|e we find, using v instead of
= (& ' = (2t
(4.2) x(A) = (@, x'(A) = ),
which, together with (4.1), is our result.

PROOF OF (ii). Inclusion induces a natural homomorphism

of the ideal class group of conductor £ on the ideal
class group of conductor %’ whose kernel consists of
the classes I and A,. If x(A;) had the value 1

on A X would take the value 1 on the whole

0 »
principal ideal class of conductor %’, contradicting

the fact that the conductor is f .

1 (mod 4), £ or f'=1

PROOF OF (iii). Here m
(see table 1).
We treat the case f =1, the case f' =1 will

be obtained by interchanging (d,V) and (-e,W).
Therefore d =1 (mod 8), e = 1 (mod 4). The
ideal (2) decomposes as (2) = 22 in k and as

- 370
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(2) = z2 in Q(/-e). The ideal class of 2 corresponds
to the class of the form [2,2,23%] .

As d =1 (mod 8) the ideal 2 1is decomposed in
K , therefore it is completely decomposed in L 1if,
and only if, the ideal 2z is decomposed in Q(/ﬁ) ,
that is, by [5], satz 119, if, and only if, the con-

gruence

(4.3) 1-wie = 22 (mod z°)

is solvable with Z in the ring of integers of Q(v/-e).
It is clear that, if W = 0 (mod 8) , (4.3) is solvable.
Conversely, suppose (4.3) solvable. We note that 24 =
(4) and that 2z 1is the set of the integers of Q(/:E)
congruent to 1 + Y-e modulo 2.

Thus, if (3.3) is solvable, there exist rational

integers a, b, x, y such that

1 - Wie = (a+b/e)2+4(1+ /=) (x+y/=e) (mod 8)

that is,

L2 2
(4.4) 1z a" - eb” + 4(x-ey) (mod 8) ,
(4.5) W = 2ab + 4(x+y) (mod 8)

From (4.4) we see that a is odd, b even, say

b = 2¢ , so that
(4.5) 0 = —ec? +x-ey =c+x+y (mod 2) ,

(4.6) 4% = ¢ + (x+y) (mod 2) ,

showing that W = 0 (mod 8).
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5. Applications. We begin by letting rzk (respective-
ly r;k) denote the 2k—rank of the group Cf (resp-
ectively Cf,). We note that for any ambiguous class,

we have x(A) =+ 1, x'"(A) =+ 1 and that r, >1.

A prime q such that (E?) =+ 1 is represented

by two inverse classes Q and Q ~ or by one self-
inverse (ambiguous) class of forms of Cf » as well as
of Cf, . If

-et dt
(5.1) ) =GP =+1,

q 1is completely decomposed in K . Then q 1is
completely decomposed in L (resp. L') if, and omnly
£, () =+1 (resp. & =1

The primes q satisfying (5.1) are those for
which x(Q) = +1, x'(Q) =1, so that for such q we
2
have () = x(® , P = x'(@
In order to apply theorems 1 and 2, we need some
results from [7]. The results needed are stated as

propositions 2 and 3 below.

We state them for Cf. In order to apply them to
Cf, , 1t is enough to replace (§) by (%f)

PROPOSITION 2. Suppose that r8 =0 . Let q be a

prime represented by a class Q 1in a genus of ambiguous

classes of Cf. Then the class Q2 , where

(5.2) ord Q = 2xl, 2 odd

is an ambiguous class such that

L Y
X@) = @

~ 372
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PROPOSITION 3. Suppose that r4=1. Let J denote the

ambiguous class different from the principal class I in

the principal genus of Cg. Then

(5.3) =1 <> x(J) 1.

s

Let q be a prime represented by a class Q in the genus

of the ambiguous classes A and AJ. Then we have

(5.4) The class QA is a fourth power if, and only if,
\) -
@ = x ,

(5.5) If rg =0, then Ql = A or AJ according as

(yq-) = x(A) of -x(A) respectively, where & is
defined by (5.2).

(5.6) 1f r8=1, then QS=I or J according as
(‘X‘) = x(A) or -x(A) respectively, where

(5.7) s =n/2%2" | h = ord c; .

We remark that QQ' = QS when r8=0. If Q is the
principal genus, we can take A=1I in proposition 3 to

obtain the following corollary.

COROLLARY. Suppose that r,=1. If Q is in the
Principal genus, then Q 1is a fourth power, if, and

only if, (-,\:)T) =1 ; and qS is represented by I or J

according as (%) =+l or -1.

If the prime q satisfying (5.1) is = 1 (mod 4),

then

-1, _ 4ty _ ety _ g
(5.8) QP == =1

For such a prime, the Legendre symbols (Tl-) and

373




18 HALTER-KOCH et al.

(2§£) are well defined and by (1.7), we have: .
v et 2v 2et

5.9 e = i ; —_— = (———

(5.9) (q) (q) (q) ( q)

1}
o

EXAMPLE 1. We treat the case m = pp', where p =
= 3 (mod 4) , proving conjectures 1.6 of [8].

1
We may suppose (%;) =1 and we set o = (%) .
2
a' = (;T) .
It is easy.to see that in this case the equation

(1.3) is

2 2
=p'V" - pW ,

[
|

so that d = p', e =p and by theorem 1, we have

f=4, f'=1 4if p = 7 (mod 8), £f'=2 if p=3 (mod8).

a) Suppose p = 3 (mod 8), that is a = -1 .
For Cf, = C2 , the generic characters are (%%), (%),
(g%). We list representatives of the ambiguous classes,
the values of the generic characters (G.C) and of the

Artin character '

[1,0,4pp']); [p,0,4p']; [p',0,4p]; [pp',0,4] :
G.C. 1,1, 1;-1,41,-1 ; -1,+41,-1; 1, 1, 1

X" 1 s o =-=1 3 1 s a = -1,

We see that ri = 2, r; =1, J = {[pp',0,4]} and
|
ré =0, as x'(J) = -1. Also s = %? =-% where h 1is
the class number of Q(v-pp'). Therefore, we obtain

by (5.5) and (5.9)

374




HALTER-KOCH et al. 19

-1
A) Let q be such that () = ('g‘) = (‘qr) = 1.
W q P° P
Then q4 is represented by [1,0,4pp'] or [4,0,pp']

according as (-:;)(212-) =1 or -1.

B) If q is such that (:—]—'-) =@ =-1, & -1,
h q p p
then q4 is represented by [p',0,4p] or by [p,0,4p']

according as (—25\’-)= 1 or -1.

]

Numerical example. m = 21, h=4, p=e =3, p' =d =7,

[
w
[V)
=]
(=N

Clearly 1 = 7.22—3.32 so that V=2, W

e =2/7T +3/3; 2v=4 + 4/7 .

q = 37, (—‘qi) = (%) = (57‘-) =1. We find/_? = ?/f ,
3 = 15% (mod 37) so that (-;27 - & =-(—2——7—3+7—3——3-)
18 + 45, _
o e Il

We have also 37 = 4.22 + 21.1% , which shows that
37 is represented by the form [4,0,pp'] , in accordance
with A).

a=19, ) =& =-1, & =1 we find
- g2 2v, _ 4+ 4V, _ 4+4.8
7 = 8 (mod 19) so that (—t-]—) = ( 19 ) ( 5 )

2 . 3.2%, that is 19

= (—i-g—) =1, but here 19 = 7.1
is represented by the form [p',0,4p] , in accordance

with B).

We now show how A) implies conjectures 1.6 of
-1
8]. H =2y = 4y =1 .
[8] ere (q) (q) (P')
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h
If (ﬁ-) = (?21-) , then q4 = X2 + 4pp'Y2. As
odd, c%) = (-1)Y , so that

h
Ais

Ny - &y = (1Y
(q)4 (q) ( i) .

If (_::l-) = —(%) , then q4 = 4X2 + pp'Y2 , there-

fore q = 4X + 3p' (mod 8) , so that (—l)X = (é) (-;—?—)
giving

X+1 -2

n = (& = _(&y = (- <
@4 = @ =-@ = DEDH

b) Suppose p = 7 (mod 8), that is o = 1 ; then

f' = 1. The generic characters are (—%), (%), (-I-,JE,-).

We give the ambiguous classes

[1,0,pp'] ;5 [p,0,p'] ; [2,2.li§RL] ; [ZP,ZPsB%?l]

G.C. 1,1,1 y -1,1,-1 3 a',1,a’ s -a',1,-0"
v v
4 4
X' 1 ; 1 ;s (<D s (-1

Here ré =2, r; =1, ré =1 if V = 0 (mod 8),

ré =0 if V = 4 (mod 8) and the class J is the elass

1 )
of [2,2,-1':%’;] or of [2p,2p,£§2—] according as o' =1

or -1. We obtain the following result.

A) Let q =1 (mod 4) be such that (%) = (Bg'-)

o)

=1 . Then q is represented by I or J according as
£y 2

=)(=) =1 or -l.

(q)(q)
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_.éy =1.

1]
1

Let q

-1 (mod 4) be such that ﬁ?
h

If ré =1, q8 is represented by I or J

according as (%f) =1 or -1.

'

If rg = o, dg is represented by Ap or JAp

according as (%f) =1 or -1 where Ap is the class

of [p,0,p'].

The conjectures 1.7 of [8] can be proved by the
same method. The conjectures 3.6 and 3.7 cannot be
obtained, but we note that the case 3.6 is included in
1.6.

We now treat the case of conjectures 3.7 of [8].

EXAMPLE 2. m = 2pp', p = 5 (mod 8), p' = 3 (mod 4) ,
@ -
(p)

Considering the class group of forms of discrim—-

inant +8pp' , we see that in this case (1.3) is

1= Zp'V2 - pW2 .

Therefore d = 2p', e = -p = -1 (mod 4) , so that
f=1f"=4,

We consider Cg. The generic characters are
-1 2
SR, &

The ambiguous classes in the principal genus are
the unit class I and the class J of [4,4,1+8pp'],
for which x(J) = -1, so that r2=3, r4=1, rg= 0.

Let h be the ideal class number of Q(/:Eb 3
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s =% =% . Then we obtain

A) Let q =1 (mod 8) be such that (-;l) = (—I%) =1.
2
Then q is represented by I or J according

as (%) =1 or -1.
A') Let q = 5 (mod 8) be such that (%) =1,
) = -1.

N

Then q 1is represented by [p,0,32p'] or

[4p,4p,p+8p'] according as (-2:) =1 or -1.
It is also possible here to obtain results

analogous to A of example 1 for q = -1 (mod 4).

Numerical example. p =5, p' =3; V=W=1, e=/5+/6,
h=4; t=1,

The smallest ¢q
=1 1is 241.

1 (mod 8) such that (-551) = (%)

By the exclusion method [2], §319, we find easily
that ¥5 = 103 and /6 = 27 (mod 241) so that
(-Z—Z—i) = (%) = -1 . Here, inzaccordance vzzith A, 241
is represented by the form 4X +4XY +121Y" for X=5,

Y=1 and not by X2 + 480Y2.

The smallest q = 5 (mod 8) such that (%) =1,
@ =-1 1s29.

Here, /6 =8, v5:=11 (mod29) , () = (G
= -1 , and, in accordance with A', 29 is represented
by [20,20,29] for (0,1) and clearly not by
[5,0,96].
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EXAMPLE 3. Let m be a positive squarefree odd integer
such that the antipellian equation

(5.10) vVomi?=2, §=+1,

is solvable in integers V and W , implying that

3 (mod 4). Clearly V and W are both odd so that
7 (md 8 1if § =41, m=3 (mod 8 if 6§ = -1 .

m

m

Here t =2, f 16 and (1.3) becomes

2 = 6V2 - ém W2 ,
so that d =1, e=m if § =41 and d=m, e =1
if § =-1. We choose L' if 6=1, L 1if 6 = -1;

then the Artin character x' or x has the value 1

on the odd ambiguous classes and -1 on the even

ambiguous classes of C On the other hand, it is

16°

easy to check that C16 and Cl have the same 8-rank

so that we obtain, using proposition 1:

Suppose that m 1is a positive squarefree odd

integer satisfying (5.10) and having 8-rank of the ideal
class group of Q(/:E) equal to zero. Then, if q is

a prime satisfying

-1 2y = (™ o
(q)-(q) (q) +1

and represented by a class in a genus of ambiguous

classes of C16’ then qz is represented by an odd

ambiguous class or by an even ambiguous class according

as (ﬁ) = +1 or -1, where £ denotes the largest

odd divisor of the order of the ideal class group of

379




24 HALTER-KOCH et al.

Q(V-m) .

EXAMPLE 4. This example generalises example 3 of [7],
p. 14-15. We suppose that m 1is a product of primes
=1 (mod 8. Then f =1 and (1.3) can be written as

1= de - ewz

where W = 0 (mod 4).

If rg = 0 , that is, if the 8-rank of Q(/:E) is
0 , we can prove as in [7], p. 14-15, that W = 4 (mod8)
and that if q is a prime = 1 (mod 4) represented by a
class Q 1in the genus of an ambiguous class, then the

class Qz is odd or even according as (ﬁ) =1 or -1.
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