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On the class number of Q(V —p) modulo 16, for
p =1 (mod 8) a prime

by

KrNNETH S, WILLiAMs * (Ottawa, Ontario)

1. Introduction. Throughout this paper p denotes a prime congruent
to 1 modulo 8, and we set p = 8/-4-1. For such primes, the class number

h{ —p) of the imaginary quadratic field Q(I/——p) satisfies

(1.1) h{—p) =0 (mod 4),

see for example [1], p. 413, and the class number A (p) of the real quadratic
tield Q(y/'p ) satisties

(1.2) L(p) =1 (mod 2),

sec for example [2], p. 100. The fundanental unit ¢, (> 1) of the real
quadratic field Q(¥Vp) has norm —1 and can be written in the form

(1.3) ey = T+ UV’?T7
where T and U are positive integers such that
(1.4) T = 0 (mod 4), U =1 (mod 4).

Recently Lehmer ([8], p. 48), Cohn and Cooke ([3], p. 368) and Kaplan
({61, p. 240) have proved that

{1.5) h(—p) =T (mod 8).
It is our purpose to determine A{—p) modulo 16.
We prove
THEOREM. If p =1 (mod 8) is a prime, then
(1.6)

h(—p) =1+ (p—1) (mod 16), if h(—p) =0
h(—p) =T+(p—1)-+4(k(p)—1)(mod 16), if h{—p) =4 (mod 8).
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We set p == exp(2n¢/p). The cyelotomic polyromial F(z) of index p
in the complex variable z is given by

2P —1 i .

2y — = 22— po') = p-1 P .

(1.7) Ble) = H (e— o) =" . F2 41
i
We have
'(1-8) F(z) = F+ (z)F— (z)7
where F_ (z) and F_(z) are polynomials of degree (p —1) given by
p—1 p—

{1.9) P2 = [] =0, F_(a) = (z—¢').

b 4

The method used to prove the theorem is coimnpletely elementary.
We sketch the ideas involved. In §§ 2—4 Dirichlet’s class number formulae
for h(p) and h(—p) are used to evaluate F (1) (Lemma 1), F (—1)
(Lemma 2) and (i) (Lemma 3). From these evaluations certain linear
congrucnces and equations are obtained (Corollaries 1, 2, 3) for the coef-
ficients a, and b, of the polynomials Y (2) = F_(2)+F  (2) and Z(2)
= ;/; (F_(2) —F,(2)). In §5 these congruences and equations are combi-
ned to give further congruences (Lemma 4) which are required in § 6.
In § 6 the quantities ¥ (w), Z(w), Y'(0), Z'(0) (0 = 1+i/]/2), are given
in terms of the a, and b,,, and certain equations derived (Lemmas 5 and 6).
Finally in § 7 using Dirichlet’s class number formulae for h( —p) and A ( —2p)
and an identity of Liouville, h(—p) is expressed in terms of Y {4 ),
Z(+w), Y(+o), Z(+wv), and the theorem follows by appealing to
Lemmas 5 and 6.

2, Evaluation of ' (1) and F_(1). Using Dirichlet’s class number
formula for h(p), we prove

LevwmA 1. If p =1 (mod 8) is prime, then
P, (1) = —Vp(T-UVp)®, P_(1) =Vp(T+ U/p)®.

Proof. By Dirichlet’s class number formula for z(p) (sce for example
{71, p. 227), we have

p-1 = p—1 =
(2.1) s;"(l’) — L! SiHT/ !;[ sin_p_.
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Tt is well-known (sce for example [11], p. 173) that

(2.2) [] sm~— 11 sm——— n2sm—— -
B

Multiplying (2.1) and (2.2) together we obtain

p—1

(2.9) "h(p) op—1 [1] s1n~~ ,

where, here and throughout the rest of the paper, we use a prime (') to

indicate that the product or summation variable is restricted to quadratic

non-residues (modp). Sinee ¢, > 1 and each sin(nj/p)>0 (j =1,...
., p—1) we have

p-1 n—
(2.4) ) pehl®) - w12 [7 sm—— I smw
j=1
Now, for j =1,...,p—1, we have
™

2sin — = i7" (1 — gf),
P
80, as
p-—1
Y.
D) i =p@-1)4,
ji=1

(2.4) gives F_(1) = Vpe® =V p(T+ UYp)"® as required.
Finally, as h(p) =1 (mod2) and the norm of ¢, is —1, we have
F(1) P

F) T Vps oyapm VR UVRre.

F+(1) =

This completes the proof of Lemma 1.
Tt is clear from (1.9) that F_ (z) and F_(z) are polynomials in z of

degree % (p —1) with coefficients in the ring of integers of Q(l/};) (see for
example [10], p. 215). Hence we can write

(2.5) P (2) = }(Y()—Z(Wp), F_(2) ={¥(2)-+Z()VD),

where Y (2) and Z(2) are polynomials of degree at most 1(p —1) with
rational integral coetficients. From (2.5) we have

1
(2.6) Y(2) = F_(2)+ F, (), s == (F_(2) = F(2).

Vp

6 -- Acta Arithmetica 39.4
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It is easily verified from (1.9) that for z £ 0

, 1
e (1) < 0,

so that by (2.6) we have
1

z"’"”/ZY( ) = Y(2), PV2Z (%) =Z(2).

<
Hence the coctficient of 2" (n =0,1,2,...,(p—5)/4) in Y (2) (resp. Z(z))
is the same as that of 22~"2="in ¥ (2) (resp. Z(2)). Moreover, by (2.6) and
Lemma 1, ¥ (1) and Z (1) are both even, so the middle cocfficients of ¥ (2)
and Z(z) are both even. Hence we can set

21

Y(2) = D a, (" 42",

n=0

2l

Z(Z) _ an(z7a+z4l—71),

n=0
where the a, and b, are integers. It is known (sec for example [12], pp.
210-212) that

ag =2, a; =1, a, = (p+3),...,
by =0,b, =1, b, =1, ...

Appealing to Lemma 1 we obtain
COROLLARY 1. If p = 811 4s a prime, then
2l 27

a, = 1—4l (mod 16) b, = T(mod16), if h(—p) =0(moed38),
3 ? n

n=>0 n=0
and

ol b2
Dla, =94 (wod 16), Db, = h(p)T(mod 16),
n=0 "=

0

if  h(—p) =4 (mod 8).

Proof. It k(—p) = 0(mod 8), by (1.5b) we have T = 0 (uod 8).
Then, as T2—pU? == —1 and U = 1 (mod 4), we have
(2.8) U = 41--1 (mod 16).

Hence, working modulo 16, we have
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Da, = Y1) (by (2.7))
n=0
= HF_(1)+F, (1)) (by (2.6))
— L;’ (T4 TVp) — (T — UV p)r@n (by Lemma 1)
= gUIpW2 )2 (a5 h(p) =1 (mod 2), T = 0 (mod 4))
= (A1 4-1)MP) (8] -1 )(p)+ )2 (by (2.8))
= (41 +1)(81+-1)M®
= (4141)(814-1)
=1-—4l,
and
21
b, = 3Z(1) (by (2.7))
l/ (F_(1)—F (1)) (by (2.6))
= H(T+ OVpy"® (T — UVpy™)  (by Lemma 1)
= h{p) T UM~ 1 prw)—1)R (as T = 0 (mod 4))
= h(p)T(4l+1)""” HBL+1)MPTIE - (hy (2.8))
= h(p)T (81411 (as h(p) = 1 (mod 2))
()T (as h(p) =1 (mod 2))

= (as T = 0 (mod 8)).

The case h(—p) — 4 (mod 8) can be treated similarly. In this case we
have T = 4 (mod 8) and U = 4119 (mod 16).

3. Evaluation of F_(—1) and F_(—1). A simple argument proves
LeyMa 2. If p = 1 (mod 8) is prime, then

F.(—1) =F _ (-1) =1.

Proof. From (1.9) we have

p—1 p—1
F_(1)F_(-1) :n (—1 - %) ” (1—gY)
j=1 =1

As j runs through the quadratic non-residues modulo p, so does 2j. Hence
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we have
n—1 . 2)—1, .
[Ja-eh =] a-¢)=F (),
i=1 i=1
giving
-F—( ’_l) =1,
as I'_(1) s 0. Finally we have
F(-1)
F(-1)=——— =1

This completes the proof of Lemma 2.
Appealing to Lemma 2 we obtain

COROLLARY 2. If p = 8l+1 is prime, then

21 2!

= }(F_(-1)+F, (1) (by (2.6))
=1 (by Lemma 2),
and
2l
D (=1, = }Z(~1) (by (2.7))
1 .
= —=(F_(-1)—F, (1) (by (2.6))
2Vp
=0 (by Lemma 2).

4. Evaluation of F_(i) and F_(i). Using Dirichlet’s class number
formula for h{ —p), we prove

Levma 3. If p =1 (mod 8) s prime, then
Fo@) = F_(i) = (=1)""",
Proof. As p =1 (mod 8), we have
»—1 —1

(4.1) iy~ [ oy =[] (t+id),

j=1

kS

~.
li
—
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so that

p—ll p—1

F_(i) = [[ @—ie!y = [ [ (1—ie™),

j=1 =1
that is

o
(4.2) F_(i) = || @—id),

j=1

387

since, as j runs through the quadratic non-residues modulo p so does —j.
Hence, multiplying (4.1) and (4.2) together, we obtain

[E_ ()] =

@)F

p—1

n +¢) =[] a+eh,

j=1

since as j runs through the quadratic non-residues modulo p so does 2j.
Thus, appealing to Lemma 2, we obtain

that
(4.3)

(4.4)

is

An casy calculation shows that for j =1, 2,

14ig! = 2008(1;- + ;j)e p{( LM )z},

so that

(4.3)

F_(i) =

p—-1

alp=1y2 r oS

p

(7 2 exp 3wy,

Let MM, denote the number of integers j satisfying

As cos(w/

< j < p, we have

(4.6)

arg (F_(i))

4

0, if

Iﬁ, if

p .
—<.7<p7

M,
MP
MP
M

3

5

=0 (mod 2), p =1 (mod 16
=1 (mod 2), p = 9 (mod 16
= 0 (mod 2), p = 9 (mod 16
=1 (mod 2), p =1 (mod 16

..., p—1 we have

4-+mj/p) > 0, for 0 < j < p/4, and cos(w/4-+mnj/p) < O, for p/4
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Now a formula of Dirichlet ([4], p. 152) asserts that
- -2 3 (2),

0<j<p/t p
so that we have
h(—
(.7 i, =30+ T
Putting (4.6) and (4.7) together we obtain
if  R(—p) =0 (mod 8),
(4.8) arg(F_(i)) = ]
w, i h(—p) =4 (mod8),
that is
g ars(f_() . (_1)h(—p)/4’
and hence
P (’L) — |F_ (,i)ieiarg(lﬂ_(i)) . ( _1)h(—p)/4’
and
. F(3)
7 _ —( — h(—p)/4
+ (@) 7o) (—1)

This completes the proof of Lemma 3.
From Lemma 3 we obtain

COROLLARY 3. If p = 8l+1 is a prime, then
l l

D (=1 g, = (=102 3T (—1)mb,, = 0.

n=0 n=0
Proof. We have

l

N (~1)a,

n=0

!

3 Y(9) (by (2.7))

H

FE_() +F () (by (2.6))

= (—1)H=on (by Lemma 3),
and
4
D (=1)"by, = 32(0) (by (2.7))
2]/— (F-(2)—F,(3)) (by (2.6))
=0 (by Lemma 3).

5. An important lemma. By adding and subtracting the results of
Corollaries 1, 2 and 3 as appropriate, we obtain a number of congruences
which we put together as Lemma 4. This lemma is essential to what fol-
lows in § 6.
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LemMA 4. If p = 8141 is a prime, then

il

1
Z , a’Zn
a=0
-1
2 Fant1
n=0

{12]

li

I

il

[4
ZbZn =

/2]

Z by = Z bi+z =

n=0

6. Evaluation of

—21+1 (mod 8), if
—2145 (mod 8), if
—21 (mod 8), if
—21-+4 (mod 8), if
—1+1 (mod 4), if
—1+2 (mod 4), if
| —1 (mod 4), if
‘—l+3 (mod 4), if

=t b _ [T/2 (moa 8),
Z et lh(p)T/z (moa 8),

n=0

= 2k, we define
k
(6.1) 4, = D a,(—1)",
m=0
k—1
(6.2) B, =1
m=0
k
(6.3) Oy = Dby (=)™,
m=0
k—1
(6.4) D, =}
m=0

-2l T/4 (mod 4),
lh(p)T/4 (mod 4), if
Y(w), Z(w), Y (w), Z'(w). It p

(b4m+1 - b4m+3)( _1)m ’

and, if p = 16k -+9, so that I = 2k 41, we define

(6.5)

(6.6)

(6.7)

(6.8)

2
4y = Za4m+2( —-1)",
m=0

389

(mod 8),

(mod 8),

mod 8},
(mod 8),

(mod 8),

mod 8),

B(—p) =0 (mod 8),
(—p) = 4 (mod 8),
B(—p) =0 (mod8),
h{—p) = 4(mod 8)

k k-1
By, =1} { Za’4m+1( —1)"™+ Z“4m+3( _1)m};
m=0

m =9

k
09 = Zb4m+2( ___1)1:1.’
m=0

&
|

% { 3 b4'm+1( _1)m +

k—1

m=0

Z b4m+3( —l)m} .
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A,, Ay, C; and C, are clearly integers. B, By, D,, D, are integers by
Lemma 4.

Setting © = exp(2mi/8) = (1+4)/V2 (so that w® =i, o'= —1,

o' =1, o+ = 11/2_, w—o® = ¥2), a straightforward calculation shows
that, for p =1 (mod 16), we have

(6.9) 24, +2B,V2 = Y(w), 20,+2D.V2 =7Z(0),
and, for p = 9 (mod 16), we have
(6.10) 24,0 +2B,iV2 = Y(0), 204-+2D,iV2 = Z(w).

Our next lemma makes (6.9) and (6.10) more precisc.

LeMMA 5. Let p = 1 (mod 8) be a prime. Then, for p = 1 (mod 16),
we have

B, =0, =0, A—2pD} =1, Y(o)=24,, Z(o)=2Dy2,
if  h(—p) =0 (mod 8),
A, =D, =0, 2B —pC? =1, Y(o)=2BYV2, Z(o) =20,
if  k(—p) =4 (mod 8),
and for p =9 (mod 16), we have
B, =0, =0, A2-2pD?= —1, Y(0)=244, Z(o)=2D,V2,
if  h(—p) = 0 (mod 8),
Ay =D, =0, 2Bi—pC:= —1, Y(o)=2ByiV2, Z(o) =20,
if  h(—p) =4 (mod 8).
Proof. From (1.7), (1.8) and (2.5) we have
(¥ —1)

(6.11) Y —pZ@) = 4P, ()1 () =4~

Taking # = w in (6.11) we oblain

(6.12) Y(w):—pZ(w)? = 4.
Using (6.9), (6.10) in (6.12) we obtain, for p = 16k 41,
A 2B (i —2pD% =1
A,B,—pC D, =0,

and, for p = 16549,

A5+2B; —pCs—2pD; = —1,
AyBy,—pCy Dy = 0.

(6.13)

(6.14)




On the class number of Q(V —p) modulo 16 391

Now, from (1.9), we have
F_(0)F_(—w) = F_{(i).
Henece, by (2.5), (6.9), (6.10) and Lemma 3, we have, for p = 16k-+1,
AT 2B} +pC] -2pD; = (1",
A.C,—2B,D, =0,

and, for p = 16&-+9,

(6.15)

A;—2B5+pC;—2pD; = —(—1)"=2",

(6.16)
A4,0,—2B,Dy = 0.

The result now follows from (6.13) and (6.15), if p = 1 (mod 16), and
from (6.14) and (6.16), if p =9 (mod 16). This completes the proof of
Lemma 5.

Next, for p = 16k -+1, we define

o

-1
(6.17) By =3 ) (g (4m 1) fay, 5 (4m 43 —8k)|( —1)™,

m=0

I

k—1

(6.18) Fy = Y Guip(2m—2k-+1)(—1)™,

m=10

(6.19) G, =1 (@1 (410 — 8L +1) + @, 5 (4 H3)) (—1)™,
m=0
%
(6.20)  Hy =k 3 a,(—1)"*".
m=>0

The numbers obtained by replacing each a, by b, in (6.17)-(6.20) are de-
noted by L,, M,, N,, P, respectively (eqns. (6.21)-(6.24)). Clearly F,,
H,, M, and P, are integers. I/,, ¢y, L, and N, arc integers by Lemma 4.
By (6.1), (6.3), (6.20), (6.24) and Lemma 5, we have

(6-25) Hl - —k‘A‘I’ _Pl - *kol.

Moreover, from (6.2), (6.4), (6.17), (6.19), (6.21), (6.23) and Lemma b
we have
k-1
El“Gl = 4k 270 (a4m+1—‘a4m+3)( —1)" = 8kB;,
mk——l
Ly— Ny =4k Y (byi1— bimss) (—1)" = 8ED,,

m=10

(6.26)
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so that
B, =G,P, =0, if h(—p) =

Hy =0, L, =N, it h(—p)=
Also, working modulo 4, we have, from (6.18) and Lemma 4,

k—1 k—1

I, = 2 Qo (2m +1) (—1)" —2k Z a4m+2(—1)m
m=0 m=0

k-1 k=1

= Wy 2 2K 2 Bymt2y
m=0

m=90

that is

2k (mod 4 it h(—p) =0
©27y(a) B, — | rmedd), b h(=p)

3 (mod 4), it h(—p) =4 (mod 8).

Similarly we have

T/4 (mod 4), if  Ah(—p) = 0 (mod 8),
(6.27)(b) M, = -
(2k+1)h(p)T/4 (mod 4), if h(—p) = 4 (mod 8)
Next we note that
k—1 k—1
B+ B, = D 4 (2mAL(—1)"+ D a4 5 (2m+1—4k)(—1)"
m=0 m=0
k-1 k—1

i

1+ 2 Wy, 30 4)

m=0

3
[}

9
S
|
—

f

Gy 1 (I00OA 4),

3

that is, by Lemma 4,
B,-+E;, =0 (mod 4),
and so, in particular, we have by Lemma 5
B, =0(mod 4), if h(—p) =0 (mod8).
Similarly we obtain

D+ L, =T/2 (mod 4),
S0

L, =T|2 =2 (mod 4), if h(—p)=4(mod8).
Finally an easy calculation shows that
28, +4F, 0 +2G,0*+8H,w® = Y'(w),

(6.28)
2L, 4+4M o -+2N, 0*+8P 0w = Z'(w).
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For p = 16%+9, we define

k k—1
(6.29) By = 3{ Dy (4m 1) (=)™ + D a5 (8k+1—dm) (—1)"},
m=0 m=0
(6.30) Iy — (2k 1) ZamP —1)",
k k-1 .
(631) Gy = 3{ Y Gyya (B3 —4m) (= 1"+ Y a5 (4m1-3)(—1)"},
m=0 m="9
k
(6.32) Hy = ) a,,(2k—2m +-1)(—1)™.
m=0

The numbers obtained by replacing each @, by b, in (6.29)-(6.32) arc
denoted by L,, M,, N,, P, respectively (cqns. (6.33)—(6.36)). Clearly F,,
H,, M,and P, arc integers. K , G,, L, and N, are integers by Lemma 4.
By (6.5), (6.7), (6.30), (6.34) and Lemma 5, we have

{6.37) F, = (2k+1)4,, M, = (2k+1)C,.

Morcover, from (6.5), (6.7), (6.29), (6.31), (6.33), (6.33) and Lemma 35,
we have

(6.38)
4 Ic-_‘]
Byt @y = (4+2) | 2a4,n+1( ~1™ 4 D @ya(—1)") = (8k+4) By,
m=0
k-1

L9+'N9 4k+0 {Z 4m+1 m+ b4m+3( —l)m} = (8k+4)D97

m=0 =0
s0 that
E, = —-6G,, M,=0, if &(—p) =0(mod3),
‘Fg =0, L,=-—N,, if h(—p)=4(modS8)

Also, working modulo 4, we have, as before,

2k (mod 4), if h(—p) =0 (mod 8),
1 (mod 4), if  h(—p) =4 (mod 8),
T/4 (mod 4), it h(—p)=0
{(270 4+1)h(p)T/4 (mod 4), i R(—p) =4 (mod 8),

(6.39)(a) H, = ‘

(6.39)(b) P,

i

and
B,+ Ey = 2 (mod 4),

Dy Ly, = T/2 (mod 4),
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gso that by Lemma 5 we have
E, =2 (mod 4), it h(—p) = 0 (mod 8),
Ly =T|2 =2 (mod4), i h(—p)=14
Finally an easy calculation shows that
(6.40) 12E9+4F9w +2Gy 0 +4H 0% = Y (w),
|2L, +4 M0 12N 40" +4Py0® = Z'(w).

Differentiating (6.11) and setting z = w, we obtain

(6.41) Y(w) Y (0)—pZ(0w)Z' (w) = —81{(1+ v+ w2+ w?d).

Using (6.25), (6.26), (6.28), (6.37), (6.38), (6.40) and appealing to Lemma 5.
(6.41) gives
LeMmma 6. Let p = 8141 be a prime. Then

A B, —2pD, M, = —4k, if p =1 (mod16),h(—p) = 0 (mod 8),
AP, —pD, N, = Q’k(A:i’ —2),

2B, F,—pC Ly = —4k, if p =1 (mod16),h(—p) =4 (mod 8),
BB, —pC, M, = 2kp(],

A B, +2pD, Py = —4k—2, if p =9 (mod 16), h(—p) = 0 (mod 3),
AyHy+pDyLy = (2k +1)(A5+2),

—2ByHy,+pC,N, = —4k—2, if  p =9 (mod 16),
ByE,+pC,Py = (2k+1)(pC;—2), h(—p) =4 (mod 8).

7. Proof of theorem. TFor p =8l+1 a prime, we define for j
=0,1,...,7
G+
_ s N /8
o e 3 30
Jp/8<s<(j-+1)p/8 P s=jl+1 p

80
n—1

(7.2) ZS ~Z(%) — 0.

$=1

Setting s =jl+1 (t =1, ...,1) in (7.1) we have, as (2/p) =1,

-3~ 05 - o),

t=1
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that is

‘ (81—
(1.3) 8, — Z(T)
Mapping t—+1-+1—1 in the right-hand side of (7.3), we obtain (as (-—-1/p)
= 1)
(7.4) S; =8, (3=0,1,...,7).
From [4], p. 162, and [5], p. 120, we have
(7.5) h(—p) =2(8,+8), h(—2p) =2(8,-8), 8, =8,.
Putting (7.2), (7.4) and (7.5) together, we obtain
8o = 8; = 1 (h(—p)-+h(—2p)),
(7.6) 8y =8 =8, =8 = Hh(—p)—h(-2p)),
S, =85 = $(—3h(—p)+h(-—-2p)).

Next, for any complex number 2z, we define

—

p—

(77) K(Z) — Z(%)ZPAI—S‘

g=1
Taking 2 = w, (r =0,1,...,7) in (7.7), and using (7.3), we obtain

(7.8) Ko = Y o8,

Shoosing # == 1, 5 in (7.8), and appealing to (7.6), we get

h(—2p)
I K(w) = h(—p)(0o—w?)+ - —(1—-o+w*—w?),
) | h(-2p) ‘
K(—w) == h(—p)(—ow—0?)+ - o “(1+ o+ 0+ 0?),

from whiell we obtain
(7.10) 4h(—p) = K(o)Q-Fo+ o?—o?)+ K(— o)1l — o+ o4 o).
Now Liouville ([9], p.- 415) has shown that

2
(7.11) K@) = Y(2)Z' (2)— Y (2)Z(3).

1—z
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Taking z = 4o in (7.11) we obtain
2K (0) = (1 - 0){¥ (0)Z' (w) — Y (0)Z ()},
2K(—o) =1+ 0){Y(—w)Z'(-0)- Y (-w)Z(—-w)}.
Substituting (7.12) into (7.10) we obtain
(7.13)  4h(—p) = *{¥Y'(0)Z(0) — Y (0)Z' (0)+ Y (—0)Z'(—w) —
— Y (—w)Z(—w)}.

Now suppose that h(—p) = 0 (mod 8). By (6.25), (6.26), (6.28),
(6.37), (6.38), (6.40), (7.13) and Lemma 5, we have

(7.12)

44, M,—4D,E,, if p =1 (mod16),
—4A,P,—4D,E,, if p =9 (mod16).
Hence, as B, = 0 (mod 4), By = 2 (mod 4), Dy =1 (mod 2), we have

h(—p) =

44, M, (mod 16), if p =1 (mod16),
—4A4,P,+8 (mod 16), if p =9 (mod 16).
Appealing to (6.27)(b) and (6.39)(b), we obtain

A, T (mod 16), it p =1 (mod 16),
| = 4,748 (mod 16), if p = 9 (mod 16).

As T = 0 (mod 8) and 4, = A4, =1 (mod 2), we have
T (mod 16), if  p =1 {(mod 16),

h(—p) =
(=) T8 (mod16), if p =9 (mod 16),

¥

that is
h(—p) =T+p—1 (mod 16),

as required.
Finally we suppose that h(—p) =4 (mod 8). As above we have

4B,I,—4C,F,, if p =1 (mod 16),
4B,L,-+4C,H,, it p =9 (mod 16).

Hence, as B, =, =1 (mod 2}, L, =2 (mod 4), F; =3 (mod 4),
B, =0 (mod 2), €, =1 (mod 2), L, ==2 (mod 4), H, =1 (mod 4), we
have

h(—p) :\

s - 8 4-4C, (mod 16), if p =1 (mod 16),
Py 140, (mod 16), if p =9 (mod16).

Now if p =1 (mod 16) we have from Lemma 6

pC M, = B, E, —2kp(C3.
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Multiplying by M, =1 (mod 2), we get
C, = B,E,M,—-2kM, (mod 4)
= — BIM,—2kM, (mod 4)
= —(1+2k)M, (1mod 4)

= —h(p)T/4 (mod 4),
gso that

h(—p) =8—h(p)T =T+ (p—1)-+4(k(p)—1)(mod 16).
On the other hand if p = 9 (1od 16) we have from Lemma 6
pCyP, = (2k+1)(pC;—2) —By E,.

Multiplying by P, =1 (mod 2), we get

Cy = —(2k+1)P,— B, E,P, (mod 4)

= —(2k+41)P,— By(2 — By) P, (mod 4)

= —(2k+1)P, (mod 4)
= —h(p)T/4 (mod 4),

1

so that
h(—p) =8—h(p)T =T+ (p—1)-+4 (h(p)—1) (mod 16),
as required.

This completes the proof of the theorem.

The author would like to acknowledge the help of Mr. Lee—Jeff Bell
who did some numerical calculations in connection with the preparation
of this paper. The author would also like to thank an unknown referee
who pointed out that the author’s original proof of Lemma 3 was incom-
plete.

The ideas of this paper have been extended to determine k(—2p)
(mod 16), where p —- 1 (mod 8) is prime.
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