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1. Introduction and summary

Thé problem of finding an upper bound for the least quadratic non-residue of
an odd prime p is of historical interest because of a remark of Gauss [7] (see, for
1

example, [3], p. 27), regarding its difficulty. Upper bounds of the order of p? have been
given by numerous authors including Vinogradov [21], Brauer and Reynolds [4],
Kanold [13], Nagell [14], [15], [16], [17], Rédei [18], Skolem [19], and Hudson [10].

The well-known method of Vinogradov [20], used in conjunction with the character
sum estimates of Burgess [5], [6], yields a sharp bound for the least quadratic non-
residue of “‘sufficiently large” primes. Only one author, Brauer [1], has exhibited a
purely combinatorial method for bounding the least quadratic non-residue of a prime

1
which yields a bound that is o(p?). In 1931, Brauer [1] showed that the smallest positive
quadratic non-residue g of an odd prime = 1(mod 8) must satisfy

2 1 2 1
(1. 1) g <(2p)3 +3(2p)% +1~1.3195 p5 +3.446 p° + 1.

Using this method, Brauer [2], Whyburn [22], and Hudson [8], were able to
obtain bounds for the second and third smallest prime k-th power non-residues in certain
cases, and this method was used by Hudson [9], [11], [12] in related problems, for
example, in providing upper bounds for the first three consecutive quadratic residues
of a prime p> 17 and for the least k-th power non-residue (modp) in an arithmetic
progression.

Brauer informs us that several authors (unpublished) have been able to obtain
1

slight improvements in the coefficient of p3 in (1. 1), with easy refinements of his proof.
This is, of course, not of great interest as it does not appreciably improve Brauer’s
bound for large p. In his classes, for more than 40 years, Brauer gave the proof of (1. 1)
and challenged his students to improve this bound. In this paper we give a method which
yields a small improvement (approximately 24 %). In particular, we prove in section 2,
that if ¢ is the least positive quadratic non-residue of an odd prime = 1(mod 8), then

2 1
(1.2) g<p’>+12p°+33.
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(At the cost of complicating the proof, the coefficients 12 and 33 in (1.2) can be
improved slightly.)

We expect that many of the aforementioned results which depend on Brauer’s method
can be similarly improved using (essentially) the simple technique given in section 2.

2. A bound for the least non-residue of odd primes p % 1 (mod 8)

Theorem. Let p be an odd prime #1(mod 8) and let q denote the least quadratic non-
residue of p. Then

2 1
2.1 q<p’+12p°+33.
Proof. Assume otherwise, so that , .
(2.2) qg>p°+12p° +33.

Since ¢> 2 we may take p to be =7(mod 8). Also (2. 2) implies that p> 71. Now 8 is a
quadratic residue and — 1 is a quadratic non-residue of p, so that the ¢ — 1 positive integers

(2.3) p—8@g-1,p-8(¢q-2),.,p—8
are quadratic non-residues =7(mod8). (The integers in (2. 3) are positive since

N~

g<p®* if p>23,
see [3], p. 27.)

Let r be an odd positive integer of the form

(2. 4) r= [p%] +a,
where o is a positive integer < § to be chosen later.

Since

1 1
(2. 5) pP<r<p’+38,

we must have

(2. 6) r<g—1
in view of (2. 2).

Let / be the unique integer satisfying

2.7 8h=8q—p(modr), 1 Sh=<r.
By (2. 7), we may define an integer k by

_p—8(g—h)
_p=¥ah

(2.8) k

From (2. 6) and (2. 7), we have 1 <h<q— 1, so that the numerator in (2. 8) is one of the
integers in (2. 3), and so k is positive.

1
Now, set /= [p>]+ 4 so that

1 1
(2. 9) P 3<i<p’+4.
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Further, choose

(2. 10) a= [k%] +1.

1 1
Then k? <a<k?+1sothat(a—1)? <k <d?.

Finally, choose a such that

(2. 11) r=1(mod8), if a=0 or 3(mod4),

and
(2.12) r=5(mod8), if a=1 or 2(mod4).
Provided that
(2.13) (k+8/—8)r=<p-8,

the integers kr, (k +8)r,..., (k +8/—8)rare in (2. 3) and so the / integers
(2. 19 k,k+8,...,k+8/—8

are all quadratic non-residues, which are =7(mod 8), if r =1(mod 8), and are =3(mod 8),
if r=5(mod 8). The condition (2. 13) is satisfied as, by (2. 2), (2. 5), (2. 7), (2. 8), and
(2. 9), we have

(k+81—8)r<p—8q+8r+8r(p%+4)—8r<p—8q+8(p%+8) (p%+4)
<p——8p%~96p%—264+8p%+96p%+256 =p—8.

If a is even, we consider the sequence of integers

(2. 15) (a+1)(a=1),(a+3)(@=3),...,(a+2b—1) (a—2b+1),
where b is the largest integer such that

(2. 16) (@+2b—1)(a=2b+1)> (a—1)?;
if a is odd, we consider the sequence of integers

2.17) (a+2a,(a+4) (a—2),...,(a+2c)(a—2c+2),
where c is the largest integer such that

(2. 18) (@a+2¢)(a—2c+2)>(a—1)>2

The integers in (2. 15) are =7(mod 8), if a =0(mod 4), and are =3(mod 8), if a =2(mod 4).
The integers in (2. 17) are =3(mod 8), if a=1(mod 4), and =7(mod 8), if a =3(mod 4).
By the choices made in (2. 11) and (2. 12), we see that the integers in (2. 14) are in the
same residue class modulo 8 as those in (2. 15), if 4 is even, and as those in (2. 17),
if a is odd.

4 2
Next, we have (a —1)2 <k <% <p3,sothata <p®+1. Then

I 1
a+2b—1<a+1/2a—1<p5+ﬂ(p5+1)+1<q,

so that the integers in (2. 15) are all quadratic residues. Similarly the integers in (2. 17)
are also quadratic residues.
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Thus, subdividing the integer interval

[a—13,...,d*—1], if a is even,
[(a=13,.... %+ 2a], if a is odd,

by the quadratic residues in (2. 15) and (2. 17) respectively, we must have, by (2. 14),
that 8/—8 is less than the maximum difference between integers in the subdivided
interval. This gives the required contradiction; we just give the details for a odd. In this
case, the difference between integers in (2. 17) in the subdivided interval [(a — 1)?,..., @ —1]
is at most

1 1 1
(@a+2c)(a—2c+2)—(a+2c+2)(a—2c) =8c<4+8a*<8p°>+12<8p° +16 <8/ —8.
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