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Evaluation of Certain Jacobsthal Sums.
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Santo. — I numeri primi ¢ = 3, 5, 7, 11, 13, 17 ¢ 19 sono esattamente quei
numeri primi dispari per cui Uanello Z[{], { = exp (2ni/q) é un dominio
a fattorizzazione unica. Per tali numeri primi la somma di Jacobsthal
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we -, ()(557)

?-1 fgm 1
vy{a) =a:§0 ( P a)

e la somma associata

(dove (- /p) & il simbolo di Legendre per un numero primo p = 1 (mod q)
ed a & un intero non divisibile per p) 8i esprimono in termini di oppor-
tunt fattori primi normalizzati di p in Z[{]. I casi ¢ = 3 ¢ 5 sono gid
stati studiati da A. R. Rajwade.

1. - Introduction.

Recently Rajwade [3], [4] has evaluated the character sums

o5 (EE),

where (-/p) is the Legendre symbol, for a prime p =1 (mod g),
e an integer not divisible by p, and ¢= 3, 5. In this paper we
extend his results to evaluate these sums and the Jacobsthal sums

we =3 (0)5)
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for the primes ¢=3, 5, 7,11, 13,17 and 19. These are precisely
the odd primes ¢ for which the ring Z[{], where { = exp (2ni/g),
is a unique factorization domain [2], and v.(a), (@) are evaluated
in terms of suitable normalized prime factors of p in Z[{].

Let p be a prime =1 (mod ¢q), where ¢ is one of the primes
listed above. If z is any prime factor of p in Z[{], we order its
conjugates by setting s, = o.(%), 1 <k<q—1, where g, is the auto-
morphism of Q({) determined by o¢.({) =(* If (-/r) is the ¢-th
power character defined (for integers y %0 (mod p)) by (y/=),= &*
if y»~le=¢* (mod x), this ordering is such that (y/m;), = (y/m)s for
1<k<q—1. Finally we define, for 1<k<q¢—1, % to be the unique
integer such that kk =1 (mod ¢), 1<k<qg—1. Our result'is the
following

THEOREM. — Let q be one of 3,5, 7,11, 13, 17, 19, let p be a prime
= 1 (mod g), and let a be an integer == 0 (mod p). Then, if 7 is any
prime factor of p in Z[{] with x =—1 (mod (1—¢)%), we have

a—1) $e—1)
(1.1) vela) =<—1)«+m(p) > (4“) e

=1 \7Ti/a k=1

and

4a #a—=1)
) —_—

/g k=1

a—1
(1.2) fua) = (— 1)y (

2. — Preliminary results.

We first prove three lemmas. Lemmas 1 and 2 are needed for
the proof of Lemma 3. Lemmas 1 and 3 are used in the proof of
the Theorem. (We emphagize that throughout this paper ¢ is re-
stricted to be one of 3, 5, 7,11, 13, 17, 19 so that Z[{] is a U.F.D.)

LEMMA 1. — If ae€Z[L] 48 such that «# 0 (mod (1—{¢)), then «
possesses an associate o« such that o' =—1 (mod (1 —¢)?).

ProoF. — For any =xe€Z[{] we can define (k,,..., k,_,)€Z 1 uni-
quely by » =k + ...+ k,_1i"t. We define mappings »,: Z[{] > Z
(t=1,2) by ‘

(2.1) )=kt ..+ k., rE)=K+2k+..+@—1)k_,,;
so that

72(1)=1 (mod q), 7,{1)=0 (mod gq).



EVALUATION OF CERTAIN JACOBSTHAL SUMS 3

It is easy to verify that

(2.2) 7401+ ) = 7(061) + 1:(225) (7‘17 € Z[L], i=1, 2)
ro(x) = nr,(x) , (x€Z[C], neZ, i=1,2)

and that

(2.3) rlx) =mnlx) (mod q), 7ro(x) = ri(x)+ ry(x) (mod q) .

From (2.3) it follows that for 1=0,1, 2, ...

71(ts%) = 71(%) (mod g¢),

(2.4) 7o(Lx) = Uri(¢) + 7a(x) (mod g) .

From (2.2), (2.3), (2.4) it follows using the multinomial theorem
(or by induction) that for m=20,1, 2, ...

ri((1+ &)mx) = 2mr,(x) (mod q),

(2.5) ?’1((1+ t4 Cz)m”) = 3mr,(x) (mod q) ,
and
@6 (O 8m) =m2ning) +2mr(x) (mod g),

r.((1 4 &4 £2)m) =m3mry(x) + 3™ ry(x) (mod q) .
Thus from (2.4), (2.5), (2.6) we obtain for I, m=0,1,2, ...

/ (M1 + §)mx) = 2mry(x) (mod g),

2.7 r(CH1 4 C 4 E2)mx) = 3™ri(x) (mod q),
and
) L) = (m2m 412 ) + 27rida) (mod )

7 (CH1 4§+ $B)™x) = (m3™ 4 13™) ry(x) 4 3™ry(2) (mod g) .
Now let ae Z[{] be such that « 0 (mod (1 —¢)) so that ry(x) #0

(mod ¢q). If ¢=3, 35,11, 13, or 19, then 2 is a primitive root (mod ¢),
and we can choose non-negative integers I and m such that

27 (x)+1 =0 (mod ¢g),
(214 m) ri(ec) + 275(x) =0 (mod ¢q),
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so that by (2.2), (2.7), (2.8) we have
n(C'1 4 Oma+1) =71+ )24 1) =0 (mod ¢),

so that o'+1 =0 (mod (1 —{¢)?) where a'= {1+ {)"a. o« is an
agsociate of « as 14 ¢ is a unit of Z[{].

If ¢q= 7 or 17, then 3 is a primitive root (mod ¢), and we can
choose positive integers ! and m such that

3mry(x)+1=0 (mod gq),
I+ m)ry(a) + ry(x) =0 (mod ¢),

so that by (2.2), (2.7), (2.8) we have
n@ A+ L+ ma+1) = n(l1+ L+ {)ma+1) =0 (mod g),

so that «'+ 1 =0 (mod (1 —¢)?) where a'= {14+ ¢)ma. o is
an associate of a as 14 {4 {2 is a unit of Z[{].
This completes the proof of Lemma 1.

LeMmA 2. - If a, Be Z[{] are such that
(@) az=pg,
() «p#0 (mod (1-0)),
(¢) a=4p (mod (1—2)?),
(@ a~g,
then

x=4f.

ProOF. — Any unit of Z[{] can be expressed in the form {7,
where 0 <t<<q¢—1 and r is a real number. Thus from (d) we have
a={rf. Using (a) we obtain a&=r?ff = r*ad. Now (b) gnaran-
tees that « #~ 0, so that a& # 0, and we must have r2=1,r= +1,
that is, a = +4-{*8, 0<4<g—1. From (b) and (¢) we have

(££—1)f=0 (mod 1—¢)?), F=0 (mod(1—{)),

so that 4(—1=0 (mod (1—{)%). As 4=0,1,...,¢—1 this can
only hold with the positive sign and ¢ =0, so that = 8.

This completes the proof of Lemma 2.

Next let # be any prime of Z[{] dividing the rational prime
P =1 (mod ¢), and let (-/x), denote the corresponding ¢-th power
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~character. We consider the Jacobi sums Jx(k,!), where k,1 are
rational integers, defined by '

p—1 k 14 p—1 k ]
Jn(k’ l) - z.?‘—'o (z)a (7%)11 =z§0 (g)a (w i— 1)41 ’
od p) '

z+y=1(m

If none of k,1, k-1 is divisible by ¢, then ([1], p. 94)
Talky N Ja(ly 1) = p
Moreover, an argument of Davenport-Hasse ([1], p. 153) shows that
Jak, 1) =—1 (mod (1—¢)?) .

LEMMA 3. — Let g be one of 3, 5, 7,11, 13, 17, 19, and let p be a
prime =1 (mod q). Let = be any prime factor of p in Z[L] such that
7=—1 (mod (1—{¢)%). (The existence of such a = i3 guaranteed by
Lemma 1; indeed, there are infinitely many ochoices for m.) Set
me=0x(n), 1<k<qg—1, sothat p=mym, ...7w,_;. Then for 1<l<g—1
we have

(l l) — ( )(a+1)I2 H oy -

k=1

PROOF. — Ag 6,(m,) = s, and Ja(l, 1) = 01(J2(1, 1)) it suffices to
prove the result for I=1. Now set

a=4Jx1,1) and f= <«+1>/21‘[n,,,
so that a@=pf=p,a =f=—1 (mod (1—¢)?). Next
21 (a\kk (x + 1\kk
=Jn1 1 = -
* 1) zgo(n)c( 43 )a

__nil (—w_)k(w + 1)k
=0 \kfa\ Tk /a
71
= 3 a*r-Digg  1)y-ig(mod ng) .

z=0

As Zw" =0 (mod p) for 0 <7 < p —1 we have « = 0 (mod ;) when-
z=0

"#a—1)
ever 1<k<$(¢—1). Thus, ag ad = p, we have a~ [] m;, that is
k=1
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a~f. The result &= f now follows from Lemma 2 completing the
proof of Lemma 3.

3. — Proof of the Theorem.

Let m be any prime of Z[{] dividing p =1 (mod ¢) such that
n=—1 (mod (1—¢)?). Then

o SER) 5

z=0 p v=o0\ P =0 a

p—1

Now if F(2) is a complex-valued function of period p with Y F(2) = 0
B0

then we have

(3.2) 3 (L “) Fo) = (8) T Fasc + 1),

as the number of golutions 2 of 4az(z+1)=y (mod p) is 1+
q—1

+ (a(y+ a)/p). Taking F(y) =lz (y/m). in (3.2), (3.1) becomes by
=0

Lemma 3
_ ‘_" a—1 [p—1 4az(z +1)l
wio = (3) 212 ()
a—1 [4
SO
o 1yasD a “—1(4_11) #g—-1) )
(=1 (P)tgl ﬂlak=1nu" ‘

which proves (1.1).
The transformation z — I gives

2 (57)-26) 7 (55) -2 6)05)
so that

=5

P/z=0 p

a—1 4\ ¥a=1)
— oS () T m—1 oy @),

=1 \i/q k=1

which proves (1.2).
This completes the proof of the Theorem.
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