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Evaluation of Certain Jacobsthal Sums. 
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SM~O. - I n w r i  prim4 q = 3, 5, 7 ,  11, 13, 17 e 19 sono eeattamemte quei 
m m e r i  primi diepari per cui l'amllo Z[C], C = exp (2nilq) B un domido 
a fattmizzaione unica. Per tali numeri primi la eomma di  Jacobethal 

e la e m  aeeociata 

(dove (. / p )  b i l  aimbolo di  Legendre per um numero p r i m  p = 1 (mod q)  
ed a b ton intero non divisibile per p )  ei eeprimono in termini di  oppor- 
t m i  fattori prim4 n m l i z z a t i  di p in Z[C]. I caei q = 3 e 6 eono gib 
etati etudiati da A. R. Rajwade. 

1. - Introduction. 

Recently Rajwade [3], [4] has evaluated the character sums 

where (. /p) is the Legendre symbol, for a prime p SE 1 (mod q), 
a an integer not divisible by p, and q= 3, 5. In this paper we 
extend his results to evaluate these sums and the Jacobsthal sums 

(*) The research of both authore was supported by the National Re- 
search Council of Canada under Grant 8-7233. 



for the primes p = 3, 5, 7 ,11 ,  13, 1 7  and 19. These are precisely 
the odd primes p for which the ring Z[(]', where ( = exp (2ni/p), 
is a unique factorization domain [2], and ya(a), qa(a) are evaluated 
in terms of suitable normalized prime factors of p in Z[(]. 

Let p be a prime = 1 (mod p), where p is one of the primes 
listed above. If n is any prime factor of p in Z[(], we order its 
conjugates by setting n, = a,(n), 1 < k < p - 1, where a, is the auto- 
morphism of &(() determined by a,(() = 5,. If (-In)  is the q-th 
power character defined (for integers y f 0 (mod p)) by (y/n),= ( A  

if yc"-')Ia = ("mod n), this ordering is such that (y/nk), = (y/nl): for 
l<k<p-1. Finally we define, for l<k<q-1,  & to be theunique 
integer such that k& = 1 (mod p), 1 < &< p - 1. OUT result is the 
following 

THEOREM. - Let p be me of 3, 5, 7, 11,13, 17 ,  19, let p be a p r h e  - 1 (mod q), and let a be an integer + 0 (mod p). The%, if n is a%y 
prim.e factor of p i% Z[;(] with n r -1 (mod (1 -02), we have 

and 

2. - Preliminary results. 

We first prove three lemmas. Lemmas 1 and 2 are needed for 
the proof of Lemma 3. Lemmas 1 and 3 are used in the proof of 
the Theorem. (We emphasize that throughout this paper q is re- 
stricted to be one of 3, 5, 7, 11,13, 17 ,  19 so that Z[(] is a U.F.D.) 

L E ~  1. - If a E Z[(] is such that a + 0 (mod (1 - ()), the% a 
possesses a% associate a' such that a' = - 1 (mod (1 - ()a). 

PROOF. - For any ~EZ[ ( ]  we can define (k,, ... , ka-,)~Zg-l uni- 
quely by x = k,( + . . . + k,-,(~-~. We define mappings r,: Z[(] + Z 
(i = 1, 2) by 

so that 

T I )  = 1 (mod p) , r,(l) = 0 (mod p) . 



EVALUATION OF CERTAIN JACOBSTHAL SUMS 

It is easy to verify that  

and that  

(2.3) rl(5x) r rl(x) (mod p) , r2(5x) = rl(x) r2(x) (mod !I) . 

From (2.3) it  follows that  for I = 0, 1, 2, ... 

From (2.2), (2.3), (2.4) it follows using the multinomial theorem 
(or by  induction) that  for m = 0,1 ,2 ,  ... 

r l(( l  + C)"x) = 2"rl(x) (mod p) , 
( 2 . 5 )  

r l ( ( l  + 5 + C2)"x) = 3"rl(x) (mod q) , 
and 

r,((l  + 5 ) " ~ )  = mam-lr1(x) + 3'r2(x) (mod q )  , 
(2'6) rz ( ( l  + C +  C Z ) ~ ~ )  + 3'r2(x) (mod q) . 

Thus from (2.4), (2..5), (2.6) we obtain for I, m = 0 , 1 , ,  ... 

and 

Now let a E Z[5] be such tha t  a f 0 (mod (1 - 5)) so that  rl(a) + 0 
(mod p). If q = 3, 5, 11, 13, or 19, then 2 is a primitive root (mod q), 
and we can choose non-negative integers 1 and m such t,hat 

Zmrl(a) + 1 - 0 (mod p) , 
(21 + m) rl(4 + 2r2(a) = 0 (mod q) , 
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so that by (2.2), (2.7), (2.8) we have 

so that a l + l  = 0 (mod (1-Q2) where a'= C1(1+C)"a. a' is an 
associate of a as 1 + 5 is a unit of Z [ ( ] .  

If q= 7 or 17, then 3 is a primitive root (mod p), and we can 
choose positive integers Z and m such that 

3"r1(a) + 1 E 0 (mod p) , 
(Z + m )  ~ l ( a )  + rz(a) = 0 (mod 9)  , 

so that by (2.2), (2.7), (2.8) we have 

so that a'+ 1 = 0 (mod (1 - 5 ) ~ )  where a'= c l ( l  + 5 + CZ)"a. a' is 
an associate of a as 1+ 5+ Ca is a unit of Z [ ( ] .  

This completes the proof of Lemma 1. 

L E ~  2. - If a, /3 E Z [ ( ]  are s w h  that 

(a )  a a = b 8 ,  

(b) a,B+O ( m o d ( 1 - 5 ) ) ,  

(0)  a  = b (mod ( 1  - 5 ) ~ )  , 
(dl a w B ,  

then 

a = b .  

PROOF. - Any unit of Z [ t ]  can be expressed in the form Cir, 
where 0 <i < q - 1 and r  is a real number. Thus from ( d )  we have 
a = 5' rB. Using (a )  we obtain aE = r a@ = raaE. Now (b) guaran- 
tees that a # 0, so that a8 # 0 ,  and we must have ra=  1, r  = f 1, 
that is, a = f c i P ,  0  gi  < q - 1. From (b) and (c) we have 

so that f C i - l = O  ( r n ~ d ( l - ( ) ~ ) .  As i = O , l ,  ...,q- 1 this can 
only hold with the positive sign and i = 0, so that a = B. 

This completes the proof of Lemma 2. 
Next let n be any prime of Z [ ( ]  dividing the rational prime 

p = 1 (mod q), and let denote the corresponding q-th power 
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character. We consider the Jacobi sums Jn(k, l), where k, 1 are 
rational integers, defined by 

If none of k, 1, k+ 1 is divisible by q, then ([I], p. 94) 

Moreover, an argument of Davenport-Hasse ([I], p. 153) shows that 

Jn(k, 1) - - 1 (mod (1 - 5 ) ~ )  . 
L E ~  3. - Let q be one of 3, 5, 7, 11, 13, 17, 19, and let p be a 

prime = 1 (mod q). Let n be any prime fador of p in Z[[] such that 
n E - 1 (mod (1 - (The existence of such a n is guaranteed by 
Lemma 1 ;  indeed, there are infinitely many choices for n.) 8et 
nk=ak(n), l<k<q-1,  sothatp=nln,  ... ng-,. Thenfor 1<1<q-1 
we have 

PROOF. - As a,(n,) = nz, and Jn(l, 1) = a,(Jn(l, 1)) it suffices to 
prove the result for 1 = 1. Now set 

Ha- 1) 

a = J n ( l , l )  and B = ( - l ) ( a + 1 ) 1 2  fl 7 % ~  
k-1 

so that a ~ = B b = ~ ,  a = B = - 1  (mod (1-5)~). Next 

X f l  
=='%I 2 -0  (zy nz a 

v-1 
As x x n = O  (modp)for O<n<p-1  we havea=O (modn,) when- 

2 -0  
Ha-1) 

ever l<k<Q(q-1). Thus, as aE=p,  we have a- n n ~ ,  that is 
k-1  
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a-#?. The result a = #? now follows from Lemma 2 completing the 
proof of Lemma 3.  

3.' - Proof of the Theorem. 

Let n be any prime of Z [ a  dividing p = 1 (mod q )  such that 
n - 1 (mod (1 - t ) ~ ) .  Then 

9- 1 
Now if P ( z )  is a complex-valued function of period p with 2 F ( z )  = 0 

-0 

then we have 

as the number of solutions z of 4az(z+ 1 )  = y (mod p )  is 1 + 
a-1 + (a(y  + a ) /p ) .  Taking F ( y )  = 2 (y/n):  in (3.2),  (3.1) becomes by 
130 

Lemma 3 

which proves (1.1).  
The transformation x += Z gives . 

2-1  P 2-1 2 - 1  

so that 

which proves (1.2).  
This completes the proof of the Theorem. 
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