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In this Department the Monthly presents easily stated research problems dealing with notions ordinarily
encountered in undergraduate mathematics. Each problem should be accompanied by relevant references (if any
are known to the author) and by a brief description of known partial results. Manuscripts should be sent to
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IS THERE AN OCTIC RECIPROCITY
LAW OF SCHOLZ TYPE?

DuUNCAN A. BUELL AND KENNETH S. WILLIAMS

Recently there has been a revival of interest in the determination of rational reciprocity laws. The
first law of this kind to be discovered was the famous Legendre-Gauss law of quadratic reciprocity

(5

where p and g are odd primes and (p/q) is the Legendre symbol, which is plus or minus one
according as p is or is not a quadratic residue of q.

If one assumes that p = g= 1(mod4) and that (p/q)= + 1, then the symbol (p/q), is plus or minus
one according as p is or is not a quartic residue of g. Under these assumptions Scholz’s reciprocity law

can be stated
(-)-)

where g, denotes the fundamental unit of the real quadratic field Q(y/p) and is an integer modulo g if
P is a square modulo ¢. This law was proved by Scholz [5] in 1934 using class field theory. . Since
then, several more elementary proofs have been published [2], [3], [6], and the expository article by
Emma Lehmer [4] gives an account of recent developments.

Our aim is to formulate an octic analogue of the Scholz reciprocity law under the assumption that
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p and g are primes such that p=g=1 (mod8), (p/q)s=(q/p)s= +1, so that the symbols (p/q)s and
(g/p)s are defined. Then, by (1), we have (g,/q)=(e,/p)= +1, so that (¢,/g), is plus or minus one
according as g, is or is not a quartic residue of g. When the norm of ¢,,, denoted by N (&,,), is equal to
+1, we have to introduce the class number i(pq) of the real field Q(v/pg). It is known [1] that if
p=q=1 (mod8), then

0 (mod8), if N(g,)=-—1,

h("")E{ 0 (mod4), if N(gyg)=+1.

Armed with this information, we can state the following conjecture. Let p and ¢ be primes such
that p=g=1 (mod8) and (p/q)s=(q/p)s= +1, then

o (@G e

)8(;): (_l)h(pq)/4(%) (%), if N (g,0) = +1.
4 4

This conjecture is based on numerical evidence alone and has been verified by machine computa-
tions for all 272 prime pairs (p,q) with p < ¢ <2000, p=g=1 (mod8) and (p/q)s=(q/p)s= +1.

We acknowledge with thanks the help of Hugh C. Williams of the University of Manitoba, who
kindly computed a number of values of 4(pq) for us, and we thank the referee for suggestions which
led to the improvement of the format of this paper.
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INDETERMINATE FORMS OF EXPONENTIAL TYPE

JOHN V. BAXLEY AND ELMER K. HAYASHI

When limf(x)2® yields an indeterminate of the form 0°% oo or 1%, the usual procediire is to
consider g(x)logf(x) and apply L'Hospital’s Rule (see, for instance [1], [2], [4]). However, this method





