We present here a generalization of Apollonius' theorem which makes an interesting geometric application of vector algebra. Let ABCD be any quadrilateral. If M and N are the midpoints of the diagonals AC and BD, respectively, then $(AB)^2 + (BC)^2 + (CD)^2 + (DA)^2 = (AC)^2 + (BD)^2 + 4(MN)^2$ (see Figure 1). Basically $4(MN)^2$ is the appropriate correction factor in the case that the two diagonals do not bisect each other. To see this we use a coordinate system with A at the origin and think of each of the points B, C, D, M, N as a vector β , γ , δ , μ , ν respectively. Now $\mu = \frac{1}{2}\gamma$ and $\nu = \frac{1}{2}(\beta + \delta)$, so by direct computation

$$4(MN)^{2} = \|\beta + \delta - \gamma\|^{2} = \|\beta\|^{2} + \|\delta\|^{2} + \|\beta - \gamma\|^{2} + \|\delta - \gamma\|^{2} + \|\delta - \gamma\|^{2} - \|\beta - \delta\|^{2} - \|\gamma\|^{2}$$

which is our original statement in vector language.

Reference

[1] P. Jordan and J. Von Neumann, On inner products in linear metric spaces, Ann. of Math., (2) 36 (1935) 719-723.

The Quadratic Character of 2 mod p

KENNETH S. WILLIAMS

Carleton University

Here is a very simple proof of the result that

$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$$

for p an odd prime, where the Legendre symbol (2|p) is +1 if 2 is a perfect square mod p and -1 otherwise. In other words, 2 is a perfect square mod p if and only if $(p^2-1)/8$ is even, i.e., if and only if $p \equiv 1$ or 7 (mod 8). The idea is to look at the number N_p of ordered pairs (x, y) — incongruent modulo p — which satisfy

(1)
$$x^2 + y^2 \equiv 4 \pmod{p}, \quad x \not\equiv 0 \pmod{p} \quad \text{and} \quad y \not\equiv 0 \pmod{p}.$$

As the number of z with $z^2 \equiv 2 \pmod{p}$ is given by 1 + (2|p), the number of solutions (x, y) of (1) with $x \equiv \pm y \pmod{p}$ is 2(1 + (2|p)). Now each solution (x, y) with $x \not\equiv y \pmod{p}$ (if any) gives rise to eight distinct solutions of (1), namely $(\pm x, \pm y)$, $(\pm y, \pm x)$, so that we have

$$(2) N_p \equiv 2 + 2\left(\frac{2}{p}\right) \pmod{8}.$$

Next, transforming the variables x, y to y, t by means of the transformation $x \equiv (2 - y)t \pmod{p}$ we see that all the solutions of (1) are given by

$$(x, y) \equiv \left(\frac{4t}{t^2 + 1}, \frac{2(t^2 - 1)}{t^2 + 1}\right) \pmod{p}$$

with $2 \le t \le p - 2$, $t^2 \ne -1 \pmod{p}$. Thus we have

(3)
$$N_p = p - 3 - \left\{1 + \left(\frac{-1}{p}\right)\right\} = p - 4 - (-1)^{(p-1)/2}.$$

Putting (2) and (3) together we obtain

$$\left(\frac{2}{p}\right) \equiv \frac{1}{2}(p - (-1)^{(p-1)/2}) - 3 \pmod{4}$$

$$\equiv \begin{cases} +1 \pmod{4}, & \text{if } p \equiv 1, 7 \pmod{8}, \\ -1 \pmod{4}, & \text{if } p \equiv 3, 5 \pmod{8}. \end{cases}$$

$$As\left(\frac{2}{p}\right) = \pm 1 \text{ and } \frac{p^2 - 1}{8} \equiv \begin{cases} 0 \pmod{2} \Leftrightarrow p \equiv 1, 7 \pmod{8}, \\ 1 \pmod{2} \Leftrightarrow p \equiv 3, 5 \pmod{8}, \end{cases}$$

the required result follows.

Spaces in which Compact Sets are Closed

JAMES E. JOSEPH

The Federal City College

It is known that if the graph G(g) of a function $g: X \to Y$ is compact and compact subsets of X are closed (compact subsets of Y are closed), then g is continuous (closed) ([1], [2]). In this note, we prove the following:

THEOREM. If X is a compact space, the following statements are equivalent:

- (1) Compact subsets of X are closed.
- (2) Any function with a compact graph from X to a space is continuous.
- (3) Any function with a compact graph from a space to X is closed.

Proof. In what follows, let π_x and π_y be the projections from $X \times Y$ onto X and Y respectively. To show that (1) implies (2), let $g \colon X \to Y$ be a function with a compact graph and let $A \subset Y$ be closed; since π_y is continuous, $\pi_y^{-1}(A) \cap G(g)$ is compact and so the image of this set under π_x is compact; so $g^{-1}(A) = \pi_x \left[\pi_y^{-1}(A) \cap G(g)\right]$ is compact in X and thus closed in X. To see that (2) implies (3) let $g \colon Y \to X$ have a compact graph, G(g). Let $A \subset Y$ be closed. Then $\pi_y^{-1}(A) \cap G(g)$ is compact, so $g(A) = \pi_x(\pi_y^{-1}(A) \cap G(g))$ is compact in X. If T is the topology on X, then X is compact with the simple extension, T(g(A)), of T through the compact set g(A) and g(A) is T(g(A))-closed (see [3]). The identity function i from (X, T) to (X, T(g(A))) has a compact graph since $T \subset T(g(A))$ and $T(g(A)) \subset T(g(A))$ renders the function f from f f

G(i) is compact for the identity function i from (X, T(A)) to X (same reasoning as above) so i is closed. Since A is T(A)-closed, A is closed in X. This completes the proof.

References

- [1] M. Kim, A compact graph theorem, this MAGAZINE, 47 (1974) 99.
- [2] I. Kolodner, The compact graph theorem, Amer. Math. Monthly, 75 (1968) 167.
- [3] N. Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964) 22-25.
- [4] A. Wilansky, Topology for Analysis, John Wiley, 1970.