We present here a generalization of Apollonius’ theorem which makes an interesting geometric
application of vector algebra. Let ABCD be any quadrilateral. If M and N are the midpoints of the
diagonals AC and BD, respectively, then (AB)*+ (BC)*+ (CD)*+ (DA )*= (AC) + (BD ) + 4(MN)?
(see FiGUrEe 1). Basically 4(MN)? is the appropriate correction factor in the case that the two diagonals
do not bisect each other. To see this we use a coordinate system with A at the origin and think of each
of the points B, C, D, M, N as a vector 83, v, 8, u, v respectively. Now u =3y and v =3(B + 8), so by
direct computation

4MNY =B+o—y[F=IBIF+18IF+1B-vIF+ 18-y -lB-8IF-lvI

which is our original statement in vector language.
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The Quadratic Character of 2 mod p

KeNNETH S. WiLLIAMS
Carleton University

Here is a very simple proof of the result that
2) -
£) = (=118
()=

for p an odd prime, where the Legendre symbol (2|p)is +1if 2 is a perfect square mod p and —1
otherwise. In other words, 2 is a perfect square mod p if and only if (p>— 1)/8 is even, i.e., if and only if
p =1 or 7 (mod 8). The idea is to look at the number N, of ordered pairs (x, y) — incongruent
modulo p — which satisfy

1 , x*+y?*=4 (mod p), x#0 (modp) and y;é‘ 0 (mod p).

As the number of z with z2 = 2 (mod p) is given by 1+ (2| p), the number of solutions (x, y) of (1)
with x = +y (mod p) is 2(1+ (2| p)). Now each solution (x, y) with x # y (mod p) (if any) gives rise
to eight distinct solutions of (1), namely (£ x, *y), (¥y, *x), so that we have

) N, =242 (%) (mod 8).

Next, transforming the variables x, y to y, t by means of the transformation x = (2— y)t (mod p)
we see that all the solutions of (1) are given by

[ 4 2(:2—1>
(x,)’)—<t2+17 t2+1 (mOdP)

with2=t=p-2, 1 # —1(mod p). Thus we have

3) N,,=p—3—{1+(_71—)}=p_4_(_1)<p—1)/z‘
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Putting (2) and (3) together we obtain

)

1

Hp—(=1)"™"%)=3 (mod 4)
+1 (mod 4), if p = 1,7 (mod 8),

—1(mod 4), if p =3, 5 (mod 8).
0(mod2) & p=1,7(mod8),

2
As(z) = tland%lz{
p 1(mod2) & p =3,5(mod8),

the required result follows.

Spaces in which
Compact Sets are Closed

JamEes E. JosepH
The Federal City College

It is known that if the graph G(g) of a function g: X — Y is compact and compact subsets of X
are closed (compact subsets of Y are closed), then g is continuous (closed) ([1], [2]). In this note, we
prove the following:

THEOREM. If X is a compact space, the following statements are equivalent:
(1) Compact subsets of X are closed.

(2) Any function with a compact graph from X to a space is continuous.
(3) Any function with a compact graph from a space to X is closed.

Proof. In what follows, let 7, and 7, be the projections from X X Y onto X and Y respectively.
To show that (1) implies (2), let g: X — Y be a function with a compact graph and let A C Y be
closed; since m, is continuous, 7;'(A)N G(g) is compact and so the image of this set under m, is
compact; so g '(A)=m [7,'(A)N G(g)] is compact in X and thus closed in X. To see that (2)
implies (3) let g: Y — X have a compact graph, G(g). Let A C Y be closed. Then 7;'(A)N G(g) is
compact, so g(A) = m (7, (A) N G(g))is compact in X. If T is the topology on X, then X is compact
with the simple extension, T(g(A)), of T through the compact set g(A ) and g(A)is T(g(A ))-closed
(see [3]). The identity function i from (X, T) to (X, T(g(A))) has a compact graph since T C T(g(A))
and T(g(A)) C T(g(A)) renders the function h from (X, T(g(A)) to X X X defined by h(x) = (x,x)
continuous and since h(X)= G(i). Thus i is continuous from (2) so g(A)=1i""(g(A)) is T-closed in
X. Finally, to verify that (3) implies (1), let A C X be compact. '

G (i) is compact for the identity function i from (X, T(A)) to X (same reasoning as above) so i is
closed. Since A is T(A)-closed, A is closed in X. This completes the proof.
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