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A description of the factorization of a cubic polynomial over the fields GF(27)
and GF(3") is given. The results are analogous to those given by Dickson for a
cubic over GF(p"),p > 3.

1. INTRODUCTION

A description of the factorization of a cubic polynomial over the field
GF(p*) has been given by Dickson {4] when the characteristic p of the
field is >>3. As p # 3 it is clear that we need only consider cubics f(x) of
the form x% 4 ax + b, where a, b € GF(p®). Further f has no squared
factors if discrim (f) = —4a® — 27b% = 0. If f factors over GF(p™) as a
product of three linear factors we write f = (1, 1, 1), if f factors as a
product of a linear factor and an irreducible quadratic factor we write
S = (1, 2), and finally if fis itself irreducible over GF(p™) we write f = (3).
Denoting a root of y? = —3 by w, so that w e GF(p") if p" = 1 (mod 3)
and w e GF(p**) if p» = 2 (mod 3), we can state Dickson’s theorem as
follows:

Taeorem (Dickson). The factorizations of f(x) = x* + ax + b
(a, be GF(p™), p >3, —4a® — 27b2 5= 0) over GF(p™) are characterized
as follows:

f=(,1,1) < —4a® — 27b% is a square in GF(p"), (LD
say —4a® — 27b% = 81c?, and 1/2(—b + cw) is a cube in GF(p™) (if
p" = 1(mod 3)), GF(p*™) (if p* = 2 (mod 3)),

f=(,2) < —4a® — 27b% is not a square in GF(p"), (1.2)
=)< —4a® — 27b% is a square in GF(p»), (1.3)
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say —4a® — 27b* = 81c?, and 1/2(—b + cw) is not a cube in GF(p™) (if
p* =1 (mod 3)), GF(p*) (if p» = 2 (mod 3)).

In this note we obtain analogous results for cubics over GF(2") and
GF(3%). We make use of Stickelberger’s theorem for both even and odd
characteristics (see for example [1, pp. 159-171] and the well-known
result that the polynomial x2 4 bx + ¢, b(s0) and ¢ e GF(2"), is
reducible over GF(2") if and only tr(c/b?) = 0, where for A e GF(2"),
tr()) = A + A2 + A" + -+ 4 22" denotes the trace of A over GF(2)
(see for example [3, p. 555]).

2. FACTORIZATIONS OVER GF(2%)

Clearly we may take f(x) = x® + ax + b, where a, be GF(2") and
b # 0. We let ¢, , t, denote the roots of #2 4 bt 4 a® = 0, so that #;, ¢,
lie in GF(2"), if tr(a®/b?) = 0, and in GF(2?"), if tr(a®/b?) = 1. As t,t, = ad,
t; , t; are both cubes or both not cubes in GF(2%) (if tr(a®/b%) = 0), GF(2*")
(if tr(a®/6%) = 1). We prove

THEOREM 1. The factorizations of f(x) = x® + ax + b (a, b € GF(2"),
b # 0) over GF(2") are characterized as follows:

f=(,1,1) < tr(a®/b?)
= tr(1), t, , t, cubes in GF(2") (n even), GF(2*") (n odd), .1

f=(1,2) = te(a®b?) # tr(l), 2.2)

f = (3) = tr(a®[b?)
= tr(l), t, , t, not cubes in GF(2") (n even), GF(22") (n odd). (2.3)

Proof. By Stickelberger’s theorem ({1, p. 169]) / has an even number
of irreducible factors over GF(2") if and only if tr(1 + a®/b?) = 1, that is,
f=(,2) if and only if tr(a®/b%) + tr(1). This proves (2.2). To complete
the proof it suffices to prove (2.1).

Iff = (1, 1, 1) then by Stickelberger’s theorem we have tr(1 + 4%/%) = 0,
that is tr(a®/b?) = tr(1). Suppose however ¢, , ¢, are not cubes in GF(2")
(if n even), GF(2**) (if n odd). Let ¢ denote one of ¢, , ¢, and define 6 by
6% = t so that

0 € GF(2%7), B ¢ GF(27), if 2 even,

§eGF(2™),  0¢GF2™), if nodd. 24
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Now
o+ +afo L) o=

so that as f= (1, 1, 1) we have 8 + af?/t € GF(2"). But t € GF(2") (if n
even), GF(22") (if n odd), so that we have 8 € GF(22") (if n even), GF(2**)
(if n odd), which contradicts (2.4).

Now suppose that tr(a?/b?) = tr(1) and ¢, , ¢, are cubes in GF(2") (if
n even), GF(22*) (if n odd). If f 5 (1, 1, 1) then as tr(a®/b?) = tr(1) (so
that £ # (1, 2)) we must have f irreducible over GF(2"). Letting ¢ denote
one of 1, , t, we see that there exists u € GF(2") (n even), GF(2*) (n odd),
such that = u3. As t% 4+ b + o® = 0 we have u® -+ b1® 4+ a® = 0 and so
(v + afu)® + a(u + aju) + b = 0, that s, fhas a root in GF(2") (if n even),
GF(2*") (if n odd), contradicting that fis irreducible over GF(2").

We remark that part of this theorem (namely (2.2)) is given in [3, p. 556],
and that a different characterization is given in [2].

3. FACTORIZATIONS OVER GF(3%)
We begin by proving the following lemma.

LeMMA. The factorizations of x* — x + ¢ (c € GF(3")) over GF(3")
are characterized as follows:

B—x+e=(Q1LDetr(c) =0 3.1

B—x+ec=3)<trlc) #0, 3.2)

where tr(c) = ¢ + ¢ + ¢ 4 -+ 4 "7

Proof.  As discrim (x® — x 4+ ¢) = —4(—1)® — 27¢* = 22, by Stickel-
berger’s theorem [I, p. 164] we have x3 — x -+ ¢ # (I, 2). Moreover it
has no squared factor. Hence x* — x + ¢ = (1, 1, 1) or (3), and it suffices
to prove (3.1).

We let

Vi = {c e GF(3") | tr(c) = 0},
Vo={ceGF(3") |x®* —x +c= (1,1, 1)}
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If ¢ e ¥, there exists x; € GF(3") such that x;> — x; + ¢ = 0, that is
tr(c) = tr(x,® — xy) = tr(x,®%) — tr(x,)
. (x13 4 x19 Lo b x3:)
— (T xP )

— 3% —
=x—-x =0,

implying ce V;, thatis V,C V; .
If ¢, , ¢, € ¥, and A € GF(3) then

tr(c; + ¢,) = tr(ey) -+ tr(c,) = 0, tr(Ac) = Atr(c) = 0,

so that ¥; is a subspace of GF(3") considered as a vector space (of dimen-
sion n) over GF(3). Since card(V;) = 3* ' we havedim V; = n — 1.
If ¢, , ¢, € V, and X € GF(3) then there exist x; , x, € GF(3") such that

(1 + x2)® — Oy + x3) + (61 + ¢)
=(x13"x1+cl)+(x23_’x2+('2):0

and (as A3 =) (Ax)® — (Axy) + Aey = A(x® — x; + ¢;) = 0, implying
V, is also a subspace of the vector space GF(3") over GF(3). Since
card(V,) = 3~ we have dim V, = n — 1.

Hence we have V,CV,, dimV,=dimV,, proving V, =V, as
required.

We are now in a position to treat the factorization of a general cubic
g(x) = ay + ax + ayx® 4 agx® over GF(3"). If a, =0 we work with
(1/as) g(x). If a, # 0 we work with (x3/a;) g(1/x 4 ay/a,).

In both cases the factorization of g(x) can be retrieved, and so it suffices
to consider f(x) = x3 + ax + b (a,b<c GF(3")). Moreover since the
factorization of x3 + b over GF(3") is well-known we can further take
a # 0. We prove

- THEOREM 2. The factorizations of f(x) = x* + ax + b (a, b € GF(3"),
a # 0) over GF(3") are characterized as follows:

f=(@1,1,1)< —ais a square in GF(3"), (3.3)
say —a = ¢?, and tr(b/c®) = 0,

f = (1, 2) <> —a not a square in GF(3"), (3.4

f = (3) < —ais a square in GF(3"), 3.5)

say —a = ¢&, and tr(b/c®) +# 0.
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Proof. (3.4) follows immediately from Stickelberger’s theorem (1,
p. 164]. Hence we can suppose there exists ¢ € GF(3") such that —a = ¢?
so that f(x) = x® — ¢2x + b. We set f*(x) = x* — x 4 b/c® and note
that as f(cx) = ¢3f*(c), f and f* factor in the same way over GF(3").
Hence by the lemma we have f = (1, 1, 1) <> g = (1, 1, 1) = tr(b/c®) = O,
which completes the proof of Theorem 2.

4. REMARK

We remark that similar results for quartic polynomials over GF(p")
(p > 2) can be deduced from [5] (see also [4, 7]) and over GF(2") the
results are given in [6].
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