ANOTHER PROOF OF A THEOREM OF NIVEN

KENNETH S. WILLIAMS, Carleton University, Ottawa

Niven [3] has proved that the gaussian integer a + 2bi (a, b) integers) is the sum of two squares of gaussian integers if and only if $(1+i)^3 \not\parallel a + 2bi$. (If $w \neq 0$) and z are gaussian integers such that $w^k \mid z$, $w^{k+1} \not\mid z$ for some integer $k \geq 1$ we write $w^k \mid z$.) Simple proofs of this result have been given recently by Leahey [1] and Mordell [2]. Here is another simple proof.

We begin by showing that if $(1+i)^3 \not \mid a+2bi$ then a+2bi is the sum of two squares of gaussian integers. If a is odd, so that $1+i \not \mid a+2bi$, we have

$$a + 2bi = \left(\frac{(a+1)}{2} + bi\right)^2 + \left(b - \frac{(a-1)}{2}i\right)^2.$$

If a is even we have $(1+i)^2 |a+2bi|$. If $(1+i)^2 |a+2bi|$, say $a+2bi = (1+i)^2 (c+di)$, where c+d odd, then

$$a + 2bi = \left\{ \left(\frac{c - d + 1}{2} \right) + i \left(\frac{c + d + 1}{2} \right) \right\}^2 + \left\{ \left(\frac{c + d - 1}{2} \right) + i \left(\frac{-c + d + 1}{2} \right) \right\}^2.$$

If $(1+i)^4 | a+2bi$, say $a+2bi = (1+i)^4 (e+fi)$, then we have

$$a + 2bi = ((e - 1) + fi)^{2} + (f - (e + 1)i)^{2}$$
.

Finally suppose $(1+i)^3 \| a+2bi$, say $a+2bi=(1+i)^3(g+hi)$, where g+h is odd. We show that a+2bi is not the sum of two squares of gaussian integers, for if $a+2bi=(a_1+b_1i)^2+(a_2+b_2i)^2$ then

$$(1+i)^3(g+hi) = \{(a_1+b_2) - (a_2-b_1)i\} \{(a_1-b_2) + (a_2+b_1)i\},\,$$

and so on multiplying both sides by their complex conjugates we obtain

$$2^{3}(g^{2} + h^{2}) = \{(a_{1} + b_{2})^{2} + (a_{2} - b_{1})^{2}\}\{(a_{1} - b_{2})^{2} + (a_{2} + b_{1})^{2}\},\$$

which a simple parity argument shows to be impossible as the left hand side is $\equiv 8 \pmod{16}$ yet the right hand side is $\equiv 0, 1, 4, 5, 9, 13 \pmod{16}$. This completes the proof.

References

- 1. W. J. Leahey, A note on a theorem of I. Niven, Proc. Amer. Math. Soc., 16 (1965) 1130-1131.
- 2. L. J. Mordell, The representation of a gaussian integer as a sum of two squares, this MAGAZINE, 40 (1967) 209.
- 3. I. Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc., 48 (1940) 405–417.