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QUARTICS OVER GF(2")

PHILIP A. LEONARD AND KENNETH S. WILLIAMS!

ABSTRACT. A description of the factorization of a quartic
polynomial over the field GF(2") is given in terms of the roots of
a related cubic.

1. Introduction. A description of the factorization of a quartic
polynomial over the field GF(p") in terms of the roots of a related cubic
is known when the characteristic p of the field is odd. For n=1 the result
is due to Skolem [4], and a more recent proof [3] of Skolem’s result can be
carried over to GF(p"), p odd and » arbitrary (n=1). Our object in this
paper is to obtain a precisely analogous result for quartics over GF(2").
For results concerning quadratics and cubics over GF(2"), we refer the
reader to [1] and [2]. We mention only the well-known fact [2], which is
useful below, that the polynomial x2+bx+4-c, b#0, is reducible over
GF(2") if and only if tr(c/b?)=0, where for 21 € GF(2"), tr(A)=A+A2+
224 -4 22" denotes the trace of A over GF(2).

Given a quartic polynomial f(x)=Aux*+ Agx3+ A,x2+ A, x+ A, with
A; € GF(2"),0=i=4, and 4,70, we make a few simplifications. If 4,=0,
we work with

1 A A A
1.1 —fx)=x"+2xF 4+ 2 x + 20,
(L.1) A4f( ) 4, 4, 4,
If 4370, we let « € GF(2") be defined by a?=4,/4,, and consider

1.2 xif (l + ov.) = Ajx* + Apx® 4+ Agx + A,
x

where
Ay = Aot + Agl® + A0 + Ay + Ay, Ap = Ao + A,.
If 4,=0, then « is a root of f(x)=0 in GF(2"), and f(x) can be reduced
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to a cubic. Otherwise, we work with

1 1 A, A A
(1.3) —x4f(—+oc)=x4+—2x2+—3x+—4.

Ay X Ay Ay A,
In all cases we can retrieve the factorization of f(x), and so it suffices to
consider quartics of the form

(1.4) f(x) = x* + a.x® + ayx + a,.

Clearly we may assume a,70. Further we can assume a,7#0, for other-
wise we have f(x)=x*+4a,x3+ay= (x24b,x +b,)?, where b,, b, are defined
by by=a,, bi=a,.

2. Preliminary remarks. Beginning with f(x)=x'+a,x*+a;x+a,,
with a, € GF(2"), 0=Zi=2, and ay,#0, we suppose that f(x) has a
factorization over GF(2") as the product of two quadratics, say

2.1 f(x) = (x2 4 rx 4+ s)(x2 + rx + 1).

Equating coefficients in (2.1) we obtain

2.2) a, =r2+ s +t, a,=r(s+1), a, = st.

As a;7#0, we have r#0; eliminating s+, we find that y=r must be a
root of the equation

23) gy) =y + ayy + a,=0.

On the other hand, if y=r is a root of (2.3), then from s+¢=a,/r, st=a,
in (2.2), we see that s and ¢ can be found in GF(2") precisely when the
quadratic z*4(a,/r)z+a,=0 is reducible, i.e., precisely when

(2.4) tr(‘if) =0.

a;

The following additional remarks about (2.3) will be useful:

(i) Since a,7#0, the equation (2.3) has no repeated roots.

(ii) If y=r is a root of (2.3) then, eliminating the linear factor y+r,
we see that y=r is the only root of (2.3) in GF(2") if and only if
tr(l+ay/r?)=1. In this case

2
tr(s + t) = tr(u) = tr(l +@) =1, ie, tr(i) # tr(i).
r? re P2 r2 r2

Therefore, if y=r is the unique root of (2.3), and if it gives rise to a
factorization of the form (2.1), then one of the quadratic factors is reduc-
ible and the other is irreducible.
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(iif) If y=ry, r,, ry are three roots of (2.3) in GF(2") then r;+r,+r;=0,
so that

tr((ap/al)(ri + 15 + r3) =0,

and thus exactly one or three of the r, (i=1, 2, 3) will satisfy
tr(ay,rilal)=0.

3. Proof of the Theorem. A few examples will illustrate the shorthand
used in the statement of the Theorem. If 4(x) is a quartic over GF(2")
which factors as a product of two linear factors times an irreducible
quadratic, we write A= (1, 1, 2); if A(x) is a cubic irreducible over GF(2"),
we write h=(3). Also, we use ry, ry, F5 below to indicate roots of (2.3)
when they exist in GF(2"), and set w,=a,r?/d; in this case.

THEOREM.  The factorizations of f(x) over GF(2") are characterized as
follows:

@) f=, 1,1, D<g=(1, 1, 1) and tr(wy)=tr(w,)=tr(iv5)=0,

(b) =2, 2)<=g=(1, 1, 1) and tr(w)=0, tr(wy)=tr(wg)=1,

(©) f=(1,3)<>g=(3),

(d) f=(,1,2)<=g=(1, 2) and tr(w)=0,

(e) f=(d)<=g=(1,2) and tr(w))=1.

Proor. (a) If f=(I, 1,1, 1) there are 6 factorizations (2.1), giving
rise to 3 distinct values of r. As each r, does come from a factorization,
tr(w,)=0 for /=1, 2, 3. The converse is clear.

(b) If f=(2, 2) then there is precisely one r; with tr(w;)=0, because
there are precisely two factorizations (2.1). On the other hand, y=r,
cannot be the unique root of (2.3) by remark (ii) of §2. Thus the conclu-
sion follows, and again the converse is clear.

(c) If f=(I1, 3), then no factorization of the form (2.1) can exist, even
in the field GF(2%"), a quadratic extension of GF(2"). If (2.3) has any
roots y=r in GF(2"), then corresponding values s,  may be found, at
least in GF(2%"). Therefore there can be no roots, that is g=(3). Con-
versely, if g=(3) then (2.3) has no roots even in GF(2%"), and we must
have f=(1, 3).

(d) If f=(1, 1, 2) then there are exactly 2 factorizations (2.1), corre-
sponding to r; with tr(w;)=0. By (a) and (b), and remark (iii) of §2,
y=ry is the only root of (2.3) and the conclusion follows. The converse
comes easily from (ii) of §2.

(e) As all other possibilities have been exhausted, no proof is necessary.
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