$(\tau\sqrt{5}, \tau, \tau^{-2}), (2\tau, 2, 2\tau^{-1}), (\tau^2, \tau^2, \tau^{-1}\sqrt{5}), (\sqrt{5}, \sqrt{5}, \sqrt{5}).$ Symmetry is that of the cube.

- 6c. Edge-first of a $\{5, 3, 3\}$ of edge $2\tau^{-2}$, with $\alpha = 3^{-1/2}\tau^{-3}$: $(\tau^2, \tau^{-2}, \alpha\tau^4)$, $(\tau^2, \tau^{-1}, \alpha\tau^2\sqrt{5})$, $(\tau^2, 1, \alpha)$, $(\sqrt{5}, \tau^{-1}, \alpha\tau^5)$, $(\sqrt{5}, 1, \alpha\tau^3\sqrt{5})$, $(\sqrt{5}, \tau, \alpha\tau)$, $(2, 0, 2\alpha\tau^4)$, $(2, 1, 3\alpha\tau^3)$, $(2, \tau, \alpha\tau^4)$, (2, 2, 0), $(\tau, 0, 4\alpha\tau^3)$, $(\tau, \tau^{-1}, \alpha\tau^2(2\tau^2+1))$, $(\tau, \tau, \alpha(\tau^5+1))$, $(\tau, 2, 2\alpha\tau^3)$, $(\tau, \sqrt{5}, \alpha\tau^3)$, $(1, 0, \alpha(\tau^6+1))$, $(1, 1, \alpha\tau^6)$, $(1, \tau, \alpha\tau^4\sqrt{5})$, $(1, \sqrt{5}, \alpha\tau^3\sqrt{5})$, $(1, \tau^2, \alpha\tau^2)$, $(\tau^{-1}, \tau^{-1}, \alpha\tau(\tau^5+1))$, $(\tau^{-1}, 2, 2\alpha\tau^4)$, $(\tau^{-1}, \tau^2, \alpha\tau^2\sqrt{5})$, $(0, \tau^{-2}, 3\alpha\tau^4)$, $(0, \sqrt{5}, 3\alpha\tau^3)$, $(0, \tau^2, 3\alpha\tau^2)$. Symmetry is that of the hexagonal prism.
- 6d. Face-first of a $\{5, 3, 3\}$ of edge $2\tau^{-2}$, with $\beta = 5^{-1/4}\tau^{-5/2}$: $(\tau^2, 0, 2\beta\tau^2)$ $(\tau^2, \tau^{-1}, \beta\tau^3)$, $(\tau^2, 1, \beta\tau)$, $(\sqrt{5}, 0, 2\beta\tau^3)$, $(\sqrt{5}, 1, \beta\tau^4)$, $(\sqrt{5}, \tau, \beta\tau^2)$, $(2, \tau^{-1}, \beta\tau^3\sqrt{5})$, $(2, \tau, \beta\tau^2\sqrt{5})$, (2, 2, 0), $(\tau, \tau^{-2}, \beta\tau^5)$, $(\tau, 1, \beta\tau^2(3\tau 1))$, $(\tau, \tau, 3\beta\tau^2)$, $(\tau, 2, 2\beta\tau^2)$, $(\tau, \sqrt{5}, \beta\tau)$, $(1, \tau^{-1}, 3\beta\tau^3)$, $(1, 1, \beta\tau^2(\tau + 3))$, $(1, 2, 2\beta\tau^3)$, $(1, \sqrt{5}, \beta\tau^4)$, $(1, \tau^2, \beta)$, $(\tau^{-1}, 0, 2\beta\tau^4)$, $(\tau^{-1}, \tau, \beta\tau^5)$, $(\tau^{-1}, \tau^2, \beta\tau^3)$. Symmetry is that of the decagonal prism.

Reference

1. H. S. M. Coxeter, Regular Polytopes, 2nd ed., Macmillan, New York, 1963.

$$ON \sum_{n=1}^{\infty} (1/n^{2k})$$

KENNETH S. WILLIAMS, Carleton University, Ottawa

In this note we give a simple proof of the well-known result ([1], [3])

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{2^{2k-1}\pi^{2k}B_k}{(2k)!}, \qquad k = 1, 2, 3, \cdots,$$

where B_k is the kth Bernoulli number, defined by

$$\sum_{k=1}^{\infty} B_k \frac{x^{2k}}{2k!} = 1 - \frac{x}{2} \cot \frac{x}{2}, \qquad |x| < 2\pi.$$

The proof is accomplished by estimating the sum $\sum_{r=1}^{n} \cot^{2k}(r\pi/2n+1)$, for large n, in two different ways (Lemmas 1 and 2).

LEMMA 1.

$$\lim_{n\to\infty}\frac{1}{(2n)^{2k}}\sum_{r=1}^{n}\cot^{2k}\left(\frac{r\pi}{2n+1}\right)=\frac{2^{2k-1}}{(2k)!}B_k, \qquad k=1, 2, 3, \cdots.$$

Proof. For $k = 1, 2, 3, \cdots$, let

$$s_n(k) = \frac{1}{(2n)^{2k}} \sum_{r=1}^n \cot^{2k} \left(\frac{r\pi}{2n+1} \right).$$

Now the numbers cot $(r\pi/2n+1)$, $r=\pm 1, \pm 2, \cdots, \pm n$, are the 2n roots of $(z+i)^{2n+1}-(z-i)^{2n+1}=0$. This equation can be written

(1)
$${2n+1 \choose 1} z^{2n} - {2n+1 \choose 3} z^{2n-2} + \cdots + (-1)^n {2n+1 \choose 2n+1} = 0.$$

We note that $2(2n)^{2k}s_n(k)$ is the sum of the 2kth powers of the roots of (1). Thus, by Newton's identity [2] for $n \ge k$, we have on dividing through by $2(2n)^{2k}\binom{2n+1}{1}$

$$(2) s_n(k) - \frac{\binom{2n+1}{3}}{\binom{2n+1}{1}(2n)^2} s_n(k-1) + \cdots + (-1)^{k-1} \frac{\binom{2n+1}{2k-1}}{\binom{2n+1}{1}(2n)^{2k-2}} s_n(1) + (-1)^k \frac{\binom{2n+1}{2k+1}k}{\binom{2n+1}{1}(2n)^{2k}} = 0.$$

Next we take $k = 1, 2, 3, \dots$, successively in (2). As

$$\lim_{n \to \infty} \frac{\binom{2n+1}{2r+1}}{\binom{2n+1}{1} (2n)^{2r}} = \frac{1}{(2r+1)!}$$

for $r=1, 2, \dots, k$, we see that $\lim_{n\to\infty} s_n(k)$ (exists) $=d_k$ (say), where $d_k(k=1, 2, 3, \dots)$ is given recursively by

(3)
$$d_k - \frac{d_{k-1}}{3!} + \dots + (-1)^{k-1} \frac{d_1}{(2k-1)!} = (-1)^{k-1} \frac{k}{(2k+1)!}$$

A simple inductive argument shows that $|d_k| < 1$, $k = 1, 2, \dots$, so that $\sum_{k=1}^{\infty} d_k x^{2k}$ converges absolutely for |x| < 1. Thus using the product theorem for absolutely convergent series we have for |x| < 1

$$\left\{ \sum_{k=1}^{\infty} d_k x^{2k} \right\} \sin x = \left\{ \sum_{k=1}^{\infty} d_k x^{2k} \right\} \left\{ \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l+1}}{(2l+1)!} \right\}$$

$$= \sum_{m=0}^{\infty} \left\{ \frac{d_m}{1!} - \frac{d_{m-1}}{3!} + \dots + (-1)^{m-1} \frac{d_1}{(2m-1)!} \right\} x^{2m+1}$$

$$= \sum_{m=0}^{\infty} (-1)^{m-1} \frac{m}{(2m+1)!} x^{2m+1} \text{ (using (3))}$$

$$= \frac{1}{2} \left\{ \sin x - x \cos x \right\}$$

so that

$$\sum_{k=1}^{\infty} d_k x^{2k} = \frac{1}{2} - \frac{x}{2} \cot x = \frac{1}{2} \sum_{k=1}^{\infty} B_k 2^{2k} \frac{x^{2k}}{2k!} \cdot \frac{x^{2k}}{2k!}$$

Equating coefficients we have $d_k = (2^{2k-1}/(2k)!)B_k$, which proves the result.

LEMMA 2.

$$\lim_{n\to\infty}\frac{1}{(2n+1)^{2k}}\sum_{r=1}^{n}\cot^{2k}\left(\frac{r\pi}{2n+1}\right)=\frac{1}{\pi^{2k}}\sum_{r=1}^{\infty}\frac{1}{r^{2k}}, \qquad k=1, 2, \cdots.$$

Proof. The function $\cot^{2k} z$ has a pole of order 2k at z=0 and is analytic in the annulus $0 < |z| < \pi$. By Laurent's theorem there exist complex numbers $a_{-2k} \neq 0$, $a_{-(2k-1)}, \cdots, a_{-1}, a_0, a_1, \cdots$ such that

$$\cot^{2k} z = \frac{a_{-2k}}{z^{2k}} + \cdots + \frac{a_{-1}}{z} + a_0 + a_1 z + \cdots,$$

valid for $0 < |z| < \pi$. Clearly $a_{-2k} = \lim_{z \to 0} z^{2k} \cot^{2k} z = (\lim_{z \to 0} z \cot z)^{2k} = 1$. Let $a(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ so that a(z) is analytic in $|z| < \pi$. Thus in particular a(z) is continuous on the compact set $\{z \mid |z| \le \pi/2\}$ and so is bounded there, that is, there is a real number $A(k) \ge 0$ such that $|a(z)| \le A(k)$, for $|z| \le \pi/2$. But

$$a(z) = \begin{cases} \cot^{2k} z - \frac{a_{-2k}}{z^{2k}} - \cdots - \frac{a_{-1}}{z}, & 0 < |z| \leq \pi/2, \\ a_0, & z = 0, \end{cases}$$

so that

$$\left|\cot^{2k} z - \frac{a_{-2k}}{z^{2k}} - \cdots - \frac{a_{-1}}{z}\right| \le A(k), \quad 0 < |z| \le \pi/2.$$

Hence there exists a real number $B(k) \ge 0$ such that

$$\left|\cot^{2k} z - \frac{1}{z^{2k}}\right| \le A(k) + \frac{B(k)}{|z|^{2k-1}}, \quad 0 < |z| \le \pi/2.$$

Taking $z=r\pi/2n+1$ $(r=1, 2, \dots, n)$ we have

$$\left|\cot^{2k}\left(\frac{r\pi}{2n+1}\right) - \frac{(2n+1)^{2k}}{\pi^{2k}r^{2k}}\right| \leq A + \frac{B(k)(2n+1)^{2k-1}}{\pi^{2k-1}r^{2k-1}},$$

so that

$$\left| \frac{1}{2n+1} \sum_{r=1}^{n} \cot^{2k} \left(\frac{r\pi}{2n+1} \right) - \frac{1}{\pi^{2k}} \sum_{r=1}^{n} \frac{1}{r^{2k}} \right| \leq \sum_{r=1}^{n} \left| \frac{1}{(2n+1)^{2k}} \cot^{2k} \left(\frac{r\pi}{2n+1} \right) - \frac{1}{\pi^{2k} r^{2k}} \right| \leq \sum_{r=1}^{n} \left\{ \frac{A(k)}{(2n+1)^{2k}} + \frac{B(k)}{\pi^{2k-1} (2n+1) r^{2k-1}} \right\}$$
$$\leq \frac{A(k)n}{(2n+1)^{2k}} + \frac{B(k)}{\pi} \frac{(1+\log n)}{(2n+1)},$$

as

$$\sum_{r=1}^{n} \frac{1}{r^{2k-1}} \le \sum_{r=1}^{n} \frac{1}{r} < 1 + \int_{1}^{n} \frac{dt}{t} = 1 + \log n.$$

Hence as

$$\lim_{n \to \infty} \left\{ \frac{A(k)n}{(2n+1)^{2k}} + \frac{B(k)}{\pi} \frac{(1+\log n)}{2n+1} \right\} = 0$$

we have

$$\lim_{n \to \infty} \frac{1}{(2n+1)^{2k}} \sum_{r=1}^{n} \cot^{2k} \left(\frac{r\pi}{2n+1} \right) = \frac{1}{\pi^{2k}} \sum_{r=1}^{\infty} \frac{1}{r^{2k}}.$$

Theorem.
$$\sum_{n=1}^{\infty} 1/n^{2k} = (2^{2k-1}\pi^{2k}B_k)/(2k)!, k=1, 2, 3, \cdots$$

Proof. This follows immediately from Lemmas 1 and 2 as $\lim_{n\to\infty} (2n/2n+1)^{2k} = 1$, for fixed k.

References

- 1. T. J. I' A. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan, London, 1959, p. 298.
 - 2. I. N. Herstein, Topics in Algebra, Blaisdell, New York, 1965, p. 208.
 - 3. K. Knopp, Theory and Application of Infinite Series, Blackie, London, 1951, p. 237.

PRODUCTS OF TRIANGULAR MATRICES

NATIONAL SCIENCE FOUNDATION PROGRAM FOR HIGH SCHOOL STUDENTS LEHIGH UNIVERSITY, BETHLEHEM, PENNSYLVANIA

The following theorem was given in [1] (with an interesting application), and given another proof in [2]. In the summer of 1971 some members of the above-named program gave the proof shown here, and the extension given below.

THEOREM. Let S_1, S_2, \dots, S_n be $n \times n$ upper triangular matrices over a ring R such that the (i, i) entry of S_i is 0, then $S_1S_2 \cdots S_n = 0$.

For $P = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ we have $PS_1 = (0, y_2, y_3, \dots, y_n)$, $PS_1S_2 = (0, 0, z_3, z_4, \dots, z_n)$, \dots , PM = 0 where $M = S_1S_2 \dots S_n$. Thus M is the zero map. That M = 0 follows from taking P to be successively $(1, 0, 0, \dots)$, $(0, 1, 0, \dots)$, \dots . In case R has no identity we may adjoin an identity, obtaining a ring R' and apply the above argument to R' instead of R.

EXTENSION. The full force of the hypotheses was not used. For example, it is enough to assume about S_1 that its first column is zero, about S_2 that its first two columns are zero after the first term, and so on.

References

- 1. G. P. Barker, Triangular matrices and the Cayley-Hamilton theorem, this MAGAZINE, 44 (1971) 34–36.
- 2. M. Stojakovic, On a theorem of G. P. Barker on triangular matrices, this MAGAZINE, 44 (1971) 133-134.