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(T'\/gr T, 7—2)1 (27, 2, 27_1)) (Tz, 7%, T_l'\/g)v ('\/gv '\/3, '\/3)* Symmetry is
that of the cube.

Edge-first of a {5, 3, 3} of edge 2772, with a=3"Y2r3%: (72, 772, ar?),
(2 7L ar/5), (1% 1, @), W5, 774, ar%), /5, 1, ar™/5), /5, 7, ar),
(2, 0, 2a7Y), (2, 1, 3a7®), (2, 7, a%), (2, 2, 0), (7, O, 4a7?), (7, 771, ar?
(2r24-1)), (r, 7, a(®+1)), (1, 2, 2a1%), (v, V5, ar?), (1, 0, a(rs+1)),
(11 1, aTG)’ (1’ T, OlT4'\/§), (1"\/§y a73\/§)1 (1y T2, 0(72), (T—ly T, (XT(7'5+1)),
(7Y, 2, 2ar%), (71, 72, ar®/5), (0, 772, 3ar?), (0,45, 3ar), (0, 72, 3ar?).
Symmetry is that of the hexagonal prism.

Face-first of a {5, 3, 3} of edge 2772, with B=5-14—6/2; (72, 0, 2067?%)
(r2, 771, Br9), (1% 1, Br), (W5, 0, 267%), (W5, 1, BrY), W5, 7, BrY), (2, 77,
673'\/3)v ,r, 672'\/3)’ 2,2,0), (r, 77 Br9), (7, 1, Br%(37—1)), (7, 7, 3672,
(r, 2, 28r%), (r, V/5, Br), (1, 774, 36r%), (1, 1, Bri(r+3)), (1, 2, 2B79),
1, '\/g) prY, (1, 7% 8), (+71, 0, 2674, (74, 7, Br9), (71, 72, Br). Symmetry
is that of the decagonal prism.
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ON 2.7, (1/n%)
KENNETH S. WILLIAMS, Carleton University, Ottawa

In this note we give a simple proof of the well-known result ([1], [3])

) 1 22k—-11l.2kB
= T k=1,2,3-,
=g (2R)!
where By, is the kth Bernoulli number, defined by
© x2k % x
By— =1 ——cot — x| < 2m.
g Yy gty el <o

The proof is accomplished by estimating the sum » ., cot®*(rr/2n+1), for
large #, in two different ways (Lemmas 1 and 2).

LEmMma 1.

1 rr 221
lim Zcot%( > = B, k=1,2,3, .-

oo (21)% w41/ (k!

Proof. For k=1,2,3, .-, let

1 n
sa(k) = > cot? (

(2n)* 1= 2n + 1)'

Now the numbers cot (rw/2n+1), r=11, +£2, - - -, +u, are the 2x roots of
(z+12) 21— (3 —1)2»+1=0. This equation can be written
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2n 41 \ <2n—|—1> - <2n+1>
n n— o e e — n =0
W ( 1 )z R LA ) 2+ 1

We note that 2(2#)%s,(k) is the sum of the 2kth powers of the roots of (1).
Thus, by Newton’s identity [2] for #=%, we have on dividing through by

2(2n)™ )
("5)

n(B) — ———— s, (F— 1 c e
sn(k) P sa( )+
( . )(2%)2
(2)
<2n + 1> <2n -+ 1>k
T (e
20+ 1 * 241
)(2n)2k—2 )(zn)Zk
1 1
Next we take k=1, 2, 3, « - -, successively in (2). As
(2% + 1)
. 2r+ 1 1
lim P =(2+1)|
n— o r :
(= oo
1
for r=1, 2,.--, k, we see that limu., s.(k) (exists)=d; (say), where
dir(k=1, 2, 3, - - +) is given recursively by
dr—1 1
3 i — _) = ()l
®) TR 2k — 1)1 (=1 2k + 1)
A simple inductive argument shows that Idkl <1, k=1, 2, .-, so that

> w1 dx? converges absolutely for [x] <1. Thus using the product theorem
for absolutely convergent series we have for |x| <1

(5 aed dns = { s} {5 C02

k=1 k=1 = (2 + 1)!

® (dw Ay d
_ Z{_ 1 IR (_l)m—l____l____}me-l-l

burfl CYRIET, m — 1)!
0 m .
= Z (—1)"‘_1 m g2mt1 (USIDg (3))
m=0 .
= 3{sin # — » cos «}
so that
i 1 x 12 X%
D dwtt = — — —cotx = — y, B2% — .

= 2 2 22
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Equating coefficients we have dj = (2%-1/(2k)!) B, which proves the result.

LEMMA 2.

2 rT 1 21
2k _ — P = “ e
z , cot’ ( ) " TZI; f%} k=12, .

lim ———
now (2n 4 1)% .25 21+ 1

Proof. The function cot?* z has a pole of order 2%k at 2=0 and is analytic in
the annulus 0<|z] <w. By Laurent’s theorem there exist complex numbers

070, a_@k—1), * * *, @1, @0, @1, * + + such that
ok a2k a—1
cot? z = 2k+5-~—|——+ao+alz—l—~~~,
z 2

valid for O<| [ <w. Clearly a_z =limg.o 2% cot? z=(lim,.o 2 cot 2)?*=1. Let
a(2) =ao+a1z+as2?+ - - - so that a(z) is analytic in zI <. Thus in particular
a(2) is continuous on the compact set {z] Izl =w/2 and so is bounded there,
that is, there is a real number 4 (k) =0 such that I a(z)| <A (k), for I z[ <w/2.But

cotte g — —% = 0< |z| S /2
—_— e — —_ =
a(z) = 5% z ’
Qo g = 0,

so that

a2k —1

cotthg——— — .. — —|=4®, 0<|z] =w/2
2

Hence there exists a real number B (k) =0 such that

B(%)

l I2Ic1

AR+ ——> 0<|z| £a/2.

1
cot? g — —
22

Taking z=r7/2n-+1 (r=1, 2, - - -, n) we have
r 2n 4 1)%
cot2’°< il > - ( ) =4+

2+ 1 ake% |

B(k)(2n + 1)%-1

7r2k— 12k—1

so that

1 L rw
Zcotz"( > — -—2;';1 | =

2n 4 1)% 5 2n+1

n

rmT
tzk
E (n+ )% (2n—l-1>

n A(k) B(k)
= El <(2n + 1)% + w2=1(2n + 1)1’2’0‘1}

A®R)n B(k) (1 + logn)
T (n 4+ 1) r  (n-+1)

1

2ky2k

as
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Hence as

{ AB)n B(k) (1 + log n)} _
Qn+1)% ' = w41

we have

1 2.1
1. § = —— E —_—
n—> 0 (27& + 1)2k re=1 <2 ‘{- > w2k r=1 y2k

THEOREM. p ., 1/n=(22-172%8B,)/(2k), k=1, 2, 3,

Proof. This follows immediately from Lemmas 1 and 2 as limp.(27/274-1)% =1,
for fixed k.
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PRODUCTS OF TRIANGULAR MATRICES

NATIONAL SCIENCE FOUNDATION PROGRAM FOR HiGH SCHOOL STUDENTS
LenIGH UNIVERSITY, BETHLEHEM, PENNSYLVANIA

The following theorem was given in [1] (with an interesting application),
and given another proof in [2]. In the summer of 1971 some members of the
above-named program gave the proof shown here, and the extension given
below.

THEOREM. Let Si, Sz, -+ +, Su be nXn upper triangular matrices over a ring
R such that the (3, 1) entry of Si1s 0, then S1S; - - - S, =0.

For P=(x1, %3 -+ +, %, ) ER" we have PS1=(0, vz, ¥3, - * *, Yu), PS1S2
=(0,0, 23, 3¢, -+, 2n), - » +, PM=0 where M=35,S; - - - S,. Thus M is the
zero map. That M =0 follows from taking P to be successively (1, 0, 0, - - -),
0,1,0,-:-),--.1Incase R has no identity we may adjoin an identity, ob-

taining a ring R’ and apply the above argument to R’ instead of R.

ExTENSION. The full force of the hypotheses was not used. For example, it is
enough to assume about S; that its first column is zero, about S, that its first
two columns are zero after the first term, and so on.
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