Canad. Math. Bull. Vol. 14 (3), 1971

NOTE ON THE NUMBER OF SOLUTIONS OF $f(x_1) = f(x_2) = \cdots = f(x_r)$ OVER A FINITE FIELD

BY KENNETH S. WILLIAMS

Let GF(q) denote the finite field with $q=p^n$ elements and let

(1)
$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x,$$

where each $a_i \in GF(q)$ and 1 < d < p. For r = 2, 3, ..., d we let n_r denote the number of solutions $(x_1, ..., x_r)$ over GF(q) of

(2)
$$f(x_1) = f(x_2) = \cdots = f(x_r),$$

for which $x_1, x_2, ..., x_r$ are all different. Birch and Swinnerton-Dyer [1] have shown that

(3)
$$n_r = \nu_r q + O(q^{1/2}), \quad r = 2, 3, \ldots, d,$$

where each ν_{τ} is a nonnegative integer depending on f and q and the constant implied by the O-symbol depends here, and throughout the paper, only on d. It is the purpose of this note to calculate ν_2 and conjecture the value of ν_3 in terms of the number of absolutely irreducible factors over GF(q) of

(4)
$$f^*(x, y) = \frac{f(x) - f(y)}{x - y}.$$

In order to do this we introduce, for $x \in GF(q)$,

(5)
$$n(x) = \sum_{\substack{y \in GF(q) \\ f(x) = f(y)}} 1,$$

so that

(6)
$$n_{\tau} = \sum_{x \in GF(q)} \left\{ \prod_{i=1}^{\tau-1} (n(x) - i) \right\}.$$

In particular

$$\begin{split} n_2 &= \sum_{x \in GF(q)} (n(x) - 1) \\ &= \sum_{\substack{x,y \in GF(q) \\ f^*(x,y) = 0}} 1 + O(1) \\ &= aq + O(q^{1/2}), \end{split}$$

appealing to a result based on the deep work of Lang and Weil (see [2, Lemma 8]), where a is the number of absolutely irreducible factors of $f^*(x, y)$ over GF(q). Clearly $0 \le a \le d-1$. Hence we have proved:

THEOREM 1. For $q \ge A_1(d)$, where $A_1(d)$ is a constant depending only on d,

$$(7) v_2 = a.$$

A similar result for v_3 seems difficult to obtain and we prove only

THEOREM 2. For $q \ge A_2(d)$, where $A_2(d)$ is a constant depending only on d,

(8)
$$a^2 - a \le \nu_3 \le (d-3)(a+1) + 2$$
.

We have from (6)

$$n_3 = \sum_{x \in GF(q)} (n(x)-1)(n(x)-2)$$

so that

$$\sum_{x \in GF(q)} \{n(x)\}^2 = n_3 + (3a+1)q + O(q^{1/2}).$$

Now

$$\frac{1}{q} \left\{ \sum_{x \in GF(q)} n(x) \right\}^2 \le \sum_{x \in GF(q)} \{ n(x) \}^2 \le \max_{x \in GF(q)} n(x) \cdot \sum_{x \in GF(q)} n(x)$$

so that

$$\frac{1}{q}\{(a+1)q+O(q^{1/2})\}^2 \leq n_3+(3a+1)q+O(q^{1/2}) \leq d\{(a+1)q+O(q^{1/2})\}$$

giving

$$(a^2-a)q+O(q^{1/2}) \le n_3 \le ((d-3)(a+1)+2)q+O(q^{1/2}),$$

which gives the result.

Theorem 2 gives the exact value of v_3 when

$$a^2-a=(d-3)(a+1)+2$$

that is when

$$a = d-1$$
,

in which case $f^*(x, y)$ factorizes completely into linear factors over GF(q). Such a polynomial is extremal of index d-1 and has $v_3 = a^2 - a$ (see [3]). More generally if f(x) is extremal of index a ($0 \le a \le d-1$), that is $f^*(x, y)$ in its unique decomposition into irreducible factors has a linear factors and no non-linear absolutely irreducible factors, then $v_3 = a^2 - a$. If we write l for the number of linear factors of $f^*(x, y)$ over GF(q) in the case of extremal polynomials we have a = l. Next let

us examine some polynomials of small degree for which $a \ne l$. If $f(x) = x^3 + cx(c \ne 0)$, $f^*(x, y) = x^2 + xy + y^2 + c$, which is absolutely irreducible over GF(q) as p > 3. In this case a = 1, l = 0, $v_3 = 1$. If $f(x) = x^4 + cx^2(c \ne 0)$, $f^*(x, y) = (x + y)(x^2 + y^2 + c)$, so that a = 2, l = 1, $v_3 = 3$. Finally if $f(x) = x^4 + cx^2 + ex$ ($e \ne 0$), $f^*(x, y)$ is absolutely irreducible over GF(q) as p > 4, and a = 1, l = 0, $v_3 = 1$. In all these examples we see that $v_3 = a^2 - l$ and so we make our first conjecture.

Conjecture 1. For $q \ge A_3(d)$, where $A_3(d)$ is a constant depending only on d,

$$(9) v_3 = a^2 - l.$$

It is easy to check that this conjecture is consistent with Theorem 2, we have only to prove that

$$a^2 - l \le (d-3)(a+1) + 2$$
.

As the sum of the degrees of the l linear factors and the (a-l) nonlinear absolutely irreducible factors of f^* is at most the degree of f^* we have

$$1 \cdot l + 2(a-l) \le d-1.$$

that is,

$$l \geq 2a-d+1$$
,

so that

$$a^2-l \le a(a-2)+d-1$$

 $\le a(d-3)+d-1$, as $a \le d-1$,
 $= (a+1)(d-3)+2$,

as claimed.

Conjecture 1 could be proved if we could prove

Conjecture 2. If a(x, y), a'(x, y) are nonlinear absolutely irreducible factors of $f^*(x, y)$ over GF(q) (possibly a=a') then the number of solutions (x, y, z) over GF(q) of a(x, y) = a'(x, z) = 0 with $x \neq y$, $y \neq z$, $z \neq x$ is $q + O(q^{1/2})$.

To see this we write (as f^* has no squared factors over GF(q)).

(10)
$$f^*(x,y) = \prod_{i=1}^l l_i(x,y) \prod_{j=1}^{a-l} a_j(x,y) \prod_{k=1}^m t_k(x,y),$$

where each l_i is linear, each a_j is nonlinear and absolutely irreducible over GF(q), and each t_k is irreducible but not absolutely irreducible over GF(q). Now the number of solutions (x, y, z) over GF(q) with $x \neq y$, $y \neq z$, $z \neq x$ of

- (i) $l_i(x, y) = l_j(x, z) = 0$ is q + O(1), if $i \neq j$; 0 if i = j (see [3]),
- (ii) $l_i(x, y) = a_j(x, z) = 0$ or $a_j(x, y) = l_i(x, z) = 0$ is $q + O(q^{1/2})$, as a_j is absolutely irreducible,
 - (iii) $a_i(x, y) = a_i(x, z) = 0$ is $q + O(q^{1/2})$, by Conjecture 2,

(iv) $t_i(x, y) = a_i(x, z) = 0$ or $t_i(x, y) = l_i(x, z) = 0$ or $t_i(x, y) = t_i(x, z) = 0$ is O(1) as t_i is irreducible but not absolutely irreducible (see [3]).

Hence n_3 , which is just the number of solutions of $f^*(x, y) = f^*(x, z) = 0$ with $x \neq y$, $y \neq z$, $z \neq x$, is given by

$$(l^2-l)(q+O(1))+2(a-l)l(q+O(q^{1/2}))+(a-l)^2(q+O(q^{1/2}))\\+2m(a+m)O(1)=(a^2-l)q+O(q^{1/2}),$$

as conjectured.

REFERENCES

- 1. B. J. Birch and H. P. F. Swinnerton-Dyer, *Note on a problem of Chowla*, Acta Arith. 5 (1959), 417-423.
- 2. J. H. H. Chalk and K. S. Williams, The distribution of solutions of congruences, Mathematika 12 (1965), 176-192.
 - 3. K. S. Williams, On extremal polynomials, Canad. Math. Bull. 10 (1967), 585-594.

Carleton University, Ottawa, Ontario