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A regularity in the distribution of the solutions of the congruence

f(xy 5eeey X0) = 0 (mod p)
is shown.

1. INTRODUCTION

Let Z denote the domain of integers of the real number field R and let p
denote a prime. For any integer n >> 1, we define the fundamental cube of
R» = R X --- X R (with respect to p) to be the set

R p) ={x=(01, - X)eER|0 < x; <p,i=12,.,n (L1)
and the fundamental lattice of R* (with respect to p) to be

ZM(p) = {X = (Xp s X €Z* |0 < x; <p,i=1,2,...,0}. (1.2)
Clearly Z™(p) = Z™ N R(p). A subcube of R*(p) is a set S of the form

S={xeRpla;, <x;<a;+b,i=1,2,.,n}, (1.3)
where a,(i = 1, 2,..., n), b € R are such that
O0<a, <a;+b<pi=12,..,n (1.4)

The length of each side of S is clearly b. We write this symbolically as
ISl = b. A finite family of subcubes {S;}(i = 1, 2,..., k) of R*(p) will be
called a subcube division of R*(p) if
(i) || S; | is the same fori =1, 2,..., k,
() S;NS; =z, fori*j,i,j=12...,k, (1.5)
(iii) Uiss Si = R™(p).

* This research was supported by the National Research Council of Canada under
Grant No. A-7233.
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20 WILLIAMS

These conditions require the S; to be congruent, pairwise disjoint and
exhaustive.

Now let f(X;,..., X,) be a polynomial of degree d > 2 in the n > 2
indeterminates Xj,..., X,,, with integral coefficients which does not
vanish (mod p). A number of authors, Vinogradov [9], Mordell [5],
Chalk [2], Mordell [6], Chalk and Williams [3], Tietdvainen [8], Smith [7],
and Williams [10], have considered the distribution of the solutions
x € Z" of the congruence

f(x) = 0(mod p), (1.6)

within the fundamental cube R*(p), particularly when p is large in com-
parison with n and d. We denote the number of solutions of (1.6) in
R*(p) by N,(f). A study of the results of the above authors suggests a
distribution result for the solutions of (1.6) of the following type:

If p is large in comparison with » and d, {S,} is a subcube division of
R™(p) with || S;||> pt~U/™, and N,(f)> p™! then each §; contains a
solution x of (1.6).

It is the purpose of this paper to obtain a precise result along these lines.
The method employed is based on that of Tietivainen [8]. The modifica-
tions necessary require the estimation of a certain exponential sum
F(f,y) (see Section 4). This sum has been considered by Chalk and the
author in [3]. It was estimated effectively only when f'is homogeneous and
free from linear factors modulo p. Therefore, in view of the type of distri-
bution property we are considering, we restrict ourselves to the case of
homogeneous polynomials f of degree d > 2, which are irreducible (mod p).
To guarantee N (f)> p"!, we further assume that f is absolutely
irreducible (mod p), for if not, by a result of Birch and Lewis [1]
N,(f) < p*2. With these assumptions, we know from the deep work of
Lang and Weil [4] that

N(f) = p"=t + O(p"), (1.7)

where the constant implied by the O-symbol depends only on # and d.
Hence we know that
N, (f) = 4", (1.8)

for p large enough compared with » and d and it is convenient to assume
that this occurs for

p = (20d)~. (1.9)

(See the remark in [1] concerning the implied constant in (1.7)). We prove:
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THEOREM. Let f(X, ,..., X,) € Z[X; ,..., X,] be a homogeneous poly-
nomial of degree d > 2 in the n > 2 indeterminates X, , X, ,..., X,, and
let p be a prime satisfying (1.9). If f is absolutely irreducible (mod p) and
N,(f) = 4p™ then every subcube

Sy oy i) = (X € RMP) ipp < %3 < (s + Do j = 1, 2,0, 1)

i g =0, 1,2, A — 1, (1.10)
where
_ o pl/n
A=Xpmd) = [Hor] ez (L11)
p=pupnd=Lcr, (1.12)

contains a solution x € Z™ of (1.6).

We note that A >> 2, Au = p, and the family {S@, ,..., i,)} is a subcube
division of R*(p), with || S(i; ,..., ix)| = p ~ pt/™
2. NOTATION

It is convenient to let
e(t) = exp{2mit/p}, t€ R. 2.1

It is well-known that for b € Z,

-1 —
_ {p, b =10 (mod p)
X o) = 30, b= 0 (mod )’ 2.2)
and, more generally, for x € Z»
p", x = 0 (mod p),
. — 2.3
YEZZ"‘(p) e(x Y) 0’ X = 0 (mOd P) ( )
We also let
-1
Fhy)= Y ) etf@—y-2). 24
ze€Z7(p) t=0
Taking y = 0 (mod p), we have
-1
F(,0= ) ) ef()=pNyf), 2.5)

2€Z™(p) t=0
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by (2.2), and for y == 0 (mod p), we have

FhY= Y l—y-+ :’g':ew(z)—y'z)' 2.6)

2€Z"™(p)

p—1

= Y Yedf@—y-2,

2€ZMp) i=1
by (2.3).
Finally we let
Ri,p) ={xeR|}p <x<¥i+Dp}, i=0,1,2,.,A-1, 27)
= [}ip, 30 + D p),

ZG,p) = RGWNZ, i=01,2.,2~—1, (2.8)
At )= Y e@w), teZi=0,1,2,.,1—1, (2.9)
weZ{i,u)

and if X denotes a set with only a finite number of elements, then we
write | X | for the number of elements in X.

3. SoME LEMMAS

~ The six lemmas proved in this section are all of an elementary compu-
tational nature. Lemmas 3.1 and 3.2 are required in the proof of
Lemma 3.4. Lemmas 3.1 and 3.3 are required in the proof of Lemma 3.5.
Lemmas 3.4-3.6 are used in the proof of the theorem.

Lemma 3.1. Ifa,be Rwitha <b, then
b—a—2<|ZnNn[ab))<b—a+2
Proof. The half-closed, half-open interval [, b) contains the integers
[a] + 1,...,[b] — 1, sO
lZNn[a, b))l > (B] — 1) — (@] + 1) + 1
= [b] — [a] — 1
>b—a-—-2.
As Z N [a, b) C Z n [[a], [b]], we have
| Z N [a, ) <|Z0O[la], [B]}i
= [b] — [a] + 1
<b—a-+2
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LemMA 3.2.

1 .1_9_9_ ll/n
E[L—2> 40d

Proof. p = p|X = p[[p*/"/10d] > p/(p*/*/10d) = 10dp*~1/.
Now

_ 1_92 1-(1/n) — L 1-1/n
(5 40\) dp = 20%

1

= 55 Pt (n,d >2)
20d
= 0 (p = (20d)" > (20d)%)
=2,
so that
%P’ — 2> 5dptiin — 2 > 12_9_ dpt-i/n,

Lemma 3.3.

;#+2<%dp —1/n,
Proof.

23

p = p/A = pJ[p*/*10d] < p/((p*/*/10d) — 1) < p/(p'/*|20d) = 20dp*~1/",

as

1/n 1/n
(.1. — L) P77 _ P o 1, recalling p > (20d)".

10 20/ d 20d ©
Now
(% - 10) dpt-/n = TO dp'~'/* > 2, as in Lemma 3.2, giving
2,.:.—{-2 < 10dpt-t/r 4- 2 <ﬂd 1-1/n_
LemMMA 3.4.

199

d2n 211—2

HA(O iy, ) >
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Proof.
A i, = Y 1
WEZ (i jopt)
= | Z(i; , )|
= IZ N ’g" , (’a_zi)_li”
= %” — 2, by Lemma 3.1,

= 22 dp-'/", by Lemma 3.2,

which gives

1992~
2 > 20 p2n—2
]=1_'|1: A(O l’ ? M) 402n d np .

LemMmA 3.5.

n -1

l_[ Z lA(tJ,lg,F:)lz dn 2n—1_

J=1 t;=0

Proof.
»—1

Z | A(t:i s i 5,“)'2

;=0

-1

= Y AC, i, 0) A, 5, p)
t;=0

=3 X Y eltiw—v)
t;=0 weZ(iju) vEZ(iju)

-1

= Y Y etw—0)

0, 0€Z(iju) £;=0
=p| Z(;, )
= p| Z O i, 3G + D )|
<p@3p +2), by Lemma 3.,

%dl’z i/n, by Lemma 3.3.

Hence

5 . 4017
Z | A(tj s bis y-)|2 < 307 d"pZn—l.

t;=0

:s

i
L
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LEMMA 3.6. 1992n - 27—2 _ 4 .40~ - 401" >0, for n = 2.
Proof. As 39601 > 2 - 16040, we have, as n = 2,
199% = (39601)* > 2" - (16040)" > 4 - (16040)" = 4.40" - 401",

Hence
19927 - 27— — 4,40 - 401"
> 27 - 407 - 401" — 4.40" - 401"
= (27 — 4) 40" - 401~
= 0.

4. ESTIMATION OF Z(f,y)

Lemma 4.1, If f(Xq,..., Xp) € Z[ X, ..., X,,) is of total degree d = 0 and
does not vanish identically (mod p), then the number of solutions
(x1 5., X,) € Z™(p) of the congruence

f(xy 5ees x,) = 0 (mod p) 4.1
is at most dp™L.

Proof. We prove the result by induction on the number of variables
n. The result is clearly true when » = 1. We assume the estimate is valid
for polynomials of any degree, which do not vanish (mod p), in at most &
variables. Suppose F(X,..., X;.1) € Z[X1,..., Xi.,1] is of total degree d;
and does not vanish identically (mod p). Then

dy .
F(Xl LAMS] Xk+1) = Z Fl(Xl seees ch) XI::+1 ’ (42)
1=0
where each F(X,,..., X;) € Z[X; ,..., X3], degree F;, + i < d; and not all
the F; vanish (mod p) as F does not vanish (mod p). Let 4, denote the
largest value of i(0 < i < d;) for which F(X;,..., X;) does not vanish
(mod p). We consider two cases accordingas d, = Oord, # 0. Ifd, = 0,

F(Xq s Xk+1) = FU(Xl yooes Xi) (4.3)

and the number of solutions (x; ,..., Xz.1) € Z¥p) of F(x; ..., Xpyy) = 0
(mod p) is p times the number of solutions (x,..., x;) € Z*p) of
Fy(xy ..., x;) = 0 (mod p). By the inductive hypothesis this number is less
than p - d,p*1 = d,p*. If d, # 0,

ds .
F(X1 seees Xk+1) = z Fi(Xl 3eres Xk) Xllc+1 s (4-4)

i=0
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where Fy (X ,..., X;) does not vanish identically (mod p). The solutions
(X1 50y Xpy1) € Z¥Y(p) of F(xy,..., Xgy) =0 (mod p) are of 2 kinds,
those which also satisfy F (x; ,..., xx) = 0 (mod p) and those which do not.
The number of the former type is at most p - (d; — d,) p*~* and the number
of the latter type is at most dyp*. Thus, the required number is less than or
equal to (d, — dy) p* + dyp* = dyp*. The result now follows by mathe-
matical induction.

LeMMA 4.2. Suppose f(X,,..., X,) € Z[X, ,..., X,,] is of total degree
d = 2 in n = 2 indeterminates X, ,..., X,, , does not vanish (mod p) and is
irreducible (mod p). Then, if not all of a ,..., a, € Z vanish (mod p), the
number of solutions (xy ,..., X,) € Z™(p) of the pair of simultaneous con-
gruences

J(x1 5y ) =0 (mod p),

(4.5)
1%, + o + ApXyp = 0 (mOdp),

is at most dp™~2.
Proof. As not all of g ,..., a,, vanish (mod p), we can assume without

any loss of generality that 4, = 0 (mod p). The linear congruence becomes

X = —a;(ax, + ** + a,x,) (mod p). 4.6)
Set

800y sy X5) = f(—ar'(@Xs + -+ + pXa), Xy sy X)) (47)

The number of solutions (X, ,..., x,) € Z*(p) of (4.5) is just the number of
solutions (x, ,..., X,) € Z"(p) of g(x, ,..., X,) = 0 (mod p). By Lemma 4.1
this is at most dp™~2, unless g vanishes (mod p). g cannot vanish (mod p)
however, for if so every solution (x,,...,, x,) of a;x; + - +a,x, =0
(mod p) would satisfy f(x,...,x,) =0 (modp) and so by Hilbert’s
Nullstellensatz there exists an integer k and a polynomial

h(xy 5.y Xp) € Z[xy oy X3)
such that
{1 yoens Xn}® = (@%; + + + @pXp) B(Xy ooy X )(mod p).  (4.8)

Hence
ax; + 0+ ApXy If(xl 3rey xn), (4'9)

which contradicts the fact that f is irreducible (mod p) and of degree
d>2
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Lemma 4.3. If f(X; ..., X,,) € Z[X, ,..., X,] is homogeneous of degree
d > 2, does not vanish (mod p) and is irreducible (mod p), then for
y(z= 0) € Z*(p) we have

| Z(f, ) < 4dp™L. (4.10)
Proof. ForleZ:
FhW= T z e(tf(x) — Ix - y). @.11)

If I # 0 (mod p), m is uniquely defined (mod p) by /m = 1 (mod p). The
mapping X — mx is a bijection on Z*(p). Hence

-1

FhW= 3 T etfem)—x-y)
= T T emi@—x-y)

as fis homogeneous of degree d. As m == 0 (mod p), the mapping t — tm?
is a bijection on Z(p), so that

FEW= T T em—xy)
x€Z™(p) t=0
= F(1,y).
Hence
T FGR = FLO+ G- DELY. (1)

On the other hand

p—1 -1

:ﬁ:f(ﬁly):Z Y Y 0 — -y

1=0 x€Z%(p) =0

p~1 p—1

= 3 T () % e—hxy)

xeZ™(p) t=0

-1

=p ) ) etf(x)

X€Z™p) t=0
Xy=0

— n2

=p ) 1
X€Z™( W)
xy=0
f(x)=0

= p*N,
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where N denotes the number of solutions x € Z*(p) of

f(x) =x -y =0 (mod p).
Thus

F(hy) = 557 (N — N} (413)
and so by Lemmas 4.1 and 4.2
| FU < =7 (PN + No(f);

< 2{p : dp"“2 + dp™
= 4dp™1, -
as required.

5. PROOF OF THEOREM

We let a denote any integer and set

N(a, i, p) = Number of (u, v) € Z(i, u) X Z(i, p) such that

u + v = a(mod p). (5.1)
We have
1 -1
Na,ijw=- Y Y e(u+v—a))
pu,vEZ(i.u) =0
p—1
=Y e(—at) Y e(tu) Y e(w),
t=0 ueZ(i,u) veZ(i,u)
giving
1 -1
N(a,i,p) = 7 2. e(—an)iA(, i, Wit (5.2)
=0

For 0 < 4 ey iy << A — 1, we let N(iy ,..., iy , 1) denote the number of
solutions (x, y) €Z(iy, ) X = X Z(iy ,p) X Z(iy , ) X - X Z(iy , ) of

F(x +y) = 0 (mod p). (5.3)
We have
Ny yo i 1) = ,% > z etf(x + y)), (5.4)
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where the prime (') denotes that the summation is taken over X, y € Z(i;, n)
O/ (MR
Hence

p—1

Y'Y etf (x + y)

hSERC

N(ll LAY ] iﬂ ’ ‘LL) -

<

t=

p—1
-2L 3 X Y @)
=1’2 3 e Ty
t=0 zeZ™(p) X y
=I—’, i S etf@) [1 NG s )
t=0 zeZ™(Dp) i=1
= L Zzﬂ”e(tf(z))tzzﬂ )e(~z-t)f11A(t,-,i,-,p)2,

from (5.2). Picking out the term with # = 0, we obtain
pn+1N(i1 seues In s ,U')
n
= Z Z e(—z ¢ t) H A(ta' 5B, F)Z
j=1

2€Z™(p) teZ™(p)
+3 Y dif@) T ez ] Al i

t=1 z€Z™(p) teZ™(p)
As
Y e(—zt)= gP 1=0, (5.5)

s 0, otherwise,

the first of these sums is

pn H A(Os i.’i > .“’)2' (56)
j=1

The second of these can be written

-1

S (LA, et Y, Y @t 5.7)

teZ™(p) j=1 t=1 zeZ™(p)
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The terms in (5.7), with t = 0, give

-1

121114(0, Y Y @)

t=1 zeZ"(p)

=n 3 "fe(tf(z)-pﬂ}

2€Z™(p) =0

= ] 40, iy , WP (PN,(f) —

=1

Hence,

PPNy sevsy in s 1) — PN(F) T] A, iy , ]
_ i=1

—| % 146,50 #0 0|

0£teZ™(p) J=1
< Y [1146, i, w32 20
0#teZ™p) j=1
n -1
<Adpn [l Y | A, 8, w)%, by Lemma 4.3,
i=1 t;=0

4 44%[ d”+1 3n—2 by Lemma 3.5,

Thus,
N(ll 9eeey in ] P")

/_ r(f) H A(O, i; ,H)z —4- 40_L dn+1 2n--3

2n
> 21.9 2027; dinptn—3 — 4 . 4201 drtip*-3, by Lemma 3.4,
_ dmiptt dr199en n . 401
= S (5 — 4 40m - a0r)
dn+1p2’n-8

> 20 (211—2 < 1992n __ 4. 40" - 401”)

> 0, by Lemma 3.6.
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Thus for any selection i ,..., i, € Z satisfying 0 < i, ,..., 0, <A — 1, we
have proved the existence of x and ye Z(i, ,p) X - X Z(i, ,p) such
that f(x + y) =0 (mod p); that is, of ze S(,..., i,) such that
f(z) = 0 (mod p), so that every such subcube contains a solution of (1.6),
as required.

6. CONCLUSION

We illustrate the theorem by a simple numerical example. We choose
n = 3,d = 2 (the choice n = d = 2 is excluded as f must be both abso-
lutely irreducible (mod p) and homogeneous),

f(Xl s Xz s Xa) = X12 + X22 - X2X3 » (6-1)

TABLE I

SGiy , da 5 Iy)

i, iy Iy X1 X, X3

000 0 0 0
0 01 50 000 50 000 100 000
00 2 74 000 37 000 185 000
010 80 761 100 000 70158
011 0 92 000 92 000
01 2 90 000 180 000 225000
02 0 90 000 270 000 25 823
0 21 50 000 224177 174 177
02 2 0 200 000 200 000
1 00 108 000 58177 4177
1 01 180 000 90 000 175 823
1 0 2 120 000 30 000 235 823
110 180 000 180 000 85823
111 170 000 99 138 99 139
1 1 2 92 000 92 000 184 000
1 20 120 000 244 177 38354
1 21 125 823 200 000 177 469
1 2 2 108 000 216 000 270 000
2 00 274 176 1 2
2 01 224177 50 000 100 000
2 0 2 200 177 37 000 185 000
210 184 177 94 177 49 177
211 248 354 100 000 177 469
21 2 184 177 180 000 225 000
2 20 184 177 270 000 25823
2 21 200 000 200 000 125 823
2 2 2 270 000 270 000 265 823
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and p = 274 177 (= (20d)" = 64 000). (274 177 is the smaller of the two
prime factors of Fg = 22° 1+ 1). As fis linear in Xj, fis absolutely irreduc-
ible (mod p) and N, (f) = p*(= }p?. Finally,

A= [274 1774/4/20] = [3.2.] = 3 6.2)
and

u = 91,3923, (6.3)

In view of the special form of f, it is easy to check that each of the 27
subcubes

S(ll ’ iz ’ 13) = {(xl s x2 > x3) € R3 I 913392% ia' < xJ' < 919392‘& (l, —I" 1)’
j == 1; 2’ 3}’ ilyiz’is = 0, 1’ 2; (64)

contains a solution of (1.6). The table gives a solution in each case.
We close with the question—does a similar result hold for nonhomo-
geneous polynomials ?
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