
JOURNAL OF NUMBER THEORY 3, 19-32 (1971) 

A Distribution Property of the Solutions 
of a Congruence Modulo a Large Prime 

KENNETH S. WILLIAMS* 

Department of Mathematics, Carleton University, Ottawa I, Canada 

Communicated by H. Zassenhaus 

Received March 21, 1969 

A regularity in the distribution of the solutions of the congruence 

f(Xl ,**-, x,,) = 0 (modp) 
is shown. 

1. INTRODUCTION 

Let 2 denote the domain of integers of the real number field R and let p 
denote a prime. For any integer n > 1, we define the fundamental cube of 
R” = R x ..’ x R (with respect top) to be the set 

Ryp) = (x = (x1 ,...) x,) E R” 1 0 < xi < p, i = 1, 2 ,..., n} (1.1) 

and the fundamental lattice of R” (with respect to p) to be 

Z”(p) = (x = (x1 )...) x,) E 2” IO < xi <p, i = 1,2 ,..., n}. (1.2) 

Clearly Z”(p) = Z” n R”(p). A subcube of R”(p) is a set S of the form 

S = {X E R”(p)1 ai < ~1 < ai + b, i = 1,2,.. ., n}, (1.3) 
where ai(i = 1, 2,..., n), b E R are such that 

0 < ai < ai + b < p, i = 1,2 ,..., n. (1.4) 
The length of each side of S is clearly b. We write this symbolically as 
11 S Ij = b. A finite family of subcubes {S,}(i = 1, 2,..., k) of R*(p) will be 
called a subcube division of Rn(p) if 

(i) j/ Si jj is the same for i = 1, 2 ,..., k, 

(ii) Si n Sj = m, for i # j, i,j = 1, 2 ,..., k, (1.5) 
(iii) (Je, Si = R”(p). 

* This research was supported by the National Research Council of Canada under 
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20 WILLIAMS 

These conditions require the Si to be congruent, pairwise disjoint and 
exhaustive. 

Now let f(X, ,..., X,J be a polynomial of degree d > 2 in the n > 2 
indeterminates X, ,..., X, , with integral coefficients which does not 
vanish (modp). A number of authors, Vinogradov [9], Mordell [5], 
Chalk [2], Mordell [6], Chalk and Williams [3], Tietlvainen [S], Smith [7], 
and Williams [IO], have considered the distribution of the solutions 
x E 2” of the congruence 

f(x) = 0 (mod& (1.6) 

within the fundamental cube RQ), particularly when p is large in com- 
parison with n and d. We denote the number of solutions of (1.6) in 
R”(p) by N,(f). A study of the results of the above authors suggests a 
distribution result for the solutions of (1.6) of the following type: 

If p is large in comparison with n and d, {Si} is a subcube division of 
WP) with II & II > P - l (lln) and N,(f) > pn-l then each Si contains a , 
solution x of (1.6). 

It is the purpose of this paper to obtain a precise result along these lines. 
The method employed is based on that of TietSivHinen [8]. The modifica- 
tions necessary require the estimation of a certain exponential sum 
s(f, y) (see Section 4). This sum has been considered by Chalk and the 
author in [3]. It was estimated effectively only whenfis homogeneous and 
free from linear factors modulo p. Therefore, in view of the type of distri- 
bution property we are considering, we restrict ourselves to the case of 
homogeneous polynomials f of degree d 3 2, which are irreducible (mod p). 
To guarantee N,(f) > pn-l, we further assume that f is absolutely 
irreducible (mod p), for if not, by a result of Birch and Lewis [l] 
NJ f) < pm-s. With these assumptions, we know from the deep work of 
Lang and Weil [4] that 

N,(f) = pn-l + O(P”-~/~) , (1.7) 

where the constant implied by the O-symbol depends only on n and d. 
Hence we know that 

N,(f) 3 ipplz--l, W 

for p large enough compared with n and d and it is convenient to assume 
that this occurs for 

p 2 (20d)n. (1.9) 

(See the remark in [l] concerning the implied constant in (1.7)). We prove: 
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THEOREM. Let f(X, ,..., X,J E Z[X, ,..., X,] be a homogeneous poly- 
nomial of degree d > 2 in the n 3 2 indeterminates XI, X, ,..., X, and 
let p be a prime satisfying (1.9). Iff is absolutely irreducible (modp) and 
ND< f) > ip”-l then kvery subcube 

rE S(i, ,..., in) = (X E Rn(p)l i+ < Xj < (ij + 1) /-$ j 
. 11 9**-, 1, = 0, 1) 2 )...) h - 1) 

where 

1, 2,..., n} 

(1.10) 

A = ~(p, n, d) = [$$I E z 

p=t.~(p,n,d)=$~R, 

contains a solution x E Z” of (1.6). 

(1.11) 

(1.12) 

We note that A > 2, A,LL = p, and the family (S(i, ,..., i,)} is a subcube 
division of Rn(p), with 11 S(i, ,..., i,)ll = p w pl-ljn. 

2. NOTATION 

It is convenient to let 

e(t) = exp{2&t/p}, t E R. 

It is well-known that for b E Z, 

2 e(bt) = 
I 
P, b = 0 (modp) 
0, b $0 (modp)’ 

and, more generally, for x E Z” 

1 e(x-y)= I{‘X,,~ ~~~~~’ 
SEZYP) 7 

We also let 
P-l 

FCf, Y) = C C @f(z) - Y * 4. 
zeZn(p) t=o 

Taking y = 0 (modp), we have 

9-l 

9C.L 0) = C C &f(z)> = pN,(f 1, 
ZEZ”(ll) t=o 

(2.1) 

Q-2) 

(2.3) 

(2.4) 

(2.5) 
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by (2.2), and for y + 0 (modp), we have 

by (2.3). 
Finally we let 

R(i,~~)={~~Rl~i~dx<~i+l)~l}, i=O,l,2 ,..., X-1, (2.7) 

= Ml-L, Hi + 1) 1-4 

Z(i,p)=R(i,p))nZ, i=O,1,2 ,..., h-l, (2.8) 

44 i, II) = C e(tw), t E 2, i = 0, 1,2 ,..., h - 1, 
wEZ(i.p) 

(2.9) 

and if X denotes a set with only a finite number of elements, then we 
write 1 X 1 for the number of elements in X. 

3. SOME LEMMAS 

The six lemmas proved in this section are ah of an elementary compu- 
tational nature. Lemmas 3.1 and 3.2 are required in the proof of 
Lemma 3.4. Lemmas 3.1 and 3.3 are required in the proof of Lemma 3.5. 
Lemmas 3.4-3.6 are used in the proof of the theorem. 

LEMMA 3.1. If a, b E R with a < b, then 

b-aa2<(Zn[a,b)j <b-a+2. 

Proof: The half-closed, half-open interval [a, b) contains the integers 
[a] + I,..., [b] - 1, so 

I Z n [a, 41 3 (PI - 1) - @I + 1) + 1 
= [b] - [a] - 1 
>b-a-2. 

As Z n [a, b) C Z n [[a], [b]], we have 

I Z n [a, @I 6 I Z n [bl, Plli 
= [b] - [al + 1 
tb -a+$-. 
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LEMMA 3.2. 
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Proof. p = p/X = p/[pl/“/lOd] > p/(pll”/lOd) = lOdp’-li”. 
Now 

(5 _ !$) dpl-tllN = f dpl-W 

1 
b B P1l2 

20d 
+ii 

(n, d 2 2) 

3 2, 

so that 

; p - 2 > Sdpl-11” - 2 > $ dpl+. 

LEMMA 3.3. 

; p + 2 < $ dpl+. 

Proof. 

/A = p/h = p/~lf”/lOd] < p/((p’l”/lOd) - 1) < p/(p1@/20d) = 20dp1-ll”, 

as 

(-p&q= $$ > 1, recalling p >, (2Od)“. 

Now 

( 401 -- 40 10) dp 1 - 1 1 n = $ dpl-lJn > 2, as in Lemma 3.2, giving 

; /A + 2 < 1OdpW” + 2 < z dpl+. 

LEMMA 3.4. 

fi A(0, i, , /A)~ > g d2npan-z. 
j=l 
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= I Z(b 2 l-4 
= Zn 

I [ 
q, (i,+20P II 

> kp - 2, by Lemma 3.1, 

> g dpl-II”, by Lemma 3.2, 

which gives 

fi A(0, ij , /L)’ > g d2np’n-2. 
3.4 

LEMMA 3.5. 

P-l 

lo-1 

= P I Z n C&p, t& + 1) ~11 
< p(& + 2), by Lemma 3.1, 

401 
< 4. dp2--lln, by Lemma 3.3. 

Hence 
n 9-l 

5 Zo’ A( 

401” 
- 

tj , ij , p)l2 < 40,, dnp2”-l. 
> 
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LEMMA 3.6. 1992fi . 2n-2 - 4 * 40” ’ 401% > 0, for n > 2. 

Proof. As 39601 > 2 . 16040, we have, as n 3 2, 

1992n = (39601)” > 2” . (16040)” > 4 * (16040)n = 4.40” .401”. 

Hence 
1992n .2n-2 - 4.40” ’ 401% 

> 2” .40” .401” - 4.40” .401” 
= (2” - 4) 40” .401” 
> 0. 

4. ESTIMATION OF %(f, y) 

LEMMA 4.1. Iff(X, ,..., X,) E Z[X, ,..., X,] is of total degree d 3 0 and 
does not vanish identically (mod p), then the number of solutions 
(Xl ,..-r x,) E Z”(p) of the congruence 

f (x1 7.*., x,) = 0 (mod p) (4.1) 
is at most dpn-l. 

Proof. We prove the result by induction on the number of variables 
n. The result is clearly true when n = 1. We assume the estimate is valid 
for polynomials of any degree, which do not vanish (mod p), in at most k 
variables. Suppose F(X, ,..., X,,,) E Z[X, ,..., X,,,] is of total degree dI 
and does not vanish identically (mod p). Then 

Ftx, ,..., x,+,1 = ; FiW, ,..., x,) X;,, , (4.2) 
i=O 

where each F((X, ,..., X,) E Z[X, ,..., X,], degree Fi + i < dI and not all 
the Fi vanish (modp) as F does not vanish (modp). Let d, denote the 
largest value of i(0 < i < 4) for which Fi(Xl ,..., X,) does not vanish 
(modp). We consider two cases according as d2 = 0 or d2 + 0. If d, = 0, 

W, ,..., x,+,1 = Fotx, ,..., xd (4.3) 
and the number of solutions (x1 ,..., x~+~) E Zk+Q) of F(x, ,..., x~+~) = 0 
(mod p) is p times the number of solutions (x1 ,..., xk) E Zk(p) of 
Fotx, , . . . , xk) - 0 (mod p). By the inductive hypothesis this number is less 
than p d,p”-l = dgk. If d, # 0, 

F(x, ,..., xk+l) = : Fi(xl T-..Y xk) xi+l 2 
i=O 

(4.4) 
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where FdB(XI ,..., X,> does not vanish identically (modp). The solutions 
(x1 ,..., x~,,) E Zkfl(p) of F(x, ,..., xlc+& = 0 (modp) are of 2 kinds, 
those which also satisfy Fd,(xI ,..., x& z 0 (mod p) and those which do not. 
The number of the former type is at most p . (4 - c&) pk-l and the number 
of the latter type is at most d,pk. Thus, the required number is less than or 
equal to (dl - d,)p” + d,pk = d,p”. The result now follows by mathe- 
matical induction. 

LEMMA 4.2. Suppose f (X, ,..., X,) E Z[X, ,..., X,] is of total degree 
d > 2 in n > 2 indeterminates Xl ,..., X, , does not vanish (modp) and is 
irreducible (modp). Then, if not all of a, ,..., a, E Z vanish (modp), the 
number of solutions (xl ,..., x,) E Z”(p) of the pair of simultaneous con- 
gruences 

f (x1 ,***, x,) = 0 (modp), 

6x1 + *a* + a,x, = 0 (modp), (4.5) 

is at most dpn-=. 

Proof. As not all of a, ,..., a,, vanish (modp), we can assume without 
any loss of generality that a, f 0 (mod p). The linear congruence becomes 

Set 
x1 = -a;‘(azxz + *** + a,x,) (modp). (4.6) 

&a ,-**9 xn) = f (-all(azxz + .** + 4x,), x, ,..., 4. (4.7) 

The number of solutions (x1 ,..., x,) E Z”(p) of (4.5) is just the number of 
solutions (xz ,..., x,) E Zyp) of g(x, , . . .) x,) = 0 (modp). By Lemma 4.1 
this is at most dpn--2, unless g vanishes (modp). g cannot vanish (modp) 
however, for if so every solution (x1 ,..., x,) of a,x, + a** + a,x, z 0 
(modp) would satisfy f (xl ,..., x,) = 0 (modp) and so by Hilbert’s 
Nullstellensatz there exists an integer k and a polynomial 

Nx, ,..., xn) E ax1 ,***, &I 
such that 

{f(x1 ,***9 x,}~ = (alxl + *** + a,x,) h(x, ,..., x,J(modp). (4.8) 

Hence 

al3 + *-* + ad, If (xl ,..., x,), (4.9) 

which contradicts the fact that f is irreducible (modp) and of degree 
d > 2. 
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LEMMA 4.3. If f(X, ,.,., X,) E Z[X, ,..., X,,] is homogeneous of degree 
d >, 2, does not vanish (mod p) and is irreducible (mod p), then for 
y(+ 0) E Z”(p) we have 

I g(f, Y)I < 4dP1. (4.10) 

Proof. For 1 E Z: 
v-1 

fl(L 1~) = C C e(tf(x> - lo * y). (4.11) 
XEZ”(U) t=o 

If I+ 0 (mod p), m is uniquely defined (mod p) by lm = 1 (mod p). The 
mapping x -+ mx is a bijection on Z”(p). Hence 

P-l 

S(f, ly) = C 1 &f(mx> - x * Y) 
XOZYP) t=o 

9-l 

as f is homogeneous of degree d. As m + 0 (modp), the mapping t + tmd 
is a bijection on Z(p), so that 

Hence 

9-l 

stf, 1~) = 1 1 &f(x) - x * Y) 
XEZ"(U) t=o 

= ms, Y>* 

9-l 

c wf, lY> = -wi 0) + (P - 1) S(f, Y). 
Z=O 

On the other hand 

8-I u-1 9-l 

C FCf, &I = C 1 C @f(x) - lx * Y) 
Z-0 I=0 xszyp) t=o 

9-l 9-l 

= &) ,Fa ew(x)) 5 

9-l 

= P C C e(tf(x)) 
XOZ”I P) t=o 
XT’0 

- p2 ..L l 
r.y=0 

f(r)=0 

= p2N, 

e(-lx * y) 

(4.12) 
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where N denotes the number of solutions x E Z”(p) of 

f(x) = x. y = 0 (modp). 

Thus 

(4.13) 

and so by Lemmas 4.1 and 4.2 

I ScL Y)I d j+i {PN + N,(f)> 

< 2{p * dpn-2 + dp”-l) 

= 4dp”-l, 

as required. 

5. PROOF OF THEOREM 

We let a denote any integer and set 

N(a, i, r-L> = Number of (u, V) E Z(i, p) x Z(i, p) such that 
u+v=a(modp). (5.lj 

We have 

N(a, i, p) = j 1 ‘il e((u + z, - a) t) 
u.veZ(i.u) t=o 

D-1 

giving 

(5.2) 

For 0 < il ,..., in < h - 1, we let N(iI ,..., in ,p) denote the number of 
solutions (x, y) E Z(i, , tL> x ... x Z(i, , p) x Z(iI , p) x *.. x Z(i, , p) of 

f(x + Y) = 0 (mod p). (5.3) 

We have 

Wl ,..., in , 1-4 = f C’ 5’ e(tf(x + Y)), (5.4) 
x.7 t-0 
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where the prime (‘) denotes that the summation is taken over x, y E Z(il, /-L) 
X .. . x Z(i, ) p). 
Hence 

from (5.2). Picking out the term with t = 0, we obtain 

AS 

c e(-z ’ t, = 
pn, t = 0, 

zeZYp) 0 otherwise 9 3 

the first of these sums is 

(5.5) 

(5.6) 

The second of these can be written 

2 fi A &  ,  ij ,  p)” 2’ C  &f(z)  -  t  l z). (5.7) 
teZn(p) j=l t=1 ZEZVl?) 
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The terms in (5.7), with t = 0, give 

fi 40, 4 ,PY 5’ C @f(z)) 
j=l t=1 &z”(p) 

Hence, 

I pnflN(il ,..., . z, ,A - PN,W ja A(% 4,~)” ] 

= I 

n D-1 
< 4dpn-l n 1 ) A(tj , ij , p)12, by Lemma 4.3, 

j-1 t,=o 

401 ra \( 4 . 40” . dn+1p3n-2, by Lemma 3.5. 

Thus, 

Wl ,..., in ,A 

> y fi A((),j.,,p)2 - 4 .%!!$. &+lp2n-3 

j=l 

2 G &np2n-3 - 4 . g dn+1p2n-3, by Lemma 3.4, 

= 
dn+lp2n-3 &-11992" 

402” ( 2 - 4 * 40” * 401”) 

> dn;2;-3 (2n-2. jggan - 4.4(-p. 401%) 

> 0, by Lemma 3.6. 
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Thus for any selection il ,..., i, E Z satisfying 0 < il ,..., i, < X - 1, we 
have proved the existence of x and y E Z(i, , p) x ..* x Z(i, , p) such 
that f(x + y) = 0 (mod p); that is, of z E S(il ,..., in) such that 
f(z) EE 0 (mod p), so that every such subcube contains a solution of (1.6), 
as required. 

6. CONCLUSION 

We illustrate the theorem by a simple numerical example. We choose 
n = 3, d = 2 (the choice n = d = 2 is excluded as f must be both abso- 
lutely irreducible (mod p) and homogeneous), 

TABLE I 

Wl ,4 , is) 
. . 
Zl ZP is Xl X2 X8 

0 0 0 0 0 0 
001 50000 50000 100000 
0 0 2 74000 37 ooo 185000 
0 1 0 80 761 100000 70 158 
0 1 1 0 92000 92 ooo 
0 1 2 9oooo 180000 225 000 
0 2 0 9oooo 270 000 25 823 
0 2 1 50000 224 177 174 177 
0 2 2 0 200000 200000 
1 0 0 108 000 58 177 4 177 
1 0 1 180000 9oooo 175 823 
1 0 2 120000 30000 235 823 
1 1 0 180000 180000 85 823 
1 1 1 170000 99 138 99 139 
1 1 2 92000 92000 184000 
120 120000 244 177 38 354 
1 2 1 125 823 200000 177 469 
1 2 2 108 000 216000 270 000 
2 0 0 274 176 1 2 
2 0 1 224 177 50000 100000 
2 0 2 200 177 37 ooo 185000 
2 1 0 184 177 94 177 49 177 
2 I I 248 354 100000 177 469 
2 1 2 184 177 180000 225 ooo 
2 2 0 184 177 270 000 25 823 
2 2 1 200000 200000 125 823 
2 2 2 270 000 270 000 265 823 
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and p = 274 177 (2 (2Od)” = 64 000). (274 177 is the smaller of the two 
prime factors of Fe = 226 + 1). As f is linear in Xs,fis absolutely irreduc- 
ible (modp) and N,(f) = p2(3 &pz). Finally, 

h = [274 1771/3/20] = [3.2...] = 3 (6.2) 
and 

p = 91,392$. (6.3) 

In view of the special form off, it is easy to check that each of the 27 
subcubes 

S(i,,, &, is) = {(xl, x, , x3) E R3 I 91,392+ ij < xj < 91,392+ (ii + l), 
j = 1,2, 3}, ir , is ) is = 0, 1,2, (6.4) 

contains a solution of (1.6). The table gives a solution in each case. 
We close with the question-does a similar result hold for nonhomo- 

geneous polynomials ? 
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