Canad. Math. Bull. Vol. 13 (4), 1970

INTEGERS OF BIQUADRATIC FIELDS

BY KENNETH S. WILLIAMS(1)

Let Q denote the field of rational numbers. If m, n are distinct squarefree integers the field formed by adjoining \sqrt{m} and \sqrt{n} to Q is denoted by $Q(\sqrt{m}, \sqrt{n})$. Since $Q(\sqrt{m}, \sqrt{n}) = Q(\sqrt{m} + \sqrt{n})$ and $\sqrt{m} + \sqrt{n}$ has for its unique minimal polynomial $x^4 - 2(m+n)x^2 + (m-n)^2$, $Q(\sqrt{m}, \sqrt{n})$ is a biquadratic field over Q. The elements of $Q(\sqrt{m}, \sqrt{n})$ are of the form $a_0 + a_1\sqrt{m} + a_2\sqrt{n} + a_3\sqrt{mn}$, where $a_0, a_1, a_2, a_3 \in Q$. Any element of $Q(\sqrt{m}, \sqrt{n})$ which satisfies a monic equation of degree ≥ 1 with rational integral coefficients is called an integer of $Q(\sqrt{m}, \sqrt{n})$. The set of all these integers is an integral domain. In this paper we determine the explicit form of the integers of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 1), an integral basis for $Q(\sqrt{m}, \sqrt{n})$ (Theorem 2), and the discriminant of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 3). (With $Q(\sqrt{m}, \sqrt{n})$ considered as a relative quadratic field, that is, as a quadratic field over $Q(\sqrt{m})$, an integral basis for $Q(\sqrt{m}, \sqrt{n})$ has been given in [1].)

The form of the integers of a quadratic field are well known [3]. If k is a square-free integer then the integers of $Q(\sqrt{k})$ are given by $\frac{1}{2}(x_0+x_1\sqrt{k})$, where x_0 , x_1 are integers such that $x_0 \equiv x_1 \pmod{2}$, if $k \equiv 1 \pmod{4}$; and by $x_0 + x_1\sqrt{k}$, where x_0 , x_1 are integers, if $k \equiv 2$ or 3 (mod 4). Thus we know the integers of the subfields $Q(\sqrt{m})$, $Q(\sqrt{n})$, $Q(\sqrt{mn})$ of $Q(\sqrt{m})$, \sqrt{n}).

We begin by making some simplifying assumptions about m and n. We let l=(m, n) and write $m=lm_1$, $n=ln_1$ so that $(m_1, n_1)=1$. Since m, n are squarefree we have the following possibilities for the residues of m, n, m_1n_1 modulo 4.

\underline{m}	\underline{n}	$\underline{m_1n_1}$
1	1	1
1	2	2
1	3	3
2	1	2
2	2	1 or 3
2	3	2
3	1	3
3	2	2
3	3	1

Received by the editors March 16, 1970.

⁽¹⁾ This research was supported by National Research Council of Canada Grant A-7233.

Thus as

$$Q(\sqrt{m}, \sqrt{n}) = Q(\sqrt{m}, \sqrt{m_1 n_1}) = Q(\sqrt{n}, \sqrt{m_1 n_1}) = Q(\sqrt{n}, \sqrt{m})$$

we may suppose without loss of generality that

(1)
$$(m, n) \equiv (1, 1), (1, 2), (2, 3) \text{ or } (3, 3) \pmod{4}.$$

We now determine the form of the integers of $Q(\sqrt{m}, \sqrt{n})$, where (here and throughout) m, n satisfy (1).

THEOREM 1. Letting x_0, x_1, x_2, x_3 denote rational integers, the integers of $O(\sqrt{m}, \sqrt{n})$ are given as follows:

(i) if
$$(m, n) \equiv (m_1, n_1) \equiv (1, 1) \pmod{4}$$
, the integers are

$$\frac{1}{4}(x_0+x_1\sqrt{m}+x_2\sqrt{n}+x_3\sqrt{m_1n_1}),$$

where $x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2}$, $x_0 - x_1 + x_2 - x_3 \equiv 0 \pmod{4}$;

(ii) if
$$(m, n) \equiv (1, 1)$$
, $(m_1, n_1) \equiv (3, 3) \pmod{4}$, the integers are
$$\frac{1}{4}(x_0 + x_1\sqrt{m} + x_2\sqrt{n} + x_3\sqrt{m_1n_1}),$$

where
$$x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2}$$
, $x_0 - x_1 - x_2 - x_3 \equiv 0 \pmod{4}$;

(iii) if
$$(m, n) \equiv (1, 2) \pmod{4}$$
, the integers are

$$\frac{1}{2}(x_0+x_1\sqrt{m}+x_2\sqrt{n}+x_3\sqrt{m_1n_1}),$$

where $x_0 \equiv x_1, x_2 \equiv x_3 \pmod{2}$;

(iv) if
$$(m, n) \equiv (2, 3) \pmod{4}$$
, the integers are

$$\frac{1}{2}(x_0+x_1\sqrt{m}+x_2\sqrt{n}+x_3\sqrt{m_1n_1}),$$

where $x_0 \equiv x_2 \equiv 0$, $x_1 \equiv x_3 \pmod{2}$;

(v) if
$$(m, n) \equiv (3, 3) \pmod{4}$$
, the integers are

$$\frac{1}{2}(x_0+x_1\sqrt{m}+x_2\sqrt{n}+x_3\sqrt{m_1n_1}),$$

where $x_0 \equiv x_3, x_1 \equiv x_2 \pmod{2}$.

Proof. Let θ be an integer of $Q(\sqrt{m}, \sqrt{n})$, where m, n satisfy (1). Then θ can be written

(2)
$$\theta = a_0 + a_1 \sqrt{m} + a_2 \sqrt{n} + a_3 \sqrt{m_1 n_1},$$

where $a_0, a_1, a_2, a_3 \in Q$. As θ is an integer of $Q(\sqrt{m}, \sqrt{n})$ so are its conjugates over Q, namely,

(3)
$$\begin{cases} \theta' = a_0 + a_1 \sqrt{m} - a_2 \sqrt{n} - a_3 \sqrt{m_1 n_1}, \\ \theta'' = a_0 - a_1 \sqrt{m} + a_2 \sqrt{n} - a_3 \sqrt{m_1 n_1}, \\ \theta''' = a_0 - a_1 \sqrt{m} - a_2 \sqrt{n} + a_3 \sqrt{m_1 n_1}. \end{cases}$$

The three quantities

(4)
$$\begin{cases} \theta + \theta' = 2a_0 + 2a_1\sqrt{m} \in Q(\sqrt{m}), \\ \theta + \theta'' = 2a_0 + 2a_2\sqrt{n} \in Q(\sqrt{n}), \\ \theta + \theta''' = 2a_0 + 2a_3\sqrt{m_1n_1} \in Q(\sqrt{m_1n_1}), \end{cases}$$

are therefore all integers of $Q(\sqrt{m}, \sqrt{n})$. Hence they must be integers of $Q(\sqrt{m})$, $Q(\sqrt{n})$, $Q(\sqrt{m_1n_1})$ respectively.

We consider the cases $(m, n) \equiv (1, 2)$, (2, 3), (3, 3) (mod 4) first so that at least two of $m, n, m_1 n_1$ are not congruent to 1 (mod 4), and so at least two of (4) have integral coefficients. Since $2a_0$ is common to all three of (4), the third one must also have integral coefficients. Hence $2a_0$, $2a_1$, $2a_2$, $2a_3$ are all integers and we can write (2) as

(5)
$$\theta = \frac{1}{2}(b_0 + b_1\sqrt{m} + b_2\sqrt{n} + b_3\sqrt{m_1n_1}),$$

where b_{0i} b_1 , b_2 , b_3 are all integers. Let us define

(6)
$$c = b_0^2 - m_1 n_1 b_3^2, \qquad d = b_0^2 - m b_1^2 - n b_2^2 + m_1 n_1 b_3^2,$$

$$e = 2(b_0 b_3 - b_1 b_2 l),$$

so that θ satisfies

(7)
$$\theta^4 - 2b_0\theta^3 + \left(c + \frac{d}{2}\right)\theta^2 + \frac{(b_3m_1n_1e - b_0d)}{2}\theta + \frac{(d^2 - m_1n_1e^2)}{16} = 0$$

If $\theta \in Q(\sqrt{m})$, $Q(\sqrt{n})$ or $Q(\sqrt{m_1n_1})$ the theorem is easily verified so we suppose that $\theta \notin Q(\sqrt{m})$, $Q(\sqrt{n})$, $Q(\sqrt{m_1n_1})$. Thus the coefficients of (7) must all be integers, that is, we must have

(8)
$$d^2 - m_1 n_1 e^2 \equiv 0 \pmod{16},$$

since as e is even this implies that d must be even too.

If $(m, n) \equiv (1, 2) \pmod{4}$, so that $l \equiv 1 \pmod{2}$, $m_1 n_1 \equiv 2 \pmod{4}$, (8) is equivalent to $d \equiv e \equiv 0 \pmod{4}$, or

(9a)
$$b_0^2 - b_1^2 - 2b_2^2 + 2b_3^2 \equiv 0 \pmod{4},$$

(9b)
$$b_0 b_3 - b_1 b_2 \equiv 0 \pmod{2}$$
.

If $b_0 \not\equiv b_1 \pmod{2}$ then $b_0^2 - b_1^2 \equiv 1 \pmod{2}$ and (9a) is insoluble. Thus we must have $b_0 \equiv b_1 \pmod{2}$, so $b_0^2 - b_1^2 \equiv 0 \pmod{4}$ and (9a) implies $2(b_2^2 - b_3^2) \equiv 0 \pmod{4}$, that is $b_2 \equiv b_3 \pmod{2}$. Clearly (9b) is then satisfied and this proves case (iii) of the theorem.

If $(m, n) \equiv (2, 3) \pmod{4}$, so that $l \equiv 1 \pmod{2}$, $m_1 n_1 \equiv 2 \pmod{4}$, (8) is equivalent to $d \equiv e \equiv 0 \pmod{4}$, or

(10a)
$$b_0^2 - 2b_1^2 + b_2^2 + 2b_3^2 \equiv 0 \pmod{4},$$

$$(10b) b_0 b_3 - b_1 b_2 \equiv 0 \text{ (mod 2)}.$$

If either b_0 or b_2 is odd (10a) implies that the other is odd too. Then (10b) implies $b_1 \equiv b_3 \pmod{2}$ and (10a) becomes $1 - 2b_1^2 + 1 + 2b_1^2 \equiv 0 \pmod{4}$, which is impossible. Thus $b_0 \equiv b_2 \equiv 0 \pmod{2}$ and so $b_1 \equiv b_3 \pmod{2}$. This proves case (iv) of the theorem.

If $(m, n) \equiv (3, 3) \pmod{4}$, so that $l \equiv 1 \pmod{2}$, $m_1 n_1 \equiv 1 \pmod{4}$, (8) is equivalent to $d \equiv e \pmod{4}$, or

$$b_0^2 + b_1^2 + b_2^2 + b_3^2 \equiv 2(b_0b_3 - b_1b_2) \pmod{4}$$

or

$$(b_0-b_3)^2+(b_1+b_2)^2 \equiv 0 \pmod{4}$$
.

Thus we have $b_0 \equiv b_3$, $b_1 \equiv b_2 \pmod{2}$, which proves case (v) of the theorem.

We now consider the case $(m, n) \equiv (1, 1) \pmod{4}$, which has been excluded up to this point. We have $m_1 n_1 \equiv 1 \pmod{4}$ so that $2a_0$, $2a_1$, $2a_2$, $2a_3$ are either all integers or all halves of odd integers.

If $2a_0$, $2a_1$, $2a_2$, $2a_3$ are all integers then as in the case $(m, n) \equiv (3, 3) \pmod{4}$ we have $d \equiv e \pmod{4}$, that is,

$$b_0^2 - b_1^2 - b_2^2 + b_3^2 \equiv 2(b_0b_3 - b_1b_2) \pmod{4}$$

or

$$(b_0-b_3)^2-(b_1-b_2)^2\equiv 0 \pmod{4}$$
,

which implies

$$b_0 - b_3 \equiv b_1 - b_2 \pmod{2}$$

or

$$b_0 - b_1 + b_2 - b_3 \equiv 0 \pmod{2}$$
.

This gives θ in the form $\frac{1}{4}(c_0+c_1\sqrt{m}+c_2\sqrt{n}+c_3\sqrt{m_1n_1})$, with c_0 , c_1 , c_2 , c_3 integers such that

$$c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv 0 \pmod{2}, \qquad c_0 - c_1 \pm c_2 - c_3 \equiv 0 \pmod{4}.$$

If $2a_0$, $2a_1$, $2a_2$, $2a_3$ are all halves of odd integers we can write (2) as

(11)
$$\theta = \frac{1}{4}(c_0 + c_1\sqrt{m} + c_2\sqrt{n} + c_3\sqrt{m_1n_1}),$$

where c_0 , c_1 , c_2 , c_3 are integers such that $c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv 1 \pmod{2}$. We have

(12)
$$c = \frac{c_0^2 - m_1 n_1 c_3^2}{4}, \qquad d = \frac{c_0^2 - m c_1^2 - n c_2^2 + m_1 n_1 c_3^2}{4},$$

$$e = \frac{c_0 c_3 - c_1 c_2 l}{2}.$$

These are all integers as $c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv l \equiv 1 \pmod{2}$ and $m \equiv n \equiv m_1 n_1 \equiv 1 \pmod{4}$. Moreover

$$c_0^2 - mc_1^2 - nc_2^2 + m_1 n_1 c_3^2 \equiv 1 - m - n + m_1 n_1 \pmod{8}$$

$$\equiv 1 - m - n + l^2 m_1 n_1 \pmod{8}$$

$$= 1 - m - n + mn$$

$$= (1 - m)(1 - n)$$

$$\equiv 0 \pmod{8},$$

so that d is even. Now θ satisfies

(13)
$$\theta^4 - c_0 \theta^3 + \left(c + \frac{d}{2}\right) \theta^2 + \left(\frac{c_3 m_1 n_1 e - c_0 d}{4}\right) \theta + \left(\frac{d^2 - m_1 n_1 e^2}{16}\right) = 0.$$

Clearly $\theta \notin Q(\sqrt{m})$, $Q(\sqrt{n})$, $Q(\sqrt{m_1n_1})$ so that the coefficients of (13) must all be integers, that is, we must have

(14)
$$d^2 - m_1 n_1 e^2 \equiv 0 \pmod{16},$$

since (14) implies, as $d\equiv 0 \pmod 2$, $m_1n_1\equiv 1 \pmod 4$, that $d\equiv e \pmod 4$ and so

$$c_3m_1n_1e - c_0d \equiv c_3e - c_0d \equiv d(c_3 - c_0) \equiv 0 \pmod{4}$$
.

Clearly as $d \equiv 0 \pmod{2}$, (14) is equivalent to $d \equiv e \pmod{4}$.

Writing $c_i = 2d_i + 1$ (i = 0, 1, 2, 3) we have

$$d = (d_0^2 - md_1^2 - nd_2^2 + m_1n_1d_3^2) + (d_0 - md_1 - nd_2 + m_1n_1d_3) + \frac{(1 - m - n + m_1n_1)}{4}$$

$$\equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{(1 - m - n + m_1 n_1)}{4} \pmod{4},$$

and

$$e = (2d_0d_3 - 2ld_1d_2) + (d_0 - ld_1 - ld_2 + d_3) + \frac{1 - l}{2}.$$

Thus if $l \equiv 1 \pmod{4}$, so that $(m_1, n_1) \equiv (1, 1) \pmod{4}$, we have

$$d \equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 - l}{2} \pmod{4},$$

$$e \equiv (2d_0d_3 - 2d_1d_2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 - l}{2} \pmod{4},$$

and so $d \equiv e \pmod{4}$ gives

$$(d_0-d_3)^2-(d_1-d_2)^2\equiv 0 \pmod{4}$$
,

that is

$$d_0 - d_3 \equiv d_1 - d_2 \pmod{2}$$

oΓ

$$c_0 - c_1 + c_2 - c_3 \equiv 0 \pmod{4}$$

which completes the proof of case (i) of the theorem.

If $l \equiv 3 \pmod{4}$, so that $(m_1, n_1) \equiv (3, 3) \pmod{4}$, we have

$$d \equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{1+l}{2} \pmod{4},$$

$$e \equiv (2d_0d_3 + 2d_1d_2) + (d_0 + d_1 + d_2 + d_3) + \frac{1-l}{2} \pmod{4},$$

and so $d \equiv e \pmod{4}$ gives

$$(d_0-d_3)^2-(d_1+d_2)^2-2(d_1+d_2)-1 \equiv 0 \pmod{4},$$

that is,

$$d_0 - d_3 \equiv d_1 + d_2 + 1 \pmod{2}$$

or

$$c_0 - c_1 - c_2 - c_3 \equiv 0 \pmod{4}$$
,

which completes the proof of case (ii) of the theorem.

We give three simple examples of Theorem 1.

EXAMPLE 1. $\theta = \frac{1}{4}(5 + 3\sqrt{5} + \sqrt{13} + 3\sqrt{65})$ is an integer of $Q(\sqrt{5}, \sqrt{13})$. θ satisfies $\theta^4 - 5\theta^3 - 71\theta^2 + 120\theta + 1044 = 0$.

EXAMPLE 2. $\theta = \frac{1}{4}(1 + \sqrt{21} + \sqrt{33} - \sqrt{77})$ is an integer of $Q(\sqrt{21}, \sqrt{33})$. θ satisfies $\theta^4 - \theta^3 - 16\theta^2 + 37\theta - 17 = 0$.

EXAMPLE 3. The integers of $Q(\sqrt{2}, \sqrt{-1})$ are of the form $a_0 + a_1\sqrt{2} + a_2\sqrt{-1} + a_3\sqrt{-2}$, where a_0 , a_2 are both integers and a_1 , a_3 are both integers or both halves of odd integers (see [2] for example).

As a consequence of Theorem 1 we have

THEOREM 2. An integral basis for $Q(\sqrt{m}, \sqrt{n})$ is given by

(i)
$$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m_1n_1}}{4}\right\}$$
, if $(m, n) \equiv (1, 1)$, $(m_1, n_1) \equiv (1, 1) \pmod{4}$,

(ii)
$$\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1-\sqrt{m}+\sqrt{n}+\sqrt{m}+n_1}{4}\right\}$$
, if $(m, n) \equiv (1, 1)$, $(m_1, n_1) \equiv (3, 3) \pmod{4}$,

(iii)
$$\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{m_1n_1}}{2}\right\}, \quad if (m, n) \equiv (1, 2) \pmod{4},$$

(iv)
$$\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{m} + \sqrt{m_1 n_1}}{2}\right\}$$
, if $(m, n) \equiv (2, 3) \mod 4$,

(v)
$$\left\{1, \sqrt{m}, \frac{\sqrt{m} + \sqrt{n}}{2}, \frac{1 + \sqrt{m_1 n_1}}{2}\right\}, \quad if (m, n) \equiv (3, 3) \pmod{4}.$$

Proof. We just give the proof of (i) since the other four cases are very similar. By Theorem 1 the general integer of $Q(\sqrt{m}, \sqrt{n})$ can be written $\frac{1}{4}(x_0 + x_1\sqrt{m} + x_2\sqrt{n} + x_3\sqrt{m_1n_1})$, where x_0, x_1, x_2, x_3 are integers such that

$$x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2}, \qquad x_0 - x_1 + x_2 - x_3 \equiv 0 \pmod{4}.$$

Write $z_3 = x_3$. As $x_0 \equiv x_1 \equiv x_2 \equiv z_3 \pmod{2}$ there are integers y, z_1, z_2 , such that

$$x_0 = z_3 + 2y$$
, $x_1 = z_3 + 2z_1$, $x_2 = z_3 + 2z_2$.

But as $x_0 - x_1 + x_2 - z_3 \equiv 0 \pmod{4}$ we have $y \equiv z_1 + z_2 \pmod{2}$, so there is an integer z_0 such that $y = 2z_0 + z_1 + z_2$. Hence

$$\frac{1}{4}(x_0 + x_1\sqrt{m} + x_2\sqrt{n} + x_3\sqrt{m_1n_1})$$

$$= z_0 + z_1 \left(\frac{1 + \sqrt{m}}{2} \right) + z_2 \left(\frac{1 + \sqrt{n}}{2} \right) + z_3 \left(\frac{1 + \sqrt{m} + \sqrt{n} + \sqrt{m_1 n_1}}{4} \right),$$

which proves the result as

1,
$$\frac{1+\sqrt{m}}{2}$$
, $\frac{1+\sqrt{n}}{2}$, $\frac{1+\sqrt{m}+\sqrt{n}+\sqrt{m_1n_1}}{4}$,

are integers of $Q(\sqrt{m}, \sqrt{n})$.

We illustrate Theorem 2 with a simple example.

Example 4. An integral basis for $Q(\sqrt{5}, \sqrt{13})$ is

$$\{\alpha_0,\,\alpha_1,\,\alpha_2,\,\alpha_3\} = \left\{1,\,\frac{1+\sqrt{5}}{2},\,\frac{1+\sqrt{13}}{2},\,\frac{1+\sqrt{5}+\sqrt{13}+\sqrt{65}}{4}\right\}$$

and the integer $\frac{1}{4}(5+3\sqrt{5}+\sqrt{13}+3\sqrt{65})$ is given in terms of this integral basis as $\alpha_0 - \alpha_2 + 3\alpha_3$.

Finally as the discriminant of an algebraic number field is just the discriminant of an integral basis of the field, we have

Theorem 3. The discriminant of $Q(\sqrt{m}, \sqrt{n})$ is given by

- (i) $l^2m_1^2n_1^2$, if $(m, n) \equiv (1, 1) \pmod{4}$,
- (ii) $16l^2m_1^2n_1^2$, if $(m, n) \equiv (1, 2)$ or (3, 3) (mod 4),
- (iii) $64l^2m_1^2n_1^2$, if $(m, n) \equiv (2, 3) \pmod{4}$.

Thus, for example, we have

EXAMPLE 5. The discriminant of $Q(\sqrt{2}, \sqrt{-1})$ is 256. 8—c.m.b.

REFERENCES

- 1. H. Hancock, Foundations of the theory of algebraic numbers, Dover, N.Y., Vol. 2 (1964), 392-396.
- 2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 4th ed. (1960), 230-231.
- 3. H. Pollard, *The theory of algebraic numbers*, Carus Math. Monograph, No. 1, M.A.A. Publ. (1961), 61-63.

Carleton University, Ottawa, Ontario