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INTEGERS OF BIQUADRATIC FIELDS

BY
KENNETH S. WILLIAMS(?)

Let O denote the field of rational numbers. If m, n are distinct squarefree integers
the field formed by adjoining V'm and Vn to Q is denoted by Q(Vm, Vn). Since
Q(Vm, V)= Q(Vm++V'n) and Vm+V'n has for its unique minimal polynomial
xt—2m+n)x2+(m—n)?, Q(Vm,Vn) is a biquadratic field over Q. The
elements of Q(Vm, Vn) are of the form a,+a,Vm+a,Vn+a;Vmn, where
@y, a1, 43, 43 € Q. Any element of Q(\/ m, vV r_z) which satisfies a monic equation of
degree >1 with rational integral coefficients is called an integer of Q(Vm, Vn).
The set of all these integers is an integral domain. In this paper we determine the
explicit form of the integers of Q(V'm, Vn) (Theorem 1), an integral basis for
Q(V'm, V'n) (Theorem 2), and the discriminant of Q(V'm, V'n) (Theorem 3). (With
O(V'm, V'n) considered as a relative quadratic field, that is, as a quadratic field
over Q(V'm), an integral basis for Q(\/ m, V'n) has been given in [1].)

The form of the integers of a quadratic field are well known [3]. If & is a square-
free integer then the integers of Q(Vk) are given by 1(x,+x,Vk), where xq, X,
are integers such that x,=x; (mod 2), if k=1 (mod 4); and by xo+x,V'k, where
X, X, are integers, if k=2 or 3 (mod 4). Thus we know the integers of the subfields
Q(Vm), Q(V'n), Q(Vmn) of Q(V'm, V).

We begin by making some simplifying assumptions about m and n. We let
[=(m, n) and write m=Im;, n=1In, so that (m,, n;)= 1. Since m, n are squarefree we
have the following possibilities for the residues of m, n, m;n; modulo 4.

m n mn
1 1 1
1 2 2
1 3 3
2 1 2
2 2 lor3
2 3 2
3 1 3
3 2 2
3 3 1
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Thus as
QWVm, Vi) = QVm, V) = Q(Wn, Vimny) = Q(Vn, Vm)
we may suppose without loss of generality that
) (m,n) = (1, 1),(1,2), 2, 3) or (3, 3) (mod 4).

We now determine the form of the integers of Q(Vm, Vn), where (here and
throughout) m, n satisfy (1).

THEOREM 1. Letting x,, X1, X2, X3 denote rational integers, the integers of
Q(V'm, V'n) are given as follows:

(i) if (m, n)=(my, n))=(1, 1) (mod 4), the integers are
L(xo+x,Vm+x,Vn+ x5V mny),
where xo=X; =x,=X3 (mod 2), x,—x; + X3 —x3=0 (mod 4);
@ii) if (m,n)=(, 1), (my, n,)=(3, 3) (mod 4), the integers are
1(xo +x1\/_rr—z+x2\/r_z+x3\/m_1n—1),
where xy=Xx,=Xx,=Xx3 (mod 2), x,—x; —x;—Xx3=0 (mod 4);
(iii) if (m, n)=(1, 2) (mod 4), the integers are
1(x, +x,Vm+ x2\/r_z+x3\/rZE),
where x,=Xx1, xo=Xx3 (mod 2);
(iv) if (m, n)=(2, 3) (mod 4), the integers are
xo+x1Vm+x,Vin+x,Vmny),
where xo=x,=0, x;=Xx3 (mod 2);
(v) if (m, n)=(3, 3) (mod 4), the integers are
1(xo+x1Vm+x,Vn+ x3Vimuny),
where xo=X3, X, =X, (mod 2).

Proof. Let 6 be an integer of Q(V'm, V'n), where m, n satisfy (1). Then 6 can be
written

(2) 0 = ao+al\/’7+ 02\/’_1+03\/m1n1,

where ao, a1, as, as € Q. As 0 is an integer of Q(Vm, Vn) so are its conjugates
over Q, namely,

0 = ao+al\/r7—a2\/;—aa\/m1n1,
3) 0" = ay—a,Vm+a,Vn—az;Vming,

0" = ao—al\/r_n-—az\/;+a3\/m1n1.
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The three quantities

0+0" = 2a,+2a,Vm e Q(Vm),
@) 0+6" = 2a,+2a,Vne Q(Vn),

0+6" = 2a,+2a;Vmun, € Q(Vminy),
are therefore all integers of Q(V'm, V'n). Hence they must be integers of Q(Vm),
O(Vn), O(Vminy) respectively.

We consider the cases (m, n)=(1, 2), (2, 3), (3, 3) (mod 4) first so that at least

two of m, n, myn; are not congruent to 1 (mod 4), and so at least two of (4) have
integral coeflicients. Since 2a, is common to all three of (4), the third one must also

have integral coefficients. Hence 2a,, 2a;, 2a,, 2a; are all integers and we can write
(2) as

5) 0 = 4(bo+b,Vm+b,Vn+b,Vimyny),

where by, b,, by, bs are all integers. Let us define

(6) ¢ = bi—mn b3, d = b3 —mb? —nbi+myn,b3,
e = 2(bobs—b1bsl),
so that 0 satisfies

— 2 __ 2
) 04—2b003+(c+‘2—i) 02+(b3m1"12€ bod) o @ =mume) _ .

16

If 6 € Q(Vm), Q(Vn) or Q(Vmun,) the theorem is easily verified so we suppose
that 6 ¢ Q(Vm), Q(V'n), Q(Vmyn,). Thus the coefficients of (7) must all be in-
tegers, that is, we must have

8) d?—myn,e? = 0 (mod 16),

since as e is even this implies that d must be even too.

If (m, n)=(1, 2) (mod 4), so that /=1 (mod 2), mn; =2 (mod 4), (8) is equiva-
lent to d=e=0 (mod 4), or

(9a) b2 —b%—2b%+2b% = 0 (mod 4),
(9b) b0b3'—b1b2 =0 (mOd 2).

If bo#b, (mod 2) then bZ—b2=1 (mod 2) and (9a) is insoluble. Thus we must
have b,=b, (mod 2), so bz —b?=0 (mod 4) and (9a) implies 2(b%—b32)=0 (mod 4),
that is b,=b; (mod 2). Clearly (9b) is then satisfied and this proves case (iii) of the
theorem.

If (m, n)=(2, 3) (mod 4), so that /=1 (mod 2), m;n; =2 (mod 4), (8) is equivalent
to d=e=0 (mod 4), or

(10a) b3 —2b3+b3+2b% = 0 (mod 4),
(10b) bobs—b1b, = 0 (mod 2).
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If either b, or b, is odd (10a) implies that the other is odd too. Then (10b) implies
b, =b; (mod 2) and (10a) becomes 1 —2b%+ 1+ 2b2=0 (mod 4), which is impossible.
Thus by=b,=0 (mod 2) and so b, = b5 (mod 2). This proves case (iv) of the theorem.

If (m, n)=(3, 3) (mod 4), so that /=1 (mod 2), m,n, =1 (mod 4), (8) is equivalent
to d=e (mod 4), or

b3+ b2+ bE+b% = 2(bobs—b1by) (mod 4),
or
(bo - b3)2 + (b1 + b2)2 =0 (mod 4).

Thus we have by=bg, by =b, (mod 2), which proves case (v) of the theorem.

We now consider the case (m, n)=(1, 1) (mod 4), which has been excluded up
to this point. We have myn; =1 (mod 4) so that 2ay, 2a,, 2a,, 2a; are either all
integers or all halves of odd integers.

If 2a,, 2a,, 2a,, 2a, are all integers then as in the case (m, n)=(3, 3) (mod 4) we
have d=e (mod 4), that is,

bi—b3—bi+ bk = 2(bobs— byby) (mod 4),
or
(6o~ b3)*> —(b; —b3)* = 0 (mod 4),
which implies
by—bs = b, —b, (mod 2)
or

bo—by+by—bs = 0 (mod 2).

This gives @ in the form (¢, +c,Vm+ e, Vn+csVimny), with ¢, ¢4, €5, €3 integers
such that

Co =€ = ¢y = ¢g = 0 (mod 2), co—Citca—cz = 0 (mod 4).
If 2a,, 2a,, 2a,, 2a; are all halves of odd integers we can write (2) as
(11) 0 = 3(cot+crVm+c;Va+egVmny),
where ¢, ¢, ¢4, 3 are integers such that co,=c;=c;=c3=1 (mod 2). We have

ci— mlnlc{‘,” d— c2—mci—-nci+ mlnlcg’

4 4

C =

(12)
CoCg—C1Cal.

2

e =
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These are all integers as co=cy; =cy=c3=/=1(mod 2) and m=n=myn, =1 (mod 4).
Moreover

ci—meci~nci+mncd = 1—-m—n+mn, (mod 8)
= 1 -m—n+Pmn, (mod 8)

l-m—n+mn

= (1—m)(1—n)
= 0 (mod 8),
so that 4 is even. Now 8 satisfies
d camne—cod d?—mn,e?
4_ 3 LAY 31,11, o 1M1 —
(13) 04— cof +(c+2)6 +( : )e+( i ) 0.

Clearly 6 ¢ Q(Vm), Q(V'n), Q(Vmyn,) so that the coefficients of (13) must all be
integers, that is, we must have
14) d?—mn,e? = 0 (mod 16),
since (14) implies, as d=0 (mod 2), myn; =1 (mod 4), that d=e (mod 4) and so
camn e —cod = cze—cod = d(cz—cy) = 0 (mod 4).
Clearly as d=0 (mod 2), (14) is equivalent to d=e (mod 4).
Writing ¢;=2d,+ 1 (i=0,1, 2, 3) we have

(1—m—n+myny)

d = (d2 —md? —ndZ+myn,d3)+(dy —mdy — ndy+ myn,d;) + 7

= (0 —di —d+d) + (dy— dy ~ dy + )+ L2 (g gy,

and

e = (2d0d3—21d1d2)+(d0_ldl—ld2+d3)+l_2——1'

Thus if /=1 (mod 4), so that (m,, n,)=(1, 1) (mod 4), we have

e = (2d0d3_2d1d2)+(d0—d1 _dg +d3)+lT—J (mod 4),
and so d=e (mod 4) gives
(do—d3)?—(dy—d5)* = 0 (mod 4),
that is
do—d3 = dl—dz (mOd 2),
or
Cco—c1+cy—cz = 0 (mod 4),

which completes the proof of case (i) of the theorem.
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If /=3 (mod 4), so that (my, n;)=(3, 3) (mod 4), we have

d = (@3 —d? —d3 +d)+ (do—dy —dy+ &)+ 5 (mod 4),

e = (2dydy-+2dydy) + (do+dy +dy + do) + 17—1 (mod 4),

and so d=e (mod 4) gives
(do—d3)?~(dy +d5)?—2(d; +dy)—1 = 0 (mod 4),
that is,
do—dy = dy+dy+1 (mod 2),

or

Co—C1—Cz—cg = 0 (mod 4),

which completes the proof of case (ii) of the theorem.
We give three simple examples of Theorem 1.

ExXaMPLE 1. =1(5+3V5+V13+3V65) is an integer of Q(V/5, V13). 6 satis-
fies 0% —56%—716%+12060+1044=0.

ExaMPLE 2. 6=1(14+V21+V33-+/77) is an integer of Q(V21, V/33). 0 satis-
fies 64— 6°—1662+376—-17=0.

ExampLE 3. The integers of Q(\/Z vV =1) are of the form ay+a,V2+ a,V —1
+azV =2, where a,, a; are both integers and a,, a; are both integers or both halves

of odd integers (see [2] for example).
As a consequence of Theorem 1 we have

THEOREM 2. An integral basis for Q(V'm, V/'n) is given by
0 {1 1+Vm 1+Vn 1+Vm+ \/ﬁ+\/m1n1}’ if (m,n)=(,1),
) 2 4 (my, ny) = (1, 1) (mod 4),

(i) {1,1+\/E’1+\/E’1—\/E+\/Z+VM}’ if (myn)=(1,1),

2 2 4 (ml, nl) = (3’ 3) (mOd 4)’
(iii) {1, 1+2‘/ m s Vit 2” ”“”1}, if (m,n) = (1, 2) (mod 4),
@) {1, vm, Vi, M} if (m, ) = (2, 3) mod 4),

) {1. Vm, m; Vin 14 VZ’""} if (m,n) = (3, 3) (mod 4).
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Proof. We just give the proof of (i) since the other four cases are very similar.
By Theorem | the general integer of Q(Vm, Vn) can be written 3(x,+x,Vm
+x,Vn+ x5V myny), where x,, X;, Xg, X5 are integers such that

Xo = X; = Xy = X5 (mod 2), Xo—X1+Xx3—x3 = 0 (mod 4).
Write z; = X3. As xq = x; = xo = z5 (mod 2) there are integers y, z;, z,, such that
Xo = Zg+2y, X = z3+2z,, Xy = Zg+2z,.

But as x,—x; + X, —23=0 (mod 4) we have y=z; +z, (mod 2), so there is an integer
z, such that y=2z,+z, +z,. Hence

%(xo+x1\/17+x2\/;+x3\/m1n1)

. (1+;/E)+22 (1+2x/;)+23 (1+x/ﬁ+\f+ x/m)

which proves the result as

1,

1+Vm 1+4Va 1+Vm+Vn+Vmn,
2 2 4

are integers of Q(Vm, V'n).
We illustrate Theorem 2 with a simple example.

ExaMPLE 4. An integral basis for Q(V'5, V13) is

1+v5 1+V13 1+V35+VI3+V65
> 2 2 4

{aO’ 01, &g, 063} = {1

and the integer 3(5+3V5+V13+3V 33) is given in terms of this integral basis
as ag—ag+3a,.

Finally as the discriminant of an algebraic number field is just the discriminant
of an integral basis of the field, we have

THEOREM 3. The discriminant of Q(V'm, V'n) is given by

@) Pmin3,  if (m,n)=(1, 1) (mod 4),
(i) 162m3n3, if (m,m)=(1, 2) or (3, 3) (mod 4),
(iii) 6412m2n2, if (m, n)=(2, 3) (mod 4).

Thus, for example, we have

EXAMPLE 5. The discriminant of Q(V'2, v/ =1) is 256.

8§—C.M.B,
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