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1. Introduction. In 1957, Mordell [3] proved

THEOREM. I p is an odd prime there exist non-negative

3/4
integers x, vy < Ap / log p, where A is a positive absolute
constant, such that

(1.1) ax + by2 = c¢{mod p),

provided (abc, p) = 1.

Recently Smith [5] has obtained a sharp asymptotic formula for
the sum T{r{n):n < X, n = c(mod k)} where r{(n) denotes the
number of representations of n as the sum of two squares., As an
application of the asymptotic formula for this sum, he deduced

THEOREM. I k is an odd integer, containing only a bounded

. . . 3/4
number of factors, there exist non-negative integers x, vy < B k / ,

where B is a positive absolute constant, such that

(1.2) %% + 3% = c(mod k),

provided (c,k) = 1.

This sharpens Mordell's result when a = b =1 and k = p.
It is the purpose of this paper to generalize Smith's result to the case

2 2
of the congruence ax + by = c(mod k). We use an entirely different
method from that of Smith. We apply an idea due to Tietiviinen [7].
We prove

THEOREM. If k is an odd integer there exist non-negative

3/4 1/2
integers x, y < Ck / d(k) / , where C 1is a positive absolute

constant and d(k) denotes the number of divisors of k, such that
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(1.3) ax2 + by2 = c(mod k),

provided (abc,k) = 1.

Smith's result is the special case a = b = 1, d(k) bounded.

2. Notation. We let

k3/ /2

4 1
(2.1) h = [D d(k) ] +1,
where D > 0 is defined by
0
1
(2.2) = & .
d=1 d

Clearly h > 1 and k is supposed to be large enough so that
1
h < E(k - 1). For any integer x we let N(k, x) denote the number

of solutions (u,v) of

(2.3) u + v = x(mod k),
with
(2.4) 1 < u < h, 1 < v <h
Clearly
k-1 2
(2.5) b N(k,x) = h" .
x=0

For any real number u we write

{2.6) e{u) = exp(2 = iu)

and it is well known that for any integer r we have
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k-1 , if r = 0{(modk),
1 rt) _
(2.7) = e( )‘ 10, if r # 0(modk).

k-1 2
(2.8) Mk,r) = = Nk,x) e(r—3‘—>
x=0 \ Kk
h
(2.9) Alk,r) = = e(%)
x=1
k-1 2, .
(2.10) T(k,r,8) = = e<1’i—?—-‘=3‘—>
x=0
(2.11) S(k,r) = T(k, r,0),
k-1 . .
(2.12) Kk,r,s) = = o[xx* s[x, k] ksx ,
xX=
(x, k)=1

where [x,k] denotes the unique integer m satisfying

(2.13) xm = 1(modk), 1 < m < k -1, for (x,k) =1.

The sum Af{k,r) (considered by TietHvHinen [6] when k is prime)
satisfies

k-1 5
(2.14) = |Ak,r)|® = kh.
r=0

The sums T(k,r,s) and S(k,r) are Gaussian sums and it is well
known that (see for example [2])

Jfo , if s # 0(mod d),
(2.15)  T(k,r,s)

0 (mod d) ,

o
=
N
o=
o fr
L lw
=
A~
7
it



where d = (k,r). Also if (k,r) =1, with k odd, we have

2
(2.16) T(k,r,s) = e<'&'k1ks fr"‘?) S(k, r)

and (see for example [4])

1 2
3 (k-1)
(2.147) S(k,r) = ( * K172

where ('11‘;') is the Jacobi symbol. Finally K(k,r,s) is the Kloosterman
J

sum, which Estermann [1] has shown satisfies

(2.18) | Kk, r,s) | < d(k) (12 (r,s,k)i/z.

This estimate is a consequence of the work of Weil [8].

3. Idea of proof. The idea of the proof is to show that

k-1
(3.1) z N(k,x) N(k,y) > 0.
x, y=0

2
ax + byzzc(mod k)

This result implies that there exist integers x and y (0 < x,y < k- 1)
such that

2
(3.2) ax + byz = ¢ (mod k)
and
(3.3) N(k,x) > 0, N(k,y) > 0

The conditions (3.3) imply the existence of integers u, v, u', v' such
that

314



(3.4) 1 < u, v, u, v' < h < >

and

(3.5) u + v =x,u + v = y(modk}).
Hence

[x-(u+v)‘<k—1, |y-(u'+v')|<k—i
and so
0 < x = u4v<o2n =20kt a2 <« alltamt’?
(3.6)
0<y=uwiviezn = 2ok>* aw)t? 42 < altam?’?

for a suitable positive absolute constant C < 2 /3 + 2. This is the
required result.

4. Proof of theorem. From (2.7) we have

(
k-1 (‘(ax2+b2—ct\\ 'k, if ax2+by2 = ¢ (mod k),
jlax 4+ by - c)t ] —
t?O eL k J P 0, otherwise ,
so that
k-1
k = N(k,x) N(k,y)
x, y=0
ax2 + by2 = ¢(mod k)
k-1 k-1 g 2 2
= T N(k,x) Nk,y) = e{‘ax *kby . C)t}
x, y=0 t=0
k-1 k-1
2 -ct
= [z N(k,x}} + e(—k—) M(k, at) M(k, bt) ,
b x=0 t=1
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on picking out the term with t = 0. Thus from (2.5) we have

k-1 4 k-1 ct
@.1) | k = N(k,x) N(k,y) - b= e(
K
x, y=0 t=1

\M(k, at) M(k, bt)

2
ax2+by = c(mod k)

Now
k-1 at <2
M(k, at) = = Nk, x) e )
x=0
k-1 h k-1 2
1 +v -
= 5 5 5 eé(u v 1z{)+atx
x=0 u,v=1 r=0
K 2
= E {A(kvr)} T(kl at: -I‘) ’
r=0
so that
k- 0\
z (L M(k, at) M(k, bt)
k)
k-1 k-1
1 2 ‘-ct
==, T = T A( 1)} ° {A(k )} ° T(k, at, -r) T(k, bt, -s) e[TC)
k" dlk t=1  r,s=0
(t, k)=d
k-1 » , k-1 et
=5, = =z {Ak, )} {A(k, s)} = e’\—k— T(k, at, -r) T(k, bt, ~s),
dlk r,s=0 t=1
d|r,d|s (t, k)=d

as T(k,at,-r) T(k,bt,-s) is zero (see (2.15)) unless -r = 0 (mod(k, at))
and -s = 0 (mod(k,bt)), thatis, unless dlr and d’s, since (ab, k) =
In this case

T(k,at,-r) = d T(E at g)

316



and

k bt -s
T(k,bt,-s) = 4 T(d' 3 d)

so that the sum becomes

k-1 k-1
1 - - k bt -
(e.2) 1,z a® B (Al (Al ) T e(—;E)T(g,Z—t,g-)T(E,d—, ;j—)-
k= dlk r, §=0 t=1
d|r;d|s (t, k)=d

We next change the summation over t in (4.2) into summation over u,
where u =t/d, which gives:

k4
1 2 1t 2 2 4 S e g
(4.3) 5, T a7 T (A} {Ak ) T e T(‘i,au, _jT(_vbu,__).
kz d’k r, s=0 u=1 (k/d) d d d d
d!r,dls (u,l;‘):i

From (2.16) and (2.17) the sum over u in (4.3) is

\ 1/k
Z mewh(-[4,3/d] (-x/a)® [au, k/d]) fau .Z(d_ij (k)“z
us € k/d (k/d)Jl

2

) 1k

e<—[4,k/d](-s/d)2 (bu,k/d]\’ﬂ\) iZ(§'1>(E)1/2
x/d /‘\k/d ; 3
i} E(La_'-z) ko)

d \k/d/; FR

where
2 2

T

e = [4a, k/d] (d

) + [4b, k/d](z—)



From (2.18)

|K(k/d, -¢c, -e)| < d(k/d) ey

as (c,k) =1.
Hence
k-1 et
= e(- M(k, at) M(k, bt)
k
t=1
" , k-1
< 5, = d =
k® d]k r, s=0
d|r,d|s
[ k-1
< 4R op 0
k dlk " r=0
_dlr
kL,
d(k 1/2J
k d|k t=0
_ d(k) gtz (k
EVE d
k d|k
3/2 1
= d(k)k/ h = 3—/2
dlk d
2
< dm) k7% ¥ p? .

k

Thus from (4.1)

1/2

(-c, -e, k/d)

2

2 <
IA(k,r)’ ;/

J

2
|Ak/da, t)|2]!7
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1/2

| Ak, T)] 2 [A(k,s)|2' %-d(k/d)

d(k/d) =

k1/2

d

1/2

k

d1/2

1/2 "’



as h=[Dk d(k)1/2]+1>Dk

k

k=1 2 .2 3/2 _2
= N(k,x) N(k,y) > h° (8" - d&)k>'“ D) > o,
X, y=0

axZ +by2 = c(mod k)

3/4 3/4 2

1
d(k) / . This completes the

proof of the theorem.

5. Conclusion. As remarked by Smith [5] it would be of great

interest to know if the exponent 3/4 of the theorem can be lowered.
It would also be of interest to know if the method of this paper could be
adapted to give a corresponding result for the congruence

(5.1)

axﬂ + bym = c(mod k) ,

where £ > 2, m > 3 and (abc, k)=1.
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