SMALL SOLUTIONS OF THE CONGRUENCE $ax^2 + by^2 \equiv c \pmod{k}$

Kenneth S. Williams*

(received February 22, 1969)

1. Introduction. In 1957, Mordell [3] proved

THEOREM. If p is an odd prime there exist non-negative integers x, y \leq A p $\frac{3}{4}$ log p, where A is a positive absolute constant, such that

$$(1.1) ax2 + by2 \equiv c(mod p),$$

provided (abc, p) = 1.

Recently Smith [5] has obtained a sharp asymptotic formula for the sum $\Sigma\{r(n):n\leq X,\ n\equiv c(mod\ k)\}$ where r(n) denotes the number of representations of n as the sum of two squares. As an application of the asymptotic formula for this sum, he deduced

THEOREM. If k is an odd integer, containing only a bounded number of factors, there exist non-negative integers x, $y \le B k^{3/4}$, where B is a positive absolute constant, such that

(1.2)
$$x^2 + y^2 \equiv c \pmod{k}$$
,

provided (c,k) = 1.

This sharpens Mordell's result when a=b=1 and k=p. It is the purpose of this paper to generalize Smith's result to the case of the congruence $ax^2+by^2=c \pmod k$. We use an entirely different method from that of Smith. We apply an idea due to Tietäväinen [7]. We prove

THEOREM. If k is an odd integer there exist non-negative integers x, y \leq C k 3/4 d(k) 1/2, where C is a positive absolute constant and d(k) denotes the number of divisors of k, such that

Canad. Math. Bull. vol. 12, no. 3, 1969

^{*}This research was supported by NRC Grant A-7233.

$$(1.3) ax2 + by2 = c(mod k),$$

provided (abc, k) = 1.

Smith's result is the special case a = b = 1, d(k) bounded.

2. Notation. We let

(2.1)
$$h = [D k^{3/4} d(k)^{1/2}] + 1,$$

where D > 0 is defined by

(2.2)
$$D^2 = \sum_{d=1}^{\infty} \frac{1}{d^{3/2}}.$$

Clearly $h \ge 1$ and k is supposed to be large enough so that $h \le \frac{1}{2}(k-1)$. For any integer x we let N(k,x) denote the number of solutions (u,v) of

$$(2.3) u + v \equiv x \pmod{k},$$

with

(2.4)
$$1 \le u \le h, \quad 1 \le v \le h.$$

Clearly

(2.5)
$$\sum_{\mathbf{x}=0}^{k-1} N(k, \mathbf{x}) = h^2.$$

For any real number u we write

(2.6)
$$e(u) \equiv \exp(2 \pi i u)$$

and it is well known that for any integer r we have

(2.7)
$$\frac{1}{k} \sum_{t=0}^{k-1} e\left(\frac{rt}{k}\right) = \begin{cases} 1, & \text{if } r \equiv 0 \pmod{k}, \\ 0, & \text{if } r \not\equiv 0 \pmod{k}. \end{cases}$$

We also define for arbitrary integers r and s:

(2.8)
$$M(k,r) = \sum_{x=0}^{k-1} N(k,x) e^{\left(\frac{rx^2}{k}\right)},$$

(2.9)
$$A(k,r) = \sum_{x=1}^{h} e\left(\frac{rx}{k}\right),$$

(2.10)
$$T(k,r,s) = \sum_{x=0}^{k-1} e^{\left(\frac{x^2 + sx}{k}\right)},$$

(2.11)
$$S(k,r) = T(k,r,0)$$
,

(2.12)
$$K(k,r,s) = \sum_{\substack{x=1\\(x,k)=1}}^{k-1} e^{\left(\frac{rx + s[x,k]}{k}\right)},$$

where [x,k] denotes the unique integer m satisfying

(2.13)
$$xm \equiv 1 \pmod{k}, 1 \leq m \leq k-1, \text{ for } (x,k) = 1.$$

The sum A(k,r) (considered by Tietavainen [6] when k is prime) satisfies

(2.14)
$$\sum_{r=0}^{k-1} |A(k,r)|^2 = kh.$$

The sums T(k,r,s) and S(k,r) are Gaussian sums and it is well known that (see for example [2])

(2.15)
$$T(k,r,s) = \begin{cases} 0 & \text{if } s \not\equiv 0 \pmod{d}, \\ d T\left(\frac{k}{d},\frac{r}{d},\frac{s}{d}\right), & \text{if } s \equiv 0 \pmod{d}, \end{cases}$$

where d = (k, r). Also if (k, r) = 1, with k odd, we have

(2.16)
$$T(k,r,s) = e^{\left(\frac{-[4,k] s^{2}[r,k]}{k}\right)} S(k,r)$$

and (see for example [4])

(2.17)
$$S(k,r) = \left(\frac{r}{k}\right)_{J} i^{\frac{1}{4}(k-1)^{2}} k^{1/2}$$

where $(\frac{r}{k})$ is the Jacobi symbol. Finally K(k,r,s) is the Kloosterman sum, which Estermann [1] has shown satisfies

(2.18)
$$|K(k,r,s)| \le d(k) k^{1/2} (r,s,k)^{1/2}$$
.

This estimate is a consequence of the work of Weil [8].

3. Idea of proof. The idea of the proof is to show that

(3.1)
$$\sum_{\mathbf{x}, \mathbf{y} = 0} N(\mathbf{k}, \mathbf{x}) N(\mathbf{k}, \mathbf{y}) > 0.$$

$$\sum_{\mathbf{x}, \mathbf{y} = 0} N(\mathbf{k}, \mathbf{x}) N(\mathbf{k}, \mathbf{y}) > 0.$$

This result implies that there exist integers x and y (0 \leq x, y \leq k - 1) such that

(3.2)
$$ax^2 + by^2 \equiv c \pmod{k}$$

and

(3.3)
$$N(k, x) > 0, N(k, y) > 0.$$

The conditions (3.3) imply the existence of integers $\, u, \, v, \, u', \, v' \, \, such \, that$

$$(3.4) 1 \leq u, v, u', v' \leq h \leq \frac{k-1}{2}$$

and

(3.5)
$$u + v \equiv x, u' + v' \equiv y \pmod{k}$$
.

Hence

$$|x - (u + v)| < k - 1, |y - (u' + v')| < k - 1$$

and so

(3.6)
$$\begin{cases} 0 < x = u + v \le 2h = 2[Dk^{3/4} d(k)^{1/2}] + 2 \le Ck^{3/4} d(k)^{1/2}, \\ 0 < y = u' + v' \le 2h = 2[Dk^{3/4} d(k)^{1/2}] + 2 \le Ck^{3/4} d(k)^{1/2}, \end{cases}$$

for a suitable positive absolute constant $C \le 2\sqrt{3} + 2$. This is the required result.

4. Proof of theorem. From (2.7) we have

$$\sum_{t=0}^{k-1} e^{\left\{\frac{(ax^2 + by^2 - c)t}{k}\right\}} = \begin{cases} k, & \text{if } ax^2 + by^2 \equiv c \pmod{k}, \\ 0, & \text{otherwise,} \end{cases}$$

so that

$$k-1 \\ k \sum_{x, y=0} N(k, x) N(k, y) \\ ax^{2} + by^{2} \equiv c \pmod{k}$$

$$= \sum_{x, y=0}^{k-1} N(k, x) N(k, y) \sum_{t=0}^{k-1} e\left\{\frac{(ax^{2} + by^{2} - c)t}{k}\right\} \\ = \left\{\sum_{x=0}^{k-1} N(k, x)\right\}^{2} + \sum_{t=1}^{k-1} e\left(\frac{-ct}{k}\right) M(k, at) M(k, bt),$$

on picking out the term with t = 0. Thus from (2.5) we have

Now

$$M(k, at) = \sum_{x=0}^{k-1} N(k, x) e^{\left(\frac{at x^2}{k}\right)}$$

$$= \frac{1}{k} \sum_{x=0}^{k-1} \sum_{x=0}^{h} \sum_{x=0}^{k-1} e^{\left(\frac{x^2}{k}\right)}$$

$$= \frac{1}{k} \sum_{x=0}^{k-1} \{A(k, r)\}^2 T(k, at, -r),$$

so that

$$\begin{array}{l} \frac{k-1}{\Sigma} = e^{\left(\frac{-ct}{k}\right)} M(k,at) M(k,bt) \\ = \frac{1}{k^2} \sum_{\substack{d \mid k}} \frac{\sum_{\substack{k-1 \ k-1 \ (t,k)=d}}}{\sum_{\substack{k=1 \ k^2 \ d \mid k}} \sum_{\substack{k=1 \ (t,k)=d}}} \frac{\sum_{\substack{k-1 \ (t,k)=d}}}{\sum_{\substack{k=1 \ k^2 \ d \mid k}} \sum_{\substack{r,s=0}}} \left\{A(k,r)\right\}^2 \left\{A(k,s)\right\}^2 \frac{\sum_{\substack{k-1 \ k^2 \ d \mid k}}}{\sum_{\substack{r,s=0}}} \left\{A(k,r)\right\}^2 \left\{A(k,s)\right\}^2 \frac{\sum_{\substack{k=1 \ k-1 \ k^2 \ d \mid k}}}{\sum_{\substack{r,s=0}}} \left\{A(k,r)\right\}^2 \left\{A(k,s)\right\}^2 \frac{\sum_{\substack{k=1 \ k-1 \ k^2 \ d \mid k}}}{\sum_{\substack{k=1 \ k-1 \ k^2 \ d \mid k}}} \frac{e^{\left(\frac{-ct}{k}\right)}}{\sum_{\substack{k=1 \ k^2 \ d \mid k}}} T(k,at,-r) T(k,bt,-s), \end{array}$$

as T(k, at, -r) T(k, bt, -s) is zero (see (2.15)) unless $-r \equiv 0 \pmod{(k, at)}$ and $-s \equiv 0 \pmod{(k, bt)}$, that is, unless $d \mid r$ and $d \mid s$, since (ab, k) = 1. In this case

$$T(k, at, -r) = d T\left(\frac{k}{d}, \frac{at}{d}, \frac{-r}{d}\right)$$

and

$$T(k, bt, -s) = d T\left(\frac{k}{d}, \frac{bt}{d}, \frac{-s}{d}\right)$$

so that the sum becomes

We next change the summation over t in (4.2) into summation over u, where u = t/d, which gives:

From (2.16) and (2.17) the sum over u in (4.3) is

$$\frac{k}{d} - 1$$

$$\sum_{u=1}^{\infty} e\left(\frac{-cu}{k/d}\right) = e\left(\frac{-\left[4, k/d\right] \left(-r/d\right)^{2} \left[au, k/d\right]}{k/d}\right) \left(\frac{au}{k/d}\right)_{J} i^{\frac{1}{4}\left(\frac{k}{d}-1\right)^{2}} \left(\frac{k}{d}\right)^{1/2}$$

$$\cdot e\left(\frac{\left[4, k/d\right] \left(-s/d\right)^{2} \left[bu, k/d\right]}{k/d}\right) \left(\frac{bu}{k/d}\right)_{J} i^{\frac{1}{4}\left(\frac{k}{d}-1\right)^{2}} \left(\frac{k}{d}\right)^{1/2}$$

$$= \frac{k}{d} \left(\frac{-ab}{k/d}\right)_{J} K\left(\frac{k}{d}, -c, -e\right) ,$$

where

$$e = [4a, k/d] \left(\frac{r}{d}\right) + [4b, k/d] \left(\frac{s}{d}\right).$$

From (2.18)

$$|K(k/d, -c, -e)| \le d(k/d) \left(\frac{k}{d}\right)^{1/2} (-c, -e, k/d) = d(k/d) \frac{k}{d} \frac{1/2}{1/2}$$

as (c, k) = 1.

Hence

$$\begin{vmatrix} k-1 \\ \Sigma \\ t=1 \end{vmatrix} = e \left(\frac{-ct}{k}\right) M(k, at) M(k, bt)$$

$$\leq \frac{1}{k^2} \sum_{\substack{d \mid k \\ k}} d^2 \sum_{\substack{r, s=0 \\ d \mid r, d \mid s}} |A(k, r)|^2 |A(k, s)|^2 \cdot \frac{k}{d} \cdot d(k/d) \frac{k^{1/2}}{d^{1/2}}$$

$$\leq \frac{d(k)}{k^{1/2}} \sum_{\substack{d \mid k \\ k}} d^{1/2} \begin{cases} k-1 \\ \Sigma \\ r=0 \\ d \mid r \end{cases} |A(k, r)|^2$$

$$= \frac{d(k)}{k^{1/2}} \sum_{\substack{d \mid k \\ d \mid k}} d^{1/2} \begin{cases} \frac{k}{d} - 1 \\ \Sigma \\ t=0 \end{cases} |A(k/d, t)|^2$$

$$= \frac{d(k)}{k^{1/2}} \sum_{\substack{d \mid k \\ d \mid k}} d^{1/2} \left(\frac{k}{d} \cdot h\right)^2$$

$$= d(k)k^{3/2} k^2 \sum_{\substack{d \mid k \\ d \mid k}} \frac{1}{d^{3/2}}$$

$$\leq d(k)k^{3/2} k^2 D^2.$$

Thus from (4.1)

as $h = [Dk^{3/4} d(k)^{1/2}] + 1 > Dk^{3/4} d(k)^{1/2}$. This completes the proof of the theorem.

5. <u>Conclusion</u>. As remarked by Smith [5] it would be of great interest to know if the exponent 3/4 of the theorem can be lowered. It would also be of interest to know if the method of this paper could be adapted to give a corresponding result for the congruence

(5.1)
$$ax^{\ell} + by^{m} \equiv c \pmod{k},$$

where $l \ge 2$, $m \ge 3$ and (abc, k) = 1.

REFERENCES

- T. Estermann, On Kloosterman's Sum. Mathematika 8 (1961) 83-86.
- T. Estermann, A new application of the Hardy-Littlewood-Kloostermann Method. Proc. Lond. Math. Soc. 12 (1962) 425-444.
- L.J. Mordell, On the number of solutions in incomplete residue sets of quadratic congruences. Archiv der Math. 8 (1957) 153-157.
- H. Rademacher, Lectures on Elementary Number Theory. (Blaisdell, 1964) 93.
- 5. R.A. Smith, The circle problem in an arithmetic progression. Canad. Math. Bull. 11 (1968) 175-184.
- A. Tietäväinen, On the trace of a polynomial over a finite field.
 Ann. Univ. Turku., Ser. Al, 87 (1966) 3-7.

- 7. A. Tietavainen, On non-residues of a polynomial. Ann. Univ. Turku., Ser. Al, 94 (1966) 3-6.
- 8. A. Weil, On some exponential sums. Proc. Nat. Acad. Sci. (U.S.A.) 34 (1948) 204-207.

Carleton University