POLYNOMIALS WITH IRREDUCIBLE FACTORS OF SPECIFIED DEGREE ## Kenneth S. Williams Let d be a positive integer and let p be a prime > d. Set $q = p^m$, where $m \ge 1$, and let I(q,d) denote the number of distinct primary irreducible polynomials of degree d over GF(q). It is a simple deduction from the well-known expression for I(q,d) that (1) $$|I(q,d) - \frac{1}{d}q^d| \le (1 - \frac{1}{d})q^{d*}$$, where d* is the largest positive integer < d which divides d if d > 1, and d* is 0 if d = 1. We can write (1) as an asymptotic formula, namely, (2) $$I(q,d) = \frac{1}{d} q^{d} + O(q^{d*}),$$ where the constant implied by the O-symbol depends here (and throughout this note) only on d. Our purpose in this note is to obtain a generalization of (2). Let e and s be integers such that $1 \le e \le d$ and $1 \le s \le \lfloor d/e \rfloor$. We let I(q,d,e,s) denote the number of distinct primary polynomials of degree d over GF(q) having exactly s distinct primary irreducible factors of degree e over GF(q). We prove that (3) $$I(q, d, e, s) = \ell_{d, e, s} q^{d} + O(q^{d-e+e*}),$$ where (4) $$\ell_{d, e, s} = \frac{[d/e] - s}{\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i! \ s! \ e^{i+s}}}.$$ This provides a generalization of (2), as $I(q,d,d,1) \equiv I(q,d)$ and $\ell_{d,d,1} = 1/d$. We begin by noting that I(q, e) > [d/e], for from (1), $$\begin{split} I(q,e) & \geq \ \frac{1}{e} \ q^e - (1 - \frac{1}{e}) q^{e^*} \\ & \geq \ \frac{1}{e} \ \{ q^e - (e-1) \ q^{e-1} \}, \ as \ e^* \leq \ e-1, \\ & \geq \ \frac{1}{e} \ \{ e q^{\max\{1,\ e-1\}} - (e-1) q^{e-1} \} \ , \ as \ q \geq e \ , \\ & \geq \ q/e \\ & > \ d/e \ . \end{split}$$ Thus the number of primary polynomials of degree d over GF(q) which are divisible by i distinct primary irreducible polynomials of degree e over GF(q) is q^{d-ie} , if $1 \le i \le [d/e]$, and 0, if $[d/e] < i \le I(q,e)$. Hence, by the input-output formula, the number of such polynomials with with at least one primary irreducible factor of degree e is (5) $$\sum_{i=1}^{\lfloor d/e \rfloor} (-1)^{i-1} \begin{pmatrix} I(q,e) \\ i \end{pmatrix} q^{d-ie} .$$ From (2) we have $$\begin{pmatrix} I(q,e) \\ i \end{pmatrix} = \frac{q^{ie}}{i! e^{i}} + O(q^{ie-e+e*}) ,$$ so (5) becomes (6) $$\begin{cases} \begin{bmatrix} d/e \end{bmatrix} & \frac{(-1)^{i-1}}{\sum_{i=1}^{i} & i! & e^{i}} \end{cases} q^{d} + O\left(q^{d-e+e^{*}}\right) .$$ Hence the number of primary polynomials of degree d over GF(q) having no irreducible factor of degree e over GF(q) is given by (7) $$N(q,e,d) = \begin{cases} [d/e] & (-1)^{\frac{1}{2}} \\ \sum_{i=0}^{\infty} & \frac{i! e^{i}}{i! e^{i}} \end{cases} q^{d} + O(q^{d-e+e^{*}}).$$ Now (8) $$I(q,d,e,s) = M(q,e,s) N(q,e,d-es)$$, where we understand N(q,e,d-es) to mean q^{d-es} when s=[d/e], and M(q,e,s) denotes the number of distinct polynomials which are the product of s (not necessarily distinct) primary irreducible polynomials of degree e over GF(q). M(q,e,s) is just the number of distinct s-combinations with repetition of I(q,e) distinct things and so is just (9) $$\left(\begin{array}{c} I(q, e) + s - 1 \\ s \end{array} \right) = \frac{q^{es}}{s! e^{s}} + O(q^{es - e + e^{s}}).$$ Hence from (7), (8) and (9) $$\begin{split} I(q,d,e,s) &= \left\{ \frac{q^{es}}{s!e^{s}} + O(q^{es-e+e^{*}}) \right\} \left\{ \begin{pmatrix} [d/e]-s & \frac{1}{s!e^{i}} \\ \sum_{i=0}^{s} & \frac{(-1)^{i}}{i!e^{i}} \end{pmatrix} q^{d-es} + O(q^{d-es-e+e^{*}}) \right\} \\ &= \ell_{d,e,s} q^{d} + O(q^{d-e+e^{*}}) , \end{split}$$ as required. We remark that (5) and (6) were obtained by Uchiyama (Note on the mean value of V(f). II, Proc. Japan Acad. 31 (1955) 321-323) when e=1, in his work on the distinct values of a polynomial over a finite field. Summer Research Institute Queen's University Kingston Carleton University Ottawa