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1. Introduction. Let p denote a prime and n a positive in-
teger > 2. Let Nn(p) denote the number of polynomials X4 x4 a,
a = 1,2,...,p-1, which are irreducible (mod p). Chowla [57 has made

the following two conjectures:

CONJECTURE 1. There is a prime no(n), depending only on n,

such thet for all primes p z_po(n)

(1.1) Nn(p) i}l.

(no(n) denotes the least such prime.)
CONJECTURE 2.

(1.2) N ) ~E 0 fixed, p o
Clearly the truth of conjecture 2 implies the truth of conjecture
Let us begin by noting that both conjectures are true for n = 2

and n = 3. When n = 2 we have

1 , p=2,
(1.3) N, (p) =
-1 , P23,
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so that we can take pO(Z) = 2. When n = 3 we have [6]
1 » p=2,
(1.4) N,(p) =10 , p=3,
1 -3 N
3 (- (T5>) » D=5,

so that pO(Z) = 5.
In this paper I begin by proving that conjecture 2 (and so con-
jecture 1) is true when n = 4, 1i.e., N4(p) ~ %g as p -~. In fact I

prove more, nawely,

1

1 1
(1.5) N - Bl =5 pPr12,  p>3.

This is of course a trivial inequality for small values of p, but it
does show that Nd(p) > 1 for p > 457, so that p0(4) < 457, Tt is
very unlikely that there is a simple formula for N4(p) (not involving
character sums) as there is for Nz(p) and Ns(p). In proving (1.5)

I use some results of Skolem [9] on the factorization of quartics (mod p)
and deep estimates of Perel' muter [8] for certain character sums. The
method is not applicable for the estimation of Nn(p) for n > 5.

It is of interest to estimate the least value of a (1 < a f_p—l)
which makes x" + x + a irreducible (mod p). We denote this least va-
lue by an(p). az(p) exists for all p , az(p) exists for all p # 3
and a4(p) exists for all p > 457 (and for other smaller values of p).
The existence of an(p), for all n and all sufficiently large p, would
follow from the truth of conjecture 1.

I conjecture that for each positive integer n there is an infini-

ty of primes p for which X"+ x + 1 is irreducible (mod p). This
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is equivalent to
CONJECTURE 3. For all n > 2

(1.6) liminf an(p) = 1.

P o
This is easily seen to be true when n = 2 (Theorem 3.1) and I also
prove that it is true when n = 3 (Theorem 3.2). The proof of Theorem
3.2 involves the prime ideal theorem. As regards upper bounds for aﬁ(p),
it is shown that az(p) = O(p‘l1 log p) (Theorem 4.1) follows from a re-
sult of Burgess [3], that as(p) = O(p%) (Theorem 4.2) using a method
of Tietavainen [10], and that a4(p) = O(p% * 5 (Theorem 4.3) using
Skolem's results [9] on quartics. Probably the true order of magnitude
of these is much smaller, perhaps even O(pg), for all ¢ > 0.

Finally I conjecture Chowla's conjecture 2 in the stronger form:

CONJECTURE 4. Let = > 0 and let hp denote an integer satis-

fying
(1.7) P +1<h_<p.

Let Nn(hp) denote the number of polynomials o+ x+a, a=1,2,...,

hp-l, which are irreducible (mod p). Then
(1.8) Nn(hp) A:hp/n, n fixed, p o=.

Conjecture 2 is the special case hp = p. I prove conjecture 4

when n = 2,3 and 4.

2. Estimation of N4(p). As T am only interested in estimating
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N4(p) for large values of p, I assume throughout that p > 3. The
factorization of x4 + x +a (modp), for p >3, depends upon that
of y3 - 4ay -1 (mod p). These two polynomials have the same discri-

minant, namely,

(2.1) D(a) = 256a° - 27

D(a) = 0 (mod p) 1is a necessary and sufficient condition for both
x4 + x+a and y3 - 4 ay - 1 to have squared factors (mod p). Let
np denote the number of integers a, O < a < p-1, such that D(a) = 0

(mod p). We have

0 , if p=1 (mod 3), 2(P71/5 2y noa by
(2.2) n =41 if p:2 (mod 3),

3 s if pz 1 (mod 3), Z(p_l)/5 = 1 (mod p).

Let M(p) denote the number of integers a with 1 < a < p-1
and D(a) # 0 (mod p) such that x4 + x+a=0 (modp) has exactly
two distinct solutions, and L(p) the number of integers. a with
1 = a<p-1 and D(a) # 0 (mod p) such that y3 -4ay-1:=0 (mod p)

has exactly one Toot. By results of Skolem [91 we have

1"

(2.3) N,(p) + M(p) = L(p)

LEMMA 2.1.

[L(p) - i(p-D] <

A

=
+
—

Proof. It is well-known that y3 -4ay -1=0 (mod p) has

exactly one unrepeated solution y if and only if (Qéél) = -1. Hence
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L(p)

n
[T
o
11
—
——

p—

1
———
=
< |~
5
—
p—
———

Now the monic cubic polynomial 2_8 D(a) 1is square free (mod p) so

(see for example lemma 1 in [2]) we have

p-l 1
17 (X))t

a=0 P
giving
1 1
L - 50-1] <p* +1
P 15 3 . 21
LEMMA 2.2. Mp) - 5l <7 P
Proof. x4 + x+az0 (mod p) has exactly two unrepeated

distinct solutions (mod p) 1if and only if y3 - day - 1 =0 (mod p)
y
has exactly one solution, y; say, such that (5} ): +1 . Now y'-5 -

4ay - 1 = 0 (mod p) has exactly one unrepeated root if and only if

(Qﬁi}) = -1 . Hence if (Qiﬂl) = -1 then
p p

1, if the unique root of y3—4ay—l =0

p Prl
5 7 &1 + (g)} = is a quadratic-residue,
Syzl 0, 1if the unique root of y3—4ay-l =0
y -4ay-1 = 0 is a quadratic non-residue.
Hence
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y=1 a=1 P
az(y3—1)/4y
D(a) £ 0

=

y=1 P
3
ym £ 1

D((y-1)/dy) 7 0

P

p-1.
where |A] < 8 . Now as ) (Z) =0,
= JEolD

pcl 43 \
) (¥ -1)/4y7 W
y=0 1 P b+ (DB} p So Sl ’
where
- i3
(2.4) s = 1(y4+1D((y 1)/ay)) . i= 0,1,
i v=0 P
SO
1
(2.5) M(p) = 7(p-S,-S;)¥A .

Suppose that
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251y ay) = (0-3y0-27 sy Ry - {f(y)}z g(y) (mod p) ,

where f(y) is a polynomial of degree d (0 < d < 5) and g(y)

square-free polynomial of degree e (0 < e < 10). Clearly 2d + e =

as v {0} e, vAHED) T e we have v 4 £ L vl

so that e # 0. Hence e = 2,4,6,8 or 10.

Now
s =7 if(yﬂzg(y))
o =0 P
L)L ()
y=o \ P y=0 P
f(y) - 0
Clearly

p:l 1 1
v (fﬂl) < (e-2)p? + 1 < 8p* + 1
y=0 \ P
Hence
3
(2.6) ISyl = 8p” + 5
Similarly
1
(2.7) \sl\ < 7p* + 5
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Putting (2.5), (2.6) and (2.7) together we obtain

15 3 21
7P T

A
roi—

M(p) - p/4|

From (2.3) and lemmas 2.1 and 2.2 we have

19 1

_Pyp L2
THEOREM 2. 3. ]N4(p) 4\ c Pt o+ 12

3. Calculation of 1liminf an(p) for n =2 and 3.

p 00
THEOREM 3.1. liminf az(p) =1
p =00
Proof. x° +x +1 is irreducible (mod p) if and only if

-1, that is, for all primes p = 2(mod 3)

—
=l
S
)

THEOREM 3.2. liminf as(p) =1
p»m
Proof. We suppose that liminf as(p) # 1 . Hence

there are only a finite number of primes such that x3 +x+ 1 is
irreducible (mod p). Thus there is a prime Py such that for all

primes p > Py > x>+ x + 1 1is reducible {mod p). The discriminant
of x3 +x+1 is -31, so x3 + x + 1 has a squared factor (mod p)
if and only if p = 31. Hence for all p > Py = max(po,Sl), x3 +x+ 1
is reducible (mod p) into distinct factors. Let v(p) denote the

number of incongruent solutions x (mod p) of x3 +x+1=0 (moed p).

Then

(3.1) vip) =1 or 3 for all p > P,
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Let
(3.2) P.(x) = { \ < -5l i =1 3

. i PlPp <P=Xx, v(p) 1} (i or 3)
so that

PLx) NPy(x) = ¢
and
Pl(x) i PB(X) = {p | P} <P < x}

Let n (Pi(x)) (i =1 or 3) denote the number of primes in Pi(x) SO
(3.3) n (P(x)) + n (P(x)) = 7(x) - nlpy)

where 7(t) denotes the number of primes < t. Hence

1

(3.4) lim 2 X (n (Pl(x)) +n P(x)) =1,

X >

by the prime number theorem. Now

7 ov(p) = Lovipy v Y v
p1<p_<_x p1<pix p1<p_<_x
vip) = 1 vip) = 3
= n (PI(X)) + 3n (Ps(x))
so that
(3.5) lim 10X {n (P,(x)) + 3n (PS(X))}

X -
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by the prime ideal theorem, as x3 + x + 1 1is irreducible over the

integers. Hence from (3.4) and (3.5) we have

In x
n
X

1}
—

(3.6) lim

X >

(P, (X))

Now x3 + x+ 1 =0 (mod p) has exactly one distinct root if and only

if (ié}) = -1 so
p

_ 1 -31
1L (3
p < p < X
1 _—
1 1 -31
g w3
Py =P X
giving
(3.7) . In x 1
ilfm x "=
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as

-31
—] = o{x/1nx)
g x( p )

Py <

<
(3.6) and (3.7) give the required contradiction.

4. Upper bounds for an(p), n=2,3,4.
We now obtain upper bounds for az(p), as(p) and a4(p).

1
THEOREM 4.1. a,(p) = 0(p*ln p)

Proof. x~ + x +a 1is irreducible (mod p) if and only if

) = -1. Hence, as az(p) is the least such positive a, (1_;3) =
+1, for a-=1,2,..., az(p) - 1, except if smallest positive solu-
tion b of 4b =1 (mod p) satisfies 1 < b < az(p), in which case

the Legendre symbol corresponding to a = b 1is zero. We consider two

cases, according as b z_az(p) or 1 <b«< az(p). If b Z_az(p)
ao o (259 - (GAF) () & (50 - (5

for a=1,2,..., az(p) - 1 so that

(4.2) {—b +1, b+ 2,..., b+ ay(p) -1}

is a sequence of az(p) - 1 consecutive quadratic residues (mod p)

if p = 1 (mod 4) and a sequence of az(p) - 1 quadratic non-residues
if p = 3 (mod 4). Burgess [3] has proved that the maximum number

of consecutive quadratic residues or non-residues (mod p) 1is O(piln p).

1 1
Hence a,(p) - 1 = 0(p*In p), that is, a,(p) = 0(p*1n p), as required.
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If 1 <b < az(p), we consider in place of (4.2) the longer of

the two sequences -b+1, -b+2,...,-1 and 1,2,...,—b+a2(p)—1 ;
a,(p)
it contains at least > -1 terms.
1
THEOREM 4.2. a (p) = 0(p?)
Proof. Let N(a) denote the number of solutions x of the con-

gruence

x3 + x+a=0 (mod p)

Clearly N(a) = 0,1,2 or 3. Set
(4.3) s = 3 {1 - N@}{s - N@)

Now N(a) = 2 if and only if —4—27a2 = 0 (mod p) hence

3

1, if x” + x + a 1is irreducible (mod p) ,
(4.4) ¢(a) = { 0, if x>+ x+a is reducible (mod p), -4-27a% 7 0,
-% , if x” + x + a is reducible (mod p), —4-27a2 - 0.

Let h denote an integer such that 1 < h i.% (pt1), so that

0 < h-1 f.l (p-1). Set H = {0,1,2,...,h-1} and write H(a), (a = 0,

2
1,2,...,p-1), for the number of solutions of
x +y = a (mod p) , xeH, yeH.

We set

p-1
(4.5) A(p) = L s(a)(a)

a=0

2
-4-27a"#0
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Now
p-1 p-1 p-1

(4.6) pH(a) = | } 7}
t=0 x=0 y=0

where e(v) = exp(2riv/p). Hence

e{t(xty-a)}

p-1 p-1 ”h-l 12
(4.7) pA(p) = ) 7 (b(a)e(-at)j\l 7 e(txn
t=0 a=0 x=0 .
24-27a%% 0
which gives, on picking out the term with t= 0 ,
» Pol
(4.8) PA(p) - h° ] ¢(a)
a=0
-4—27&21 0
lp-1  p-1 h-1 \2
= ‘ ! [ b s(ae(-at)y ] e (ex)
t=1 a=0 x=0
—4—27&2% 0
p-1 p-1 h-1 2
< ) s(a)e(-at)| | T e(tx)
t=1 a=0 x=0
—4—2732% 0
We note that from (4.4) and (1.4) we have
Pl 1 -3
(4.9) I ea) = No(p) - -{p 3 } '
a=0 3 3 ( ol )
—4-27322 0

Now
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p-1 p-1 p-1
) p(a)e(-at)| = | | #(a)e(-at) - ] (a)e(-at)
a=0 a=0 a=0
—4—27a22 0 -4—27a2£ 0
p_l 2
< z ¢(a)e(-at)| + 3 -
a=0

p-1 p-1 1
y ¢(a)e(-at) = ) 3 {1—N(a)}{3—N(aﬁ e(-at)
a=0 a=0
p-l p-1 p-l
= 7 e(-at) - g ) N(a)e(—at)+% 7 {N(a)}2e(—at)
a=0 a=0 a=0

p-1 p-1
) {N(a)]ze(-at) . g I Na)e(-at) ,
a=0 a=0

A=

p-1
as Z e(-at) = 0, when t # 0 (mod p). Now
a=0

p-1 p-1 p-1
7 N(a)e(-at)| = |} {} ) e(u(x3+x+a») e(-at)
a=0 a=0 P x,u = 0
p-1 p-1
= 1 Z e(u(x3+x” Z e(a(u-t))
p x,u = 0. a=0

- il e(t[x3+x)) ‘[

x=0
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by a result of Carlitz and Uchiyama [4]. Similarly

1 | p-1
{N(a)]ze(—at) = ) e(tly +y))
0 x,y = 0

\p_
!

a=

x3+x-y3—y =0

<L oe(t{xTx) |+ L elt{yT+y))

x=0 x,y=0
x 7y

x2+xy+y2+1 =0

1 p'l 3 p_l 3
< 2p* + Ioeltly’ty) |+ 1 eltiy’+y)
x,y=0 y=0
CxytyiHl = 0 3y2+1 = 0

By a result of Bombieri and Davenport [1] the middle term is less than
1
or equal to 18p® + 9 and the last term is clearly less than or equal

to 2. Putting these estimates together we have

-1
) ¢(ae(-at)| <

a=0
2
-4-27a"£ 0 \

p 1
(28p* + 13)

Al -

Hence from (4.8) and (4.9) we have

2 ‘
PAG) - 3 (- (-3/p))|

|~

1

- %(28pé + 13)h(p-h)
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giving

-3

2 1
T (p-(;—)) - Le2sp? + 15)h(p-h)

> =L - Lanp®/?
BLI PRy
6 | - 8

1
Choose h = [84p°1 + 1, so that A(p) > 0 i.e.,

p-1
) ¢(a)H(a) > 0 .
a=0
2
-4-27a"%# 0
Hence there exists a, 0 < a < p-1, for which
2
-4-27a" £ 0, ¢(a) » 0, H(a) > 0,
i.e., for which x3+x+a is irreducible (mod p) and moreover
a=xty , x,y ¢ H,
so that
1
0 < a< 2(h-1) = 2[84p°] .
Hence
1
ag(p) < 168p°

as required.



;
THEOREM 5.1.  If p’ ~h_<p

(5.1) N, (h ) ~ In as p oo

5. Ly 5hy s 7 .

Proof. x2+x+a is irreducible (mod p) 1if and only if

()

Hence
h -1
N, (h )} = E 1
207 a=1
K1_4a) - -1
P
h -1 ]
1 g { (1-43) 12
1 - -5,
2 5 p /) 2
where
’ 1, if there exists a such that 1 -+ a ;th-l, 4a 1 (mod p},
P 0, otherwise.
Thus
hp—l

1 1 1-4a

= (N, Yy + 2y -1 =2 |} ( )

hp 2V p Is) hp azo P

LR

As hD> p* "~ %, by a result of Burgess [2], for any & > 0 there

exists po(ﬁ,g) such that for all p 2D, we have

giving
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Ty,

THEOREM 4.3. a,(p) = oz 5
Proof. Let M(hp) denote the number of integers a with
1
lza<h-1, where p’ "f<h cp and D(a) /0 (mod p), such that

x4+x+a - 0 (mod p) has exactly two distinct solutions; let L(hp) the
number of integers a with 1 < a j_hp—l and D(a) # 0 (mod p} such

that y3—4ay—1 Z 0 (mod p) has exactly one root. We have [9]
4.10 N, (h) + Mh_) = L(h
(4.10) Ny (h) M) = L(h)

Similarly to lemmas 2.1 and 2.2, using incomplete character sums in

o
place of complete ones, we can show that

_ 1 3
(4.11) L(hp) =5 hp + 0(p°1ln p)
and
1 3
(4.12) M(hp) =3 hp + 0(p~1n p)

(The method is illustrated in [7]). Hence

1

. 1 }
(4.13) Ny(h) = 3 b+ 0% p)

1
]+
As hp irpz E, for some ¢ > 0, the term hp/4 in (4.13) dominates
1
the error term O(p”ln p) for p i_po(g). Hence for p > po(g),

N4(hp) >0 1i.e., N4(hp) > 1, and so

;
1+
a,(p) <p> °©

5. Asymptotic estimates for Ni(hp) (i=-2,3,4)
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o1
lim f (2N2(hp) + Zp) =1

p o= P
1
As 2_=0 or 1 and h_-> p* T € e have
p p
7
lim £ = 0,
p o= P
so
2N.(h_)
lim ——%——B— =1,
p - p
establishing (5.1).
THEOREM 5.2. Let € > 0 and let hp denote an integer satis-

fying

PPt

< < s
=0y =P
then
hP
(5.2) Ng(h ) ~ 5P
and
hP
(5.3) N4(hp) ~ 3 s as o p oo
Proof. (5.2) 1is established in my paper [6], as I showed there

(in different notation) that
%
Ny(h)) = h /3 + 0(p*In p)

(5.3) 1is contained in the proof of theorem 4.3.
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ADDENDUM: After this paper was written, Professor Philip A. Leonard

of Arizona State University kindly informed me that he had proved my
theorem 2.3 in the form N, (p) = 2 + 0 (p*) , in Norske Vid. Selsk.
Forh. 40 (1967), 96-97. His paper on factoring quartics (mod p),

J. Number Theory 1 (1969), 113-115 contains a simple proof of the results

of Skolem [9] which T use in this paper.
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