QUADRATIC POLYNOMIALS WITH THE SAME RESIDUES
K. S. WILLIAMS, Carleton University, Ottawa
It is the purpose of this note to prove the following:

TueorREM. Two quadratic polynomials awxs+bixi—-ci and awi-+byxs+co with
integral coefficients have the same residues modulo every prime p>3 not divid-
ing aias, if and only if they are related by a nonsingular rational linear transforma-
tion, that is to say, if and only if there exist rationals v and s with r#0 such that

a1(rx + )2 + bi(rx + 5) + c1 = a? + box + oo

For example, this theorem tells us that 12x3+14x;+1 and 75x2-455x,-+7
have the same residues (mod p) for every prime p =7, since

12(35 + 3)2 + 1480 + 1) + 1 = 7542 + 552 + 7.

We note that there is no ¢nfegral transformation relating 12x%--14x,+1 and
75%3+55x,+7. In any particular case it is easy to decide whether the two quad-
ratics also have the same residues (mod p) for p=2 or 3 or any pl @ay. In the
above example they do for p =2, 3 but not for p =35,

We begin by calculating the number N, (p >2) of common residues (mod p)
of the two quadratic polynomials a;x?-+dyxi--¢; and asxs+baxs+co (a1, @250
(mod p)), that is, the number of integers 7 satisfying 0 <7 < p—1 for which both
the congruences

2 2
1% + 01%1 + 61 = 7, @o¥y + boxtes F o =7

are soluble. We denote the number of solutions x; (i=1, 2) of ax®+bux;+ci=r
by N.(r) so that
p—1
N,= 2.1, Ni(n)>0 (i=1,2).
7==0

Let d;=02—4a,; (i=1, 2) then we have

d,' + 405’)’)

N,-<r>=1+( (i=1,2

and so N,= Y 1, o Ny;, where
-1 d1+ 4ayr ds + 4ayr
Ny= 51, (_1.._ 1>:i (_2__2_):.]-(
r=0 P P

We now evaluate each Ny; (4, =0, 1) in turn. For convenience we set ¢ =ad,
—a9dy. Then
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Ny = ?’Z“:Ilz{l, ?f e=0,
=0 0, if es0,
r= —4-1gyd,,
r=—4"la;7d,;
that is Noo=1—(e?/p). Also

Fandy _ do + dagr
Nop= 501, r=— 44 dy, ( ? ’ )
r=0

ow (M) 2y,
1

?
ae

0, if (———>=0 or —1,
?

)G

Similarly Ny=13{(—ase/p)+(e?/p)}. Finally

’

Il

v

that is

p—1
T

Ny = i ;) (dl + 4alr> _ <d2 - 4agr> _ 4
—0 4 ?

S G G5

?
r# —4_1(1:1031 or —d4 'ay'd,
1

TR () ()

p

N R e
= %[f) + Z (16“‘“2" + 4(ald;+ asd)r + d1d2>

-1-(5)-59-6)]
il () () - (5)-(59)- ()]

P P
Hence we have proved

LeEMMA 1. For p>2, plaias
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1 @109 10962 e’ a1e
e ) -5 - (5) + ()
4 ? b4 b4 b4
(9-CH)
i ?

This gives the following table of values of N, (p>2).

TABLE
p=1 p=3 =1 p=3
(mod 4) (mod 4) (mod 4) (mod 4)
GG HOEOEHENEIE) o
1 1 1 1 1 1 1 -1 1 Lp+3) p+1)
1 1 0 1 0 0 0 0 0 i+ 3+
1 1 -1 1 1 -1 -1 1 1 ip—-1 i+
1 -1 1 -1 1 1 -1 1 -1 ip+3) p+5)
1 =1 0 -1 0 0 0 0 0 1 1
1 -1 -1 -1 1 -1 1 -1 -1 1p+3) Lp-+1)
-1 1 1 -1 1 =1 1 -1 —1 p+3) p+1)
-1 1 0 -1 0 0 0 0 0 1 1
-1 1 -1 -1 1 1 -1 1 -1 1p+3) ip+5)
-1 -1 1 1 1 -1 -1 1 1 ip—1) p+1
N — 0 1 0 0 0 0 0 p+1) 3p+1)
-1 -1 -1 1 1 1 1 -1 1 ip+3) p+1)

LemMA 2. If p>3, the quadratics a;x’+bixi+c¢; and agxi-boxs ¢, have ex-
actly the same residues (mod p), if and only if (a1a;/p) =41 and e=0 (mod p).

Proof. This is immediate from the table as the quadratics a;x% +b:x;+¢; and
azx3+baxs+-co have exactly the same residues if and only if N, =%(p+1). (Recall
that the number of residues (mod p) of a quadratic polynomial ax?-+bx-+c¢
(a, b, ¢, integers, a0 (mod p) (p>2)is L(p+1).)

Our last lemma is based upon an idea contained in a paper of H. Salié [1].

LemMA 3. For any prime g, there exists an integer 1=1 (mod 4) and #0
(mod g) such that if p is a prime =1 (mod 4q) then (q/p) =

Proof. If g=2 take I=5 as (2/p) = —1 for primes p=5 (mod 8). We may
therefore suppose that ¢>2. Let

L={1]l=1,509,13,--.,4q — 3}.
The number of integers in L is just ¢. They are distinct (mod ¢) for if I, LEL
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with =1 (mod ¢) then as ¢>2 and i=/L=1 (mod 4) we have 1=/, (mod 4¢q) i.e.
ly=1,. Hence the residues of the integers in L (mod ¢) form a complete residue
set (mod ¢). Let n denote the least positive quadratic nonresidue (mod ¢) and
choose I& L such that /=#» (mod ¢). Then /=1 (mod 4), /0 (mod ¢) and if p
is a prime =] (mod 4¢) (so that in particular p=1 (mod 4)) we have by the law
of quadratic reciprocity

<i> = (£_> (—1)DEDI = — 1
P g
as required.

We are now in a position to prove the theorem.

Proof of Theorem. From Lemma 2, the quadratics a;x?+bix1+c¢; and axx?
~+boxa-+cy have the same residues modulo every prime p strictly greater than 3
and not dividing a; or a, if and only if

(13102
( 5 >=—I—1 and e = 0 (mod p)

for these primes. Now ¢=0 (mod p) for any infinity of primes p if and only it
e=0 i.e. if and only if

(1) (ll(lz = Gle.

Clearly if a;a, is a square then (aiaz/p) = +1 for all pta;a.. We now show con-
versely that if (@1a:/p) = +1 for all >3 not dividing a;a, then a;a, is a square.
Suppose that it is not. Then it can be expressed as

+ pipa - v - Pk or —E2

where py, « + -, p; are s=1 distinct primes. We deal with the case when aia, is
positive first. To obtain the necessary contradiction it suffices to show the exis-
tence of a prime p>3a;a; such that (aias/p) = —1. We do this by showing the
existence of such a prime p with (p1/p) = + - -+ =(ps_1/p) = +1and (p,/p) = —1.
Let /; denote the integer / given by Lemma 3 with ¢=p,. We now define an
integer l, as follows: if s=1 take ly=1I; and if s> 1 choose ; such that

l2 =1 (mod 4?1 L Ps—l)
I, = a; (mod 4p,).
This is possible as 4= (4p; * - - ps—1, 4ps)| li—1. Obviously (b, 4p1 - - - p,) =1.

By Dirichlet’s theorem there exists an infinity of primes =1l (mod 4p; - - - $.).
Let p denote the least such >3a;2,. Then by Lemma 3 (p,/p) = —1. Also

(1;1) = (ﬁ) (—1)lrD~D1/ = <_;%) = (é_) =1,

forz=1, 2, - - -, s—1 as required.
We now deal with the case when aia; is negative. Suppose firstly that
aa, = — k2. We show this is impossible. By Dirichlet’s theorem there are an
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infinity of primes =3 (mod 4). Take ¢ to be the least such one > —3aa,. Then
#>3 and plaias and moreover

()-69-6)- -

which is a contradiction. Thus if aa, is negative it must be of the form
—p1pe - - - p.kE, where py, - - -, psare s=2 1 distinct primes. As in the case when
@mas was assumed to be positive we can find a prime p> —3aa. for which
(—aaz/p) = —1. This prime is =1 (mod 4) so (—a1as/p) = (a1a:/p), completing
the proof that ¢ia, must be a square.

Now let a1a, =a® and set ¥ =a/as, s = (bs—b17) / (2a17), so that both » and s are
rational. Then ay?=a%/a;=a»,

2a17s + byr = (by — byr) + bar = by

and
1
aist + bys -+ o1 = —— {(by — by)? + 2017 (by — byr) + daicir?)
4qq7?
1 ; 1 asd
= —{by—dy'} = — {bﬁ i
4aqr? 4a, (1 (
1 (2
102 — dz} = ¢y (from (1))
4—(12
giving

a1(rx + $)2 4 bi(rx + 5) + c1 = agx? + box - ¢
as required.
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MATHEMATICAL WOTES

Material for this department should be sent to David Drasin, Division of Mathematical
Sciences, Purdue University, Lafayette, IN 47907,

THE CONCEPT OF A TORSION MODULE
V. DLaAB, Institute of Advanced Studies, Australian National University, Canberra

The concept of a torsion group (or of a torsion element) in the theory of
abelian groups (in what follows, we shall use the word group to mean always
additive abelian group) is very simple: G is torsion if all elements of G have





