ON GENERAL POLYNOMIALS

Kenneth S. Williams

(received April 9, 1967)

Let d denote a fixed integer > 1 and let GF(q) denote the finite field of $q = p^n$ elements. We consider $q = p^n$ where A(d) is a (large) constant depending only on d. Let

(1)
$$f(x) = x^{d} + a_{d-1}x^{d-1} + \dots + a_{1}x,$$

where each $a_i \in GF(q)$. Let $n_r(r=2,3,...,d)$ denote the number of solutions in GF(q) of

$$f(x_1) = f(x_2) = ... = f(x_r)$$

for which x_1, x_2, \ldots, x_r are all different. Birch and Swinnerton-Dyer [1] have shown, as a consequence of Weil's work, that

(2)
$$n_r = v_r q + O(q^{1/2}), \quad r = 2, 3, ..., d,$$

where each $\nu_{\mathbf{r}}$ is a positive integer depending on f and the constant implied by the O-symbol depends only on d—throughout this note all constants implied by O-symbols depend only on d unless otherwise stated. They deduce from (2) that the number V(f) of distinct values of $f(\mathbf{x})$, $\mathbf{x} \in GF(q)$ satisfies

$$V(f) = \lambda(f)q + O(q^{1/2}),$$

where

$$\lambda(f) = 1 - \frac{\nu_2}{2!} + \frac{\nu_3}{3!} - \dots + (-1)^{d-1} \frac{\nu_d}{d!}$$

Canad. Math. Bull. vol. 10, no. 4, 1967

The polynomial f is called a general polynomial if

$$\lambda(f) = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{d-1} \frac{1}{d!}$$

It is the purpose of this note to prove that the number $\,N\,$ of general polynomials of the form (1) is given by

$$N = q^{d-1} + O(q^{d-2})$$
.

Since the number of polynomials of the form (1) is exactly q^{d-1} this shows that for a fixed d almost all polynomials are general.

As the number of solutions x_i of

$$f(x_1) = f(x_1)$$
, $i = 2, 3, ..., r$,

for a given x_1 , is $\leq d$ we have for r = 2, 3, ..., d

$$n_r \leq d^{r-1}q$$

and so for q sufficiently large

$$0 \le \nu_r \le d^{r-1}$$
.

Hence $\lambda(f)$ takes a finite number $\ell \equiv \ell(d)$ of rational values between (and possibly including) 0 and 1. Let $\lambda_1,\ldots,\lambda_\ell$ denote the ℓ λ -values in ascending order of magnitude, with $1-\frac{1}{2!}+\ldots+\frac{(-1)^{d-1}}{d!}$ as the k^{th} one $(1\leq k\leq \ell)$. We note that each λ_i depends only on d. Let λ_i^2 be the class of polynomials f having $\lambda(f)=\lambda_i$. For $f\in \ell_i$ $(1\leq i\leq k-1)$

$$\lambda_{k} q - V(f) = (\lambda_{k} - \lambda_{i})q + O(q^{1/2})$$

$$\geq \frac{1}{2}(\lambda_{k} - \lambda_{k-1})q,$$

for q sufficiently large. For fe $\mathscr{C}_{;}(k+1 \leq i \leq \ell)$

$$V(f) - \lambda_k q = (\lambda_i - \lambda_k)q + O(q^{1/2})$$
$$\geq \frac{1}{2}(\lambda_{k+1} - \lambda_k)q,$$

for q sufficiently large. Set

$$2\mu^{1/2} = \min(\lambda_k - \lambda_{k-1}, \lambda_{k+1} - \lambda_k)$$

so that for $f \in \mathcal{C}_{i}$ (i $\neq k$)

$$\left\{\,V\left(f\right)\,-\,\lambda_{_{k}}^{}\,q\right\}^{\,2}\,\geq\,\mu\,q^{\,2}\ ,$$

where μ depends only on d . Hence

$$\sum_{f} \{V(f) - \lambda_{k}q\}^{2} = \sum_{i=1}^{L} \sum_{f \in \mathcal{G}_{i}} \{V(f) - \lambda_{k}q\}^{2}$$

$$\geq \sum_{i=1}^{L} \sum_{f \in \mathcal{G}_{i}} \{V(f) - \lambda_{k}q\}^{2}$$

$$\geq \sum_{i=1}^{L} \sum_{f \in \mathcal{G}_{i}} \{V(f) - \lambda_{k}q\}^{2}$$

$$\geq \sum_{i=1}^{L} \sum_{f \in \mathcal{G}_{i}} \mu_{q}^{2}$$

$$= \mu_{q}^{2} N^{*}.$$

where N^* denotes the number of f with $\lambda(f) \neq \lambda_k$. Now Uchiyama [2] has shown that

$$\sum_{f} \{V(f) - \lambda_{k}q\}^{2} = O(q^{d})$$

so

$$N^* = O(q^{d-2}).$$

But $N + N^* = q^{d-1}$ so we have

$$N = q^{d-1} + O(q^{d-2})$$

as required.

If d=2, 3 or 4 we can determine N exactly. When d=2, so that $f(x)=x^2+a_1x$ (p $\neq 2$), we have

$$V(f) = \frac{q+1}{2},$$

giving

$$N = q$$
.

When d = 3, so that $f(x) = x^3 + a_2 x^2 + a_1 x$ (p $\neq 2, 3$), we have

$$V(f) = \frac{2}{3} q + O(1)$$

if and only if

$$a_2^2 - 3a_1 \neq 0$$
;

hence

$$N = q(q-1) = q^2 - q$$
.

When d = 4, so that $f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x (p \neq 2, 3)$, we have

$$V(f) = \frac{5}{8}q + O(q^{1/2})$$

if and only if

$$a_3^3 - 4a_2a_3 + 8a_1 \neq 0$$
;

hence

$$N = q^2(q-1) = q^3 - q^2$$
.

Finally we note that our result shows that

$$\sum_{f} |V(f) - \lambda_k q|^n = O(q^{n+d-2}), \qquad (n \ge 2)$$

where the constant implied by the $\ \mbox{O-symbol depends}$ only on d and n .

REFERENCES

- 1. B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arithmetica 5 (1959), 417-423.
- 2. S. Uchiyama, Note on the mean value of V(f) III. Proc. Japan Acad., 32 (1956), 97-98.

Carleton University, Ottawa