ON NORRIE'S IDENTITY

KENNETH S. WILLIAMS, University of Toronto

The first example expressing a biquadrate as the sum of four biquadrates was given by Norrie (University of St. Andrews 500th Anniversary Memorial vol., Edinburgh, 1911, 89). I give a simple demonstration of this result:

$$442^2 - 272^2 = 170.714 = 17^2.420$$

hence
$$442^2 - 3 \cdot 17^2 = 272^2 + 289 \cdot 417 = 272^2 + 353^2 - 64^2$$
, but $3 \cdot 17 = 2 \cdot 26 - 1$, so $442^2 - 2 \cdot 26 \cdot 17 + 17 = 442^2 - 2 \cdot 442 + 17 = 441^2 + 4^2 = 21^4 + 2^4 = 272^2 + 353^2 - 8^4$.

Hence, $353^2+272^2=2^4+8^4+21^4$, but $353^2-272^2=81\cdot 625=15^4$, so $353^4=30^4+120^4+272^4+315^4$.

A FIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

R. L. GRAHAM, Bell Telephone Laboratories, Inc.

Introduction. Let $S(L_0, L_1) = (L_0, L_1, L_2, \cdots)$ be a sequence of integers which satisfy the recurrence

$$L_{n+2} = L_{n+1} + L_n, \qquad n = 0, 1, 2, \cdots.$$

It is clear that the values of L_0 and L_1 determine $S(L_0, L_1)$, e.g., S(0, 1) is just the sequence of Fibonacci numbers. It is not known whether or not infinitely many primes occur in S(0, 1). On the other hand, if there is a prime p which divides both L_0 and L_1 , then all the terms of $S(L_0, L_1)$ are divisible by p and in this case it is easily shown that only a finite number of the L_n can be prime. In this paper we exhibit two integers M and N with the following properties:

- 1. M and N are relatively prime.
- 2. No term of S(M, N) is a prime number.

Preliminary remarks. Let L_0 and L_1 be arbitrary integers. Denote the *n*th Fibonacci number by F_n (where F_n is defined for *all* integers *n* by $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$, i.e., $F_{-1} = 1$, $F_{-2} = -1$, etc.).

For any $m \ge 0$ we have

$$L_m = 1 \cdot L_m + 0 \cdot L_{m+1} = F_{-1}L_m + F_0L_{m+1}$$

$$L_{m+1} = 0 \cdot L_m + 1 \cdot L_{m+1} = F_0L_m + F_1L_{m+1}$$

$$L_{m+2} = 1 \cdot L_m + 1 \cdot L_{m+1} = F_1L_m + F_2L_{m+1}.$$

Since $(F_nL_m + F_{n+1}L_{m+1}) + (F_{n+1}L_m + F_{n+2}L_{m+1}) = (F_{n+2}L_m + F_{n+3}L_{m+1})$, then by induction on n, it follows that

$$(1) L_{m+n} = F_{n-1}L_m + F_nL_{m+1}$$